# GEOMETRIC ALGORITHMS 



## Basic Geometric Objects in the Plane

point: defined by a pair of coordinates (x,y)
segment: portion of a straight line between two points
polygon: a circular sequence of points (vertices) and segments (edges) between them


## Some Geometric Problems

Segment intersection: Given two segments, do they intersect?


Simple closed path: Given a set of points, find a nonintersecting polygon with vertices on the points.


Inclusion in polygon: Is a point inside or outside a polygon?


## An Apparently Simple Problem: Segment Intersection

- Test whether segments (a,b) and (c,d) intersect. How do we do it?

- We could start by writing down the equations of the lines through the segments, then test whether the lines intersect, then ...
- An alternative (and simpler) approach is based in the notion of orientation of an ordered triplet of points in the plane


## Orientation in the Plane

- The orientation of an ordered triplet of points in the plane can be
- counterclockwise (left tum)
- clockwise (right tum)
- collinear (no tum)
- Examples:

counterclockwise (left tum)
clockwise (right tum)

collinear (no tum)


## Intersection and Orientation

Two segments $\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right)$ and $\left(\mathrm{p}_{2}, \mathrm{q}_{2}\right)$ intersect if and only if one of the following two conditions is verified

- general case:
- $\left(\mathrm{p}_{1}, \mathrm{q}_{1}, \mathrm{p}_{2}\right)$ and $\left(\mathrm{p}_{1}, \mathrm{q}_{1}, \mathrm{q}_{2}\right)$ have different orientations and
- $\left(\mathrm{p}_{2}, \mathrm{q}_{2}, \mathrm{p}_{1}\right)$ and $\left(\mathrm{p}_{2}, \mathrm{q}_{2}, \mathrm{q}_{1}\right)$ have different orientations
- special case
- $\left(\mathrm{p}_{1}, \mathrm{q}_{1}, \mathrm{p}_{2}\right),\left(\mathrm{p}_{1}, \mathrm{q}_{1}, \mathrm{q}_{2}\right),\left(\mathrm{p}_{2}, \mathrm{q}_{2}, \mathrm{p}_{1}\right)$, and $\left(\mathrm{p}_{2}, \mathrm{q}_{2}, \mathrm{q}_{1}\right)$ are all collinear and
- the $x$-projections of $\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right)$ and $\left(\mathrm{p}_{2}, \mathrm{q}_{2}\right)$ intersect
- the $y$-projections of $\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right)$ and $\left(\mathrm{p}_{2}, \mathrm{q}_{2}\right)$ intersect



## Examples (General Case)

- general case:
- $\left(\mathrm{p}_{1}, \mathrm{q}_{1}, \mathrm{p}_{2}\right)$ and $\left(\mathrm{p}_{1}, \mathrm{q}_{1}, \mathrm{q}_{2}\right)$ have different orientations and
- $\left(\mathrm{p}_{2}, \mathrm{q}_{2}, \mathrm{p}_{1}\right)$ and $\left(\mathrm{p}_{2}, \mathrm{q}_{2}, \mathrm{q}_{1}\right)$ have different orientations



## Examples (General Case)

- general case:
- $\left(\mathrm{p}_{1}, \mathrm{q}_{1}, \mathrm{p}_{2}\right)$ and $\left(\mathrm{p}_{1}, \mathrm{q}_{1}, \mathrm{q}_{2}\right)$ have different orientations and
- $\left(p_{2}, q_{2}, p_{1}\right)$ and $\left(p_{2}, q_{2}, q_{1}\right)$ have different orientations



## Examples (Special Case)

- special case
- $\left(\mathrm{p}_{1}, \mathrm{q}_{1}, \mathrm{p}_{2}\right),\left(\mathrm{p}_{1}, \mathrm{q}_{1}, \mathrm{q}_{2}\right),\left(\mathrm{p}_{2}, \mathrm{q}_{2}, \mathrm{p}_{1}\right)$, and $\left(\mathrm{p}_{2}, \mathrm{q}_{2}, \mathrm{q}_{1}\right)$ are all collinear and
- the $x$-projections of $\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right)$ and $\left(\mathrm{p}_{2}, \mathrm{q}_{2}\right)$ intersect
- the $y$-projections of $\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right)$ and $\left(\mathrm{p}_{2}, \mathrm{q}_{2}\right)$ intersect




## How to Compute the Orientation

- slope of segment $\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right): \sigma=\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) /\left(\mathrm{X}_{2}-\mathrm{x}_{1}\right)$
- slope of segment $\left(\mathrm{p}_{2}, \mathrm{p}_{3}\right): \tau=\left(\mathrm{y}_{3}-\mathrm{y}_{2}\right) /\left(\mathrm{X}_{3}-\mathrm{x}_{2}\right)$

- Orientation test
- counterclockwise (left turn): $\sigma<\tau$
- clockwise (right turn): $\sigma>\tau$
- collinear (left turn): $\sigma=\tau$
- The orientation depends on whether the expression $\left(y_{2}-y_{1}\right)\left(\mathrm{x}_{3}-\mathrm{x}_{2}\right)-\left(\mathrm{y}_{3}-\mathrm{y}_{2}\right)\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)$ is positive, negative, or null.


## Point Inclusion

- given a polygon and a point, is the point inside or outside the polygon?
- orientation helps solving this problem in linear time



## Point Inclusion - Part II

- Draw a horizontal line to the right of each point and extend it to infinity
- Count the number of times a line intersects the polygon. We have:
- even number $\Rightarrow$ point is outside
- odd number $\Rightarrow$ point is inside
- Why?

- What about points d and g ?? Degeneracy!


## Simple Closed Path — Part I

- Problem: Given a set of points ...
- "Connect the dots" without crossings



## Simple Closed Path - Part II

- Pick the bottommost point a as the anchor point

- For each point $p$, compute the angle $q(p)$ of the segment ( $\mathrm{a}, \mathrm{p}$ ) with respect to the x -axis:



## Simple Closed Path — Part III

- Traversing the points by increasing angle yields a simple closed path:

- The question is: how do we compute angles?
- We could use trigonometry (e.g., arctan).
- However, the computation would be inefficient since trigonometric functions are not in the normal instruction set of a computer and need a call to a math-library routine.
- Observation:, we don't care about the actual values of the angles. We just want to sort by angle.
- Idea: use the orientation to compare angles without actually computing them!!


## Simple Closed Path — Part IV

- the orientationcan be used to compare angles without actually computing them ... Cool!



## $\theta(\mathrm{p})<\theta(\mathrm{q}) \Leftrightarrow$ orientation $(\mathrm{a}, \mathrm{p}, \mathrm{q})=\mathrm{CCW}$

- We can sort the points by angle by using any "sorting-by-comparison" algorithm (e.g., heapsort or merge-sort) and replacing angle comparisons with orientation tests
- We obtain an $\mathrm{O}(\mathrm{N} \log \mathrm{N})$-time algorithm for the simple closed path problem on N points


## Graham Scan Algorithm

Algorithm Scan $(S, a)$ :
Input: A sequence $S$ of points in the plane beginning with point $a$ such that:

1) $a$ is a vertex of the convex hull of the points of $S$
2) the remaining points of $S$ are
counterclockwise around $a$.
Output: Sequence $S$ from which the points that are not vertices of the convex hull have been removed.
$S$.insertLast (a)
prev $\leftarrow S$.first()
curr $\leftarrow S$.after(prev)
\{add a copy of $a$ at the end of $S\}$ \{so that prev $=a$ initially $\}$
\{the next point is on the\} \{current convex chain\}
repeat
next $\leftarrow S$.after $($ curr $) \quad$ \{advance $\}$
if points (point(prev), point(curr), point(next)) make a left turn then

$$
\text { prev } \leftarrow \text { curr }
$$

else
S.remove(curr) \{point curr is on the convex hull\} prev $\leftarrow S$.before(prev)
curr $\leftarrow S$.after(prev)
until curr $=$ S.last()
S.remove(S.last())
$\{$ remove the copy of $a\}$

