Welcome to...

Convex Hell

Whoops, I mean...

What's a
Convex Hull?

What is the Convex Hull?

Let S be a set of points in the plane.
Intuition: Imagine the points of S as being pegs; the convex hull of S is the shape of a rub-ber-band stretched around the pegs.

Formal definition: the convex hull of S is the smallest convex polygon that contains all the points of S

Convexity

You know what convex means, right?
A polygon P is said to be convex if:

1. P is non-intersecting; and
2. for any two points \boldsymbol{p} and \boldsymbol{q} on the boundary of \boldsymbol{P}, segment $p q$ lies entirely inside P

Eh? What's convex?

Package Wrap

- given the current point, how do we compute the next point?
- set up an orientation tournament using the current point as the anchor-point...
- the next point is selected as the point that beats all other points at CCW orientation, i.e., for any other point, we have

$$
\text { orientation }(\mathrm{c}, \mathrm{p}, \mathrm{q})=\mathrm{CCW}
$$

Time Complexity of Package Wrap

- For every point on the hull we examine all the other points to determine the next point
- Notation:
- N : number of points
- M : number of hull points $(M \leq N)$
- Time complexity:
- $\Theta(M N)$
- Worst case: $\Theta\left(N^{\mathbf{2}}\right)$
- all the points are on the hull $(M=N)$
- Average case: $\Theta(N \log N)-\Theta\left(N^{4 / 3}\right)$
- for points randomly distributed inside a square, $M=\Theta(\log N)$ on average
- for points randomly distributed inside a circle, $M=\Theta\left(N^{1 / 3}\right)$ on average

Package Wrap has worst-case time complexity $\mathrm{O}\left(\mathrm{N}^{2}\right)$

Which is bad...

But in 1972,
 Nabisco needed a
 better cookie - so they hired R. L.
 Graham, who
 came up with...

The Graham Scan Algorithm

Rave Reviews:
-"Almost linear!"

- Sedgewick
- "It's just a sort!"
- Atul
-"Two thumbs up!"
- Siskel and Ebert
- Nabisco says...

"A better crunch!"

and history was made.

Graham Scan

- Form a simple polygon (connect the dots as before)

- Remove points at concave angles

Graham Scan How Does it Work?

Start with the lowest point (anchor point)

Graham Scan: Phase 1

Now, form a closed simple path traversing the points by increasing angle with respect to the anchor point

Graham Scan: Phase 2

The anchor point and the next point on the path must be on the hull (why?)

Graham Scan: Phase 2

- keep the path and the hull points in two sequences
- elements are removed from the beginning of the path sequence and are inserted and deleted from the end of the hull sequence
- orientation is used to decide whether to accept or reject the next point

Time Complexity of Graham Scan

- Phase 1 takes time $\mathrm{O}(\mathrm{N} \operatorname{logN})$
- points are sorted by angle around the anchor
- Phase 2 takes time $\mathrm{O}(\mathrm{N})$
- each point is inserted into the sequence exactly once, and
- each point is removed from the sequence at most once
- Total time complexity $\mathrm{O}(\mathrm{N} \log \mathrm{N})$

How to Increase Speed

- Wipe out a lot of the points you know won't be on the hull! This is interior elimination
- Here's a good way to do interior elimination if the points are randomly distributed in a square with horizontal and verticall sides:
- Find the farthest points in the SW, NW, NE, and SE directions
- Eliminate the points inside the quadrilateral (SW, NW, NE, SE)
- Do Graham Scan on the remaining points (only $\mathrm{O}(\sqrt{ } \mathrm{N})$ points are left on average!)

