Welcome to...

Convex Hell
Whoops, I mean...

Convex Hull

What’s a Convex Hull?
What is the Convex Hull?

Let S be a set of points in the plane.

Intuition: Imagine the points of S as being pegs; the *convex hull* of S is the shape of a rubber-band stretched around the pegs.

Formal definition: the *convex hull* of S is the smallest convex polygon that contains all the points of S.
Convexity

You know what *convex* means, right?

A polygon P is said to be *convex* if:
1. P is non-intersecting; and
2. for any two points p and q on the boundary of P, segment pq lies entirely inside P
Why Convex Hulls?

Who cares about convex hulls?
I don’t ...
... but robots do!

shortest path avoiding the obstacle

start

obstacle

end
The Package Wrapping Algorithm
Package Wrap

- given the current point, how do we compute the next point?
- set up an orientation tournament using the current point as the anchor-point...
- the next point is selected as the point that beats all other points at **CCW** orientation, i.e., for any other point, we have

\[
\text{orientation}(c, p, q) = \text{CCW}
\]
Time Complexity of Package Wrap

- For every point on the hull we examine all the other points to determine the next point
- Notation:
 - N: number of points
 - M: number of hull points ($M \leq N$)
- Time complexity:
 - $\Theta(MN)$
- Worst case: $\Theta(N^2)$
 - all the points are on the hull ($M=N$)
- Average case: $\Theta(N \log N)$ — $\Theta(N^{4/3})$
 - for points randomly distributed inside a square, $M = \Theta(\log N)$ on average
 - for points randomly distributed inside a circle, $M = \Theta(N^{1/3})$ on average
Package Wrap has worst-case time complexity $O(N^2)$

Which is bad...

But in 1972, Nabisco needed a better cookie - so they hired R. L. Graham, who came up with...
The Graham Scan Algorithm

Rave Reviews:

• “Almost linear!”
 - Sedgewick
• “It’s just a sort!”
 - Atul
• “Two thumbs up!”
 - Siskel and Ebert
• Nabisco says...

 “A better crunch!”

and history was made.
Graham Scan

- Form a simple polygon (connect the dots as before)

- Remove points at concave angles
Graham Scan

How Does it Work?

Start with the lowest point (anchor point)
Graham Scan: Phase 1

Now, form a closed simple path traversing the points by increasing angle with respect to the anchor point.
Graham Scan: Phase 2

The anchor point and the next point on the path must be on the hull (why?)
Graham Scan: Phase 2

• keep the path and the hull points in two sequences
• elements are removed from the beginning of the path sequence and are inserted and deleted from the end of the hull sequence
• orientation is used to decide whether to accept or reject the next point
(p, c, n) is a right turn!

Discard c
(p,c,n) is a right turn!

(p,c,n) is a right turn!

(p,c,n) is a right turn!
Time Complexity of Graham Scan

- Phase 1 takes time $O(N \log N)$
 - points are sorted by angle around the anchor
- Phase 2 takes time $O(N)$
 - each point is inserted into the sequence exactly once, and
 - each point is removed from the sequence at most once
- Total time complexity $O(N \log N)$
How to Increase Speed

• Wipe out a lot of the points you know won’t be on the hull! This is *interior elimination*
• Here’s a good way to do interior elimination if the points are randomly distributed in a square with horizontal and vertical sides:
 • Find the farthest points in the SW, NW, NE, and SE directions
 • Eliminate the points inside the quadrilateral (SW, NW, NE, SE)
 • Do Graham Scan on the remaining points (only $O(\sqrt{N})$ points are left on average!)

![Diagram of points and quadrilateral]