GEOMETRIC INTERSECTION

- Determining if there are intersections between graphical objects
- Finding all intersecting pairs
Applications

• Integrated circuit design:

[Diagram of circuit design with points and connections]

• Computer graphics (hidden line removal):

[Diagram of 3D objects with hidden lines removed]
Range Searching

• Given a set of points on a line, answer queries of the type:

Report all points x such that \(x_1 \leq x \leq x_2 \)

• But what if we also want to insert and delete points?

• We’ll need a dynamic structure. One which supports these three operations.

- insert \((x)\)
- remove \((x)\)
- range_search \((x_1, x_2)\)

• That’s right. It’s Red-Black Tree time.
On-Line Range Searching

• Store points in a red-black tree

• Query by searching for x_1 and x_2
 (take both directions)
Example
Time Complexity

• All of the nodes of the \(K \) points reported are visited.

• \(O(\log N) \) nodes may be visited whose points are not reported.

• Query Time: \(O(\log N + K) \)
Intersection of Horizontal and Vertical Segments

• Given:

- $H = \text{horizontal segments}$
- $V = \text{vertical segments}$
- $S = H \cup V$
- $N = \text{total number of segments}$

• Report all pairs of **intersecting segments**.
 (Assuming no coincident horizontal or vertical segments.)
The Brute Force Algorithm

\[
\begin{align*}
\text{for each } h \text{ in } H \\
\quad \text{for each } v \text{ in } V \\
\qquad \text{if } h \text{ intersects } v \\
\qquad \quad \text{report } (h,v)
\end{align*}
\]

- This algorithm runs in time \(O(N_H \cdot N_V) = O(N^2) \)
- But the number of intersections could be \(< < N^2\).
- We want an output sensitive algorithm:
 Time = \(f(N, K) \), where \(K \) is the number of intersections.
Plane Sweep Technique

- Horizontal sweep-line L that translates from bottom to top

- Status(L), the set of vertical segments intersected by L, sorted from left to right
 - A vertical segment is **inserted** into Status(L) when L sweeps through its **bottom endpoint**
 - A vertical segment is **deleted** from Status(L) when L sweeps through its **top endpoint**
Evolution of Status in Plane Sweep

\[\text{Status}(L) \]
\[
() \\
(v2) \\
(v2 v4) \\
(v1 v2 v4) \\
(v1 v4) \\
(v1 v3 v4) \\
(v3 v4) \\
(v4) \\
()
\]
Range Query in Sweep

Geometric Intersection
Events in Plane Sweep

• **Bottom endpoint of** \(v \)
 - **Action:** *insert* \(v \) into Status(L)

• **Top endpoint of** \(v \)
 - **Action:** *delete* \(v \) from Status(L)

• **Horizontal segment** \(h \)
 - **Action:** *range query* on Status(L) with x-range of \(h \)
Data Structures

• **Status:**

 - Stores vertical segments
 - Supports insert, delete, and range queries
 - Solution: *AVL tree* or *red-black tree* (key is x-coordinate)

• **Event Schedule:**

 - Stores y-coordinates of segment endpoints, i.e., the order in which segments are added and deleted
 - Supports sequential scanning
 - Solution: *sequence* realized with a sorted array or linked list
Time Complexity

- **Events:**
 - **vertical segment, bottom endpoint**
 - number of occurrences: \(N_V \leq N \)
 - action: insertion into status
 - time: \(O(\log N) \)
 - **vertical segment, top endpoint**
 - number of occurrences: \(N_V \leq N \)
 - action: deletion from status
 - time: \(O(\log N) \)
 - **horizontal segment \(h \)**
 - number of occurrences: \(N_H \leq N \)
 - action: range searching
 - time: \(O(\log N + K_h) \)
 \[K_h = (\# \text{ vertical segments intersecting } h) \]

- **Total time complexity:**
 \[
 O(N \log N + \sum_h K_h) = O(N \log N + K)
 \]