Deletion from **Red-Black Trees**

[Diagram of a red-black tree with nodes labeled E, C, B, D, O, R, U, S, X]
Setting Up Deletion

As with binary search trees, we can always delete a node that has at least one external child.

If the key to be deleted is stored at a node that has no external children, we move there the key of its inorder predecessor (or successor), and delete that node instead.

Example: to delete key 7, we move key 5 to node u, and delete node v.
Deletion Algorithm

1. Remove v with a removeAboveExternal operation
2. If v was red, color u black. Else, color u double black.

3. While a double black edge exists, perform one of the following actions ...
How to Eliminate the Double Black Edge

• The intuitive idea is to perform a “color compensation”

• Find a red edge nearby, and change the pair \((\text{red}, \text{double black})\) into \((\text{black}, \text{black})\)

• As for insertion, we have two cases:
 • restructuring, and
 • recoloring (demotion, inverse of promotion)

• Restructuring resolves the problem locally, while recoloring may propagate it two levels up

• Slightly more complicated than insertion, since two restructurings may occur (instead of just one)
Case 1: black sibling with a red child

- If sibling is **black** and one of its children is **red**, perform a restructuring

```
    p
   / 
  v   s
   /   
  z    
```

```
    p
   / 
  s   z
```

```
    p
   / 
  v   s
    / 
   z  
```

```
    p
   / 
  s   s
```

(2,4) Tree Interpretation
Case 2: black sibling with black children

- If sibling and its children are black, perform a recoloring
- If parent becomes double black, continue upward
(2,4) Tree Interpretation
Case 3: red sibling

- If sibling is red, perform an adjustment
- Now the sibling is black and one of the previous cases applies
- If the next case is recoloring, there is no propagation upward (parent is now red)
How About an Example?

Remove 9
Example

What do we know?
- Sibling is black with black children

What do we do?
- Recoloring
Delete 8
• no double black
Example

Delete 7

• Restructuring

```
Delete 7

4
/    \
4     7
/     \     \
2  5    
       
4
/    \
2  5
/     \
2  5
```

```
Restructuring

4
/    \
4     5
/     \     \
2  6    
       
4
/    \
2  6
/     \
2  5
```
Example
Example
Time Complexity of Deletion

Take a guess at the time complexity of deletion in a red-black tree . . .
What else could it be?!

$O(\log N)$
Colors and Weights

<table>
<thead>
<tr>
<th>Color</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>0</td>
</tr>
<tr>
<td>black</td>
<td>1</td>
</tr>
<tr>
<td>double black</td>
<td>2</td>
</tr>
</tbody>
</table>

Every root-to-leaf path has the same weight

There are no two consecutive red edges
 • Therefore, the length of any root-to-leaf path is at most twice the weight
Bottom-Up Rebalancing of Red-Black Trees

- An insertion or deletion may cause a local perturbation (two consecutive red edges, or a double-black edge)

- The perturbation is either
 - resolved locally (restructuring), or
 - propagated to a higher level in the tree by recoloring (promotion or demotion)

- $O(1)$ time for a restructuring or recoloring

- At most one restructuring per insertion, and at most two restructurings per deletion

- $O(\log N)$ recolorings

- Total time: $O(\log N)$
Red-Black Trees

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search</td>
<td>$O(\log N)$</td>
</tr>
<tr>
<td>Insert</td>
<td>$O(\log N)$</td>
</tr>
<tr>
<td>Delete</td>
<td>$O(\log N)$</td>
</tr>
</tbody>
</table>