STACKS, QUEUES, AND LINKED LISTS

- Stacks
- Queues
- Linked Lists
- Double-Ended Queues
- Case Study: A Stock Analysis Applet
Stacks

• A stack is a container of objects that are inserted and removed according to the last-in-first-out (LIFO) principle.

• Objects can be inserted at any time, but only the last (the most-recently inserted) object can be removed.

• Inserting an item is known as “pushing” onto the stack. “Popping” off the stack is synonymous with removing an item.

• A PEZ® dispenser as an analogy:
The Stack Abstract Data Type

- A stack is an abstract data type (ADT) that supports two main methods:
 - **push(o):** Inserts object o onto top of stack
 Input: Object;
 Output: none
 - **pop():** Removes the top object of stack and returns it; if stack is empty an error occurs
 Input: none;
 Output: Object

- The following support methods should also be defined:
 - **size():** Returns the number of objects in stack
 Input: none;
 Output: integer
 - **isEmpty():** Return a boolean indicating if stack is empty.
 Input: none;
 Output: boolean
 - **top():** return the top object of the stack, without removing it; if the stack is empty an error occurs.
 Input: none;
 Output: Object
A Stack Interface in Java

• While, the stack data structure is a “built-in” class of Java’s java.util package, it is possible, and sometimes preferable to define your own specific one, like this:

```java
public interface Stack {
    // accessor methods
    public int size(); // return the number of
    // elements in the stack
    public boolean isEmpty(); // see if the stack
    // is empty
    public Object top(); // return the top element
    throws StackEmptyException; // if called on
    // an empty stack
    // update methods
    public void push (Object element); // push an
    // element onto the stack
    public Object pop(); // return and remove the
    // top element of the stack
    throws StackEmptyException; // if called on
    // an empty stack
}
```
An Array-Based Stack

- Create a stack using an array by specifying a maximum size N for our stack, e.g. $N = 1,000$.

- The stack consists of an N-element array S and an integer variable t, the index of the top element in array S.

- Array indices start at 0, so we initialize t to -1

- Pseudo-code

 Algorithm size():

 return $t + 1$

 Algorithm isEmpty():

 return ($t < 0$)

 Algorithm top():

 if isEmpty() then
 throw a StackEmptyException

 return $S[t]$

 ...

Stacks, Queues, and Linked Lists
An Array-Based Stack (contd.)

• Pseudo-Code (contd.)

Algorithm push(o):
 if size() = N then
 throw a StackFullException
 $t ← t + 1$
 $S[t] ← o$

Algorithm pop():
 if isEmpty() then
 throw a StackEmptyException
 $e ← S[t]$
 $S[t] ← \text{null}$
 $t ← t - 1$
 return e

• Each of the above method runs in constant time (O(1))

• The array implementation is simple and efficient.

• There is an upper bound, N, on the size of the stack. The arbitrary value N may be too small for a given application, or a waste of memory.
Array-Based Stack: a Java Implementation

```java
public class ArrayStack implements Stack {
    // Implementation of the Stack interface
    // using an array.

    public static final int CAPACITY = 1000; // default
    // capacity of the stack

    private int capacity; // maximum capacity of the
    // stack.

    private Object S[]; // S holds the elements of
    // the stack

    private int top = -1; // the top element of the
    // stack.

    public ArrayStack() { // Initialize the stack
        // with default capacity

        this(CAPACITY);
    }

    public ArrayStack(int cap) { // Initialize the
        // stack with given capacity

        capacity = cap;
        S = new Object[capacity];
    }
}
```
Array-Based Stack in Java (contd.)

```java
public int size() { // Return the current stack size
    return (top + 1);
}

public boolean isEmpty() { // Return true iff the stack is empty
    return (top < 0);
}

public void push(Object obj) { // Push a new object on the stack
    if (size() == capacity)
        throw new StackFullException("Stack overflow.");
    S[++top] = obj;
}

public Object top() { // Return the top stack element
    throws StackEmptyException {
        if (isEmpty())
            throw new StackEmptyException("Stack is empty.");
        return S[top];
    }
```
public Object pop() // Pop off the stack element
 throws StackEmptyException {
 Object elem;
 if (isEmpty())
 throw new StackEmptyException("Stack is Empty.");
 elem = S[top];
 S[top--] = null; // Dereference S[top] and
 // decrement top
 return elem;
}
Casting With a Generic Stack

- Have an ArrayStack that can store only Integer objects or Student objects.

- In order to do so using a generic stack, the return objects must be cast to the correct data type.

- A Java code example:

```java
public static Integer[] reverse(Integer[] a) {
    ArrayStack S = new ArrayStack(a.length);
    Integer[] b = new Integer[a.length];
    for (int i = 0; i < a.length; i++)
        S.push(a[i]);
    for (int i = 0; i < a.length; i++)
        b[i] = (Integer)(S.pop());
    return b;
}
```
Stacks in the Java Virtual Machine

• Each process running in a Java program has its own Java Method Stack.

• Each time a method is called, it is pushed onto the stack.

• The choice of a stack for this operation allows Java to do several useful things:
 - Perform recursive method calls
 - Print stack traces to locate an error

• Java also includes an operand stack which is used to evaluate arithmetic instructions, i.e.

```java
Integer add(a, b):
    OperandStack Op
    Op.push(a)
    Op.push(b)
    temp1 ← Op.pop()
    temp2 ← Op.pop()
    Op.push(temp1 + temp2)
    return Op.pop()
```
Java Method Stack

```
Java Program

main() {
  int i=5;
  
  cool(i);
  
}

cool(int j) {
  int k=7;
  
  fool(k);
  
}

fool(int m) {
  
}

Java Stack

<table>
<thead>
<tr>
<th>PC</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>320</td>
<td>m = 7</td>
</tr>
<tr>
<td>216</td>
<td>j = 5</td>
</tr>
<tr>
<td>14</td>
<td>i = 5</td>
</tr>
</tbody>
</table>

main:
PC = 14
i = 5

cool:
PC = 216
j = 5
k = 7

fool:
PC = 320
m = 7
```
Queues

- A queue differs from a stack in that its insertion and removal routines follows the first-in-first-out (FIFO) principle.
- Elements may be inserted at any time, but only the element which has been in the queue the longest may be removed.
- Elements are inserted at the rear (enqueued) and removed from the front (dequeued)
The Queue Abstract Data Type

• The queue supports two fundamental methods:

 - **enqueue(o):** Insert object o at the rear of the queue

 Input: Object; *Output:* none

 - **dequeue():** Remove the object from the front of the queue and return it; an error occurs if the queue is empty

 Input: none; *Output:* Object

• These support methods should also be defined:

 - **size():** Return the number of objects in the queue

 Input: none; *Output:* integer

 - **isEmpty():** Return a boolean value that indicates whether the queue is empty

 Input: none; *Output:* boolean

 - **front():** Return, but do not remove, the front object in the queue; an error occurs if the queue is empty

 Input: none; *Output:* Object
An Array-Based Queue

• Create a queue using an array in a circular fashion

• A maximum size N is specified, e.g. $N = 1,000$.

• The queue consists of an N-element array Q and two integer variables:
 - f, index of the front element
 - r, index of the element after the rear one

• “normal configuration”

• “wrapped around” configuration

• what does $f=r$ mean?
An Array-Based Queue (contd.)

- Pseudo-Code (contd.)

Algorithm size():
 return \((N - f + r) \mod N\)

Algorithm isEmpty():
 return \((f = r)\)

Algorithm front():
 if isEmpty() then
 throw a QueueEmptyException
 return \(Q[f]\)

Algorithm dequeue():
 if isEmpty() then
 throw a QueueEmptyException
 temp \(\leftarrow Q[f]\)
 \(Q[f] \leftarrow \text{null}\)
 \(f \leftarrow (f + 1) \mod N\)
 return temp

Algorithm enqueue(o):
 if size = \(N - 1\) then
 throw a QueueFullException
 \(Q[r] \leftarrow o\)
 \(r \leftarrow (r + 1) \mod N\)
Implementing a Queue with a Singly Linked List

• nodes connected in a chain by links

head

Rome

Seattle

Toronto

tail

∅

• the head of the list is the front of the queue, the tail of the list is the rear of the queue

• why not the opposite?
Removing at the Head

- advance head reference

- inserting at the head is just as easy
Inserting at the Tail

• create a new node

• chain it and move the tail reference

• how about removing at the tail?
Double-Ended Queues

- A double-ended queue, or deque, supports insertion and deletion from the front and back.

- The Deque Abstract Data Type
 - `insertFirst(e)`: Insert e at the beginning of deque.
 Input: Object; Output: none
 - `insertLast(e)`: Insert e at end of deque
 Input: Object; Output: none
 - `removeFirst()`: Removes and returns first element
 Input: none; Output: Object
 - `removeLast()`: Removes and returns last element
 Input: none; Output: Object

- Additionally supported methods include:
 - `first()`
 - `last()`
 - `size()`
 - `isEmpty()`
Implementing Stacks and Queues with Deques

- Stacks with Deques:

<table>
<thead>
<tr>
<th>Stack Method</th>
<th>Deque Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>size()</td>
<td>size()</td>
</tr>
<tr>
<td>isEmpty()</td>
<td>isEmpty()</td>
</tr>
<tr>
<td>top()</td>
<td>last()</td>
</tr>
<tr>
<td>push(e)</td>
<td>insertLast(e)</td>
</tr>
<tr>
<td>pop()</td>
<td>removeLast()</td>
</tr>
</tbody>
</table>

- Queues with Deques:

<table>
<thead>
<tr>
<th>Queue Method</th>
<th>Deque Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>size()</td>
<td>size()</td>
</tr>
<tr>
<td>isEmpty()</td>
<td>isEmpty()</td>
</tr>
<tr>
<td>front()</td>
<td>first()</td>
</tr>
<tr>
<td>enqueue()</td>
<td>insertLast(e)</td>
</tr>
<tr>
<td>dequeue()</td>
<td>removeFirst()</td>
</tr>
</tbody>
</table>
The Adaptor Pattern

- Using a deque to implement a stack or queue is an example of the **adaptor pattern**. Adaptor patterns implement a class by using methods of another class.
- In general, adaptor classes specialize general classes.
- Two such applications:
 - Specialize a general class by changing some methods.

 Ex: implementing a stack with a deque.
 - Specialize the types of objects used by a general class.

 Ex: Defining an `IntegerArrayStack` class that adapts `ArrayStack` to only store integers.
Implementing Deques with Doubly Linked Lists

- Deletions at the tail of a singly linked list cannot be done in constant time.

- To implement a deque, we use a doubly linked list with special header and trailer nodes.

- A node of a doubly linked list has a next and a prev link. It supports the following methods:
 - setElement(Object e)
 - setNext(Object newNext)
 - setPrev(Object newPrev)
 - getElement()
 - getNext()
 - getPrev()

- By using a doubly linked list to, all the methods of a deque have constant (that is, O(1)) running time.
Implementing Deques with Doubly Linked Lists (cont.)

• When implementing a doubly linked lists, we add two special nodes to the ends of the lists: the header and trailer nodes.
 - The header node goes before the first list element. It has a valid next link but a null prev link.
 - The trailer node goes after the last element. It has a valid prev reference but a null next reference.

• The header and trailer nodes are sentinel or “dummy” nodes because they do not store elements.

• Here’s a diagram of our doubly linked list:
Implementing Deques with Doubly Linked Lists (cont.)

• Let’s look at some code for removeLast()

```java
public class MyDeque implements Deque{
    DLNode header_, trailer_;  
    int size_;  
    ...

    public Object removeLast() throws DequeEmptyException{
        if(isEmpty())
            throw new DequeEmptyException("Illegal removal request.");
        DLNode last = trailer_.getPrev();
        Object o = last.getElement();
        DLNode secondtolast = last.getPrev();
        trailer_.setPrev(secondtolast);
        secondtolast.setnext(trailer_);
        size_--;
        return o;
    }
    ...
}
```
Implementing Deques with Doubly Linked Lists (cont.)

• Here’s a visualization of the code for `removeLast()`.

![Diagram of a deque with nodes and connections]

- Header
- Trailers
- Second-to-last
- Last

Nodes labeled:
- Baltimore
- New York
- Providence
- San Francisco
A Stock Analysis Applet

- The span of a stock’s price on a certain day, \(d \), is the maximum number of consecutive days (up to the current day) the price of the stock has been less than or equal to its price on \(d \).

- Below, let \(p_i \) and \(s_i \) be the span on day \(i \)

\[
\begin{align*}
 s_0 &= 1 \\
 s_1 &= 1 \\
 s_2 &= 1 \\
 s_3 &= 2 \\
 s_4 &= 1 \\
 s_5 &= 4 \\
 s_6 &= 6
\end{align*}
\]

\[
\begin{align*}
 p_0 & \\
 p_1 & \\
 p_2 & \\
 p_3 & \\
 p_4 & \\
 p_5 & \\
 p_6 &
\end{align*}
\]
A Case Study: A Stock Analysis Applet (cont.)

• Quadratic-Time Algorithm: We can find a straightforward way to compute the span of a stock on a given day for n days:

 Algorithm `computeSpans1(P)`:
 Input: An n-element array P of numbers
 Output: An n-element array S of numbers such that $S[i]$ is the span of the stock on day i.

 Let S be an array of n numbers
 for $i=0$ to $n-1$ do
 $k \leftarrow 0$
 $done \leftarrow false$
 repeat
 if $P[i-k] \leq P[i]$ then
 $k \leftarrow k+1$
 else
 $done \leftarrow true$
 until $(k=i)$ or $done$
 $S[i] \leftarrow k$
 return array S

• The running time of this algorithm is (ugh!) $O(n^2)$. Why?
A Case Study: A Stock Analysis Applet (cont.)

• Linear-Time Algorithm: We see that si on day i can be easily computed if we know the closest day preceding i, such that the price is greater than on that day than the price on day i. If such a day exists let’s call it h(i).

• The span is now defined as $s_i = i - h(i)$

![Diagram showing the span calculation with arrows pointing to h(i)](image)

The arrows point to h(i)
A Case Study: A Stock Analysis Applet (cont.)

• The code for our new algorithm:

Algorithm computeSpan2(P):

Input: An n-element array P of numbers
Output: An n-element array S of numbers such that $S[i]$ is the span of the stock on day i.

Let S be an array of n numbers and D an empty stack

for $i=0$ to $n-1$ do
 $\text{done} \leftarrow \text{false}$
 while not (D.isEmpty() or done) do
 if $P[i] \geq P[D.\text{top()}]$ then
 D.pop()
 else
 $\text{done} \leftarrow \text{true}$
 if D.isEmpty() then
 $h \leftarrow -1$
 else
 $h \leftarrow D.\text{top()}$
 $S[i] \leftarrow i-h$
 D.push(i)

return array S

• Let’s analyze computeSpan2’s run time...
A Case Study: A Stock Analysis Applet (cont.)

- The total running time of the while loop is

\[O\left(\sum_{i=0}^{n-1} (t_i + 1)\right) \]

- However, once an element is popped off the stack, it is never pushed on again. Therefore:

\[\sum_{i=0}^{n-1} t_i \leq n \]

- The total time spent in the while loop is O(n).

- The run time of computeSpan2 is the summ of three O(n) terms. Thus the run time of computeSpan2 is O(n).