Strings and Pattern Matching

- Brute Force, Rabin-Karp, Knuth-Morris-Pratt

What’s up?

I’m looking for some string.

That’s quite a trick considering that you have no eyes.

Oh yeah? Have you seen your writing? It looks like an EKG!
String Searching

• The previous slide is not a great example of what is meant by “String Searching.” Nor is it meant to ridicule people without eyes....

• The object of **string searching** is to find the location of a specific text pattern within a larger body of text (e.g., a sentence, a paragraph, a book, etc.).

• As with most algorithms, the main considerations for string searching are speed and efficiency.

• There are a number of string searching algorithms in existence today, but the two we shall review are **Brute Force** and **Rabin-Karp**.
Brute Force

- The Brute Force algorithm compares the pattern to the text, one character at a time, until unmatching characters are found:

<table>
<thead>
<tr>
<th>TWO ROADS DIVERGED IN A YELLOW WOOD ROADS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWO ROADS DIVERGED IN A YELLOW WOOD ROADS</td>
</tr>
<tr>
<td>TWO ROADS DIVERGED IN A YELLOW WOOD ROADS</td>
</tr>
<tr>
<td>TWO ROADS DIVERGED IN A YELLOW WOOD ROADS</td>
</tr>
<tr>
<td>TWO ROADS DIVERGED IN A YELLOW WOOD ROADS</td>
</tr>
</tbody>
</table>

- Compared characters are italicized.
- Correct matches are in boldface type.

- The algorithm can be designed to stop on either the first occurrence of the pattern, or upon reaching the end of the text.
Brute Force Pseudo-Code

• Here’s the pseudo-code

 do
 if (text letter == pattern letter)
 compare next letter of pattern to next letter of text
 else
 move pattern down text by one letter
 while (entire pattern found or end of text)
Brute Force-Complexity

- Given a pattern M characters in length, and a text N characters in length...

- **Worst case:** compares pattern to each substring of text of length M. For example, M=5.

1) `AAAAA`AAAAAAAAAAAAAAAAAAAAAAAAN
 `AAAAH` 5 comparisons made

2) `AAAAA`AAAAAAAAAAAAAAAAAAAAAAAAN
 `AAAAH` 5 comparisons made

3) `AAAAA`AAAAAAAAAAAAAAAAAAAAAAAAN
 `AAAAH` 5 comparisons made

4) `AAAAA`AAAAAAAAAAAAAAAAAAAAAAAAN
 `AAAAH` 5 comparisons made

5) `AAAAA`AAAAAAAAAAAAAAAAAAAAAAAAN
 `AAAAH` 5 comparisons made

....

N) `AAAAAAAAAAAAAAAAAAAAAAAAAAAAHHH`
 5 comparisons made `AAAAAH`

- Total number of comparisons: M (N-M+1)
- Worst case time complexity: $O(MN)$
Brute Force-Complexity (cont.)

• Given a pattern M characters in length, and a text N characters in length...

• **Best case if pattern found**: Finds pattern in first M positions of text. For example, M=5.

1) AAAAAAAAAAAAAAABCD
AAAAA 5 comparisons made

• Total number of comparisons: M
• Best case time complexity: O(M)
Brute Force-Complexity (cont.)

- Given a pattern M characters in length, and a text N characters in length...

- **Best case if pattern not found**: Always mismatch on first character. For example, M=5.

1) \[AAAAAAAAAAAAAAAAAAAAAAAAAAH \]
 \[OOOOH \quad 1 \text{ comparison made} \]

2) \[AAAAAAAAAAAAAAAAAAAAAAAAAAAAH \]
 \[OOOOH \quad 1 \text{ comparison made} \]

3) \[AAABBBBBBBBBBBBBBBBBBBBBBBBAAAAAH \]
 \[OOOOH \quad 1 \text{ comparison made} \]

4) \[AAAAABBBBBBBBBBBBBBBBBBBBBBBBBAAAAAH \]
 \[OOOOH \quad 1 \text{ comparison made} \]

5) \[AAAAAABBBBBBBBBBBBBBBBBBBBBBBBBAAAAAH \]
 \[OOOOH \quad 1 \text{ comparison made} \]

...

N) \[AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHH \]
 \[1 \text{ comparison made} \quad OOOOH \]

- Total number of comparisons: N

- Best case time complexity: \(O(N) \)
Rabin-Karp

- The Rabin-Karp string searching algorithm uses a hash function to speed up the search.

Rabin & Karp’s

Heavenly Homemade Hashish

Fresh from Syria
Rabin-Karp

- The Rabin-Karp string searching algorithm calculates a **hash value** for the pattern, and for each M-character subsequence of text to be compared.

- If the hash values are unequal, the algorithm will calculate the hash value for next M-character sequence.

- If the hash values are equal, the algorithm will do a **Brute Force comparison** between the pattern and the M-character sequence.

- In this way, there is only one comparison per text subsequence, and Brute Force is only needed when hash values match.

- Perhaps a figure will clarify some things...
Rabin-Karp Example

Hash value of “AAAAA” is 37
Hash value of “AAAAAH” is 100

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH
 AAAAH
 37≠100 1 comparison made
2) AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH
 AAAAH
 37≠100 1 comparison made
3) AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH
 AAAAH
 37≠100 1 comparison made
4) AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH
 AAAAH
 37≠100 1 comparison made
 ...
N) AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHH
 AAAAH
 6 comparisons made
 100=100
Rabin-Karp Pseudo-Code

A pattern is M characters long.

- $\text{hash}_p =$ hash value of pattern
- $\text{hash}_t =$ hash value of first M letters in body of text

```
do
    if (hash_p == hash_t)
        brute force comparison of pattern and selected section of text
        hash_t = hash value of next section of text, one character over
    while (end of text or brute force comparison == true)
```
Rabin-Karp

• Common Rabin-Karp questions:

 “What is the hash function used to calculate values for character sequences?”

 “Isn’t it time consuming to hash every one of the M-character sequences in the text body?”

 “Is this going to be on the final?”

• To answer some of these questions, we’ll have to get mathematical.
Rabin-Karp Math

• Consider an M-character sequence as an M-digit number in base b, where b is the number of letters in the alphabet. The text subsequence $t[i .. i+M-1]$ is mapped to the number

$$x(i) = t[i] \cdot b^{M-1} + t[i+1] \cdot b^{M-2} + ... + t[i+M-1]$$

• Furthermore, given $x(i)$ we can compute $x(i+1)$ for the next subsequence $t[i+1 .. i+M]$ in constant time, as follows:

$$x(i+1) = t[i+1] \cdot b^{M-1} + t[i+2] \cdot b^{M-2} + ... + t[i+M]$$

$$x(i+1) = x(i) \cdot b$$ \hspace{1cm} \text{Shift left one digit}

$$- t[i] \cdot b^M$$ \hspace{1cm} \text{Subtract leftmost digit}

$$+ t[i+M]$$ \hspace{1cm} \text{Add new rightmost digit}

• In this way, we never explicitly compute a new value. We simply adjust the existing value as we move over one character.
Rabin-Karp Mods

- If M is large, then the resulting value (~bM) will be enormous. For this reason, we hash the value by taking it \text{mod} a prime number q.

- The \text{mod} function (% in Java) is particularly useful in this case due to several of its inherent properties:
 - \((x \mod q) + (y \mod q)) \mod q = (x+y) \mod q\)
 - \((x \mod q) \mod q = x \mod q\)

- For these reasons:

 \[
 h(i) = ((t[i] \cdot b^{M-1} \mod q) + (t[i+1] \cdot b^{M-2} \mod q) + \ldots + (t[i+M-1] \mod q)) \mod q
 \]

 \[
 h(i+1) = (h(i) \cdot b \mod q)
 \]
 Shift left one digit
 \[
 -t[i] \cdot b^{M} \mod q
 \]
 Subtract leftmost digit
 \[
 +t[i+M] \mod q \)
 Add new rightmost digit
 \[
 \mod q
 \]
Strings and Pattern Matching

Rabin-Karp Pseudo-Code

pattern is M characters long

hash_p = hash value of pattern

hash_t = hash value of first M letters in body of text

do

if (hash_p == hash_t)
 brute force comparison of pattern and selected section of text
 hash_t = hash value of next section of text, one character over

while (end of text or brute force comparison == true)
Rabin-Karp Complexity

• If a sufficiently large prime number is used for the hash function, the hashed values of two different patterns will usually be distinct.

• If this is the case, searching takes $O(N)$ time, where N is the number of characters in the larger body of text.

• It is always possible to construct a scenario with a worst case complexity of $O(MN)$. This, however, is likely to happen only if the prime number used for hashing is small.
The Knuth-Morris-Pratt Algorithm

• The Knuth-Morris-Pratt (KMP) string searching algorithm differs from the brute-force algorithm by keeping track of information gained from previous comparisons.

• A failure function \(f \) is computed that indicates how much of the last comparison can be reused if it fails.

• Specifically, \(f \) is defined to be the longest prefix of the pattern \(P[0,\ldots,j] \) that is also a suffix of \(P[1,\ldots,j] \)
 - Note: not a suffix of \(P[0,\ldots,j] \)

• Example:
 - value of the KMP failure function:

j	0	1	2	3	4	5
\(P[j] \)	a	b	a	b	a	c
\(f(j) \)	0	0	1	2	3	0

• This shows how much of the beginning of the string matches up to the portion immediately preceding a failed comparison.
 - if the comparison fails at (4), we know the a,b in positions 2,3 is identical to positions 0,1
The KMP Algorithm (contd.)

• Time Complexity Analysis

• define \(k = i - j \)

• In every iteration through the while loop, one of three things happens.
 - 1) if \(T[i] = P[j] \), then \(i \) increases by 1, as does \(j \) \(k \) remains the same.
 - 2) if \(T[i] \neq P[j] \) and \(j > 0 \), then \(i \) does not change and \(k \) increases by at least 1, since \(k \) changes from \(i - j \) to \(i - f(j-1) \)
 - 3) if \(T[i] \neq P[j] \) and \(j = 0 \), then \(i \) increases by 1 and \(k \) increases by 1 since \(j \) remains the same.

• Thus, each time through the loop, either \(i \) or \(k \) increases by at least 1, so the greatest possible number of loops is \(2n \)

• This of course assumes that \(f \) has already been computed.

• However, \(f \) is computed in much the same manner as KMPMatch so the time complexity argument is analogous. KMPFailureFunction is \(O(m) \)

• Total Time Complexity: \(O(n + m) \)
The KMP Algorithm (contd.)

- the KMP string matching algorithm: Pseudo-Code

Algorithm KMPMatch\((T,P)\)

Input: Strings \(T\) (text) with \(n\) characters and \(P\) (pattern) with \(m\) characters.
Output: Starting index of the first substring of \(T\) matching \(P\), or an indication that \(P\) is not a substring of \(T\).

\[
f \leftarrow \text{KMPFailureFunction}(P) \text{ \{build failure function\}} \\
i \leftarrow 0 \\
j \leftarrow 0 \\
\text{while } i < n \text{ do} \\
\hspace{1em} \text{if } P[j] = T[i] \text{ then} \\
\hspace{2em} \text{if } j = m - 1 \text{ then} \\
\hspace{3em} \text{return } i - m - 1 \text{ \{a match\}} \\
\hspace{2em} i \leftarrow i + 1 \\
\hspace{2em} j \leftarrow j + 1 \\
\hspace{1em} \text{else if } j > 0 \text{ then} \text{ \{no match, but we have advanced\}} \\
\hspace{2em} j \leftarrow f(j-1) \text{ \{j indexes just after matching prefix in P\}} \\
\hspace{1em} \text{else} \\
\hspace{2em} i \leftarrow i + 1 \\
\text{return "There is no substring of } T \text{ matching } P" \]
The KMP Algorithm (contd.)

- The KMP failure function: Pseudo-Code

Algorithm KMPFailureFunction(P);

Input: String P (pattern) with m characters

Output: The failure function f for P, which maps j to the length of the longest prefix of P that is a suffix of $P[1,..,j]$

t ← 1

j ← 0

while $i \leq m-1$ do

 if $P[j] = T[j]$ then
 \{we have matched $j + 1$ characters\}
 \[f(i) \leftarrow j + 1\]
 i ← i + 1
 j ← j + 1

 else if $j > 0$ then
 \{j indexes just after a prefix of P that matches\}
 \[j \leftarrow f(j-1)\]

 else
 \{there is no match\}
 \[f(i) \leftarrow 0\]
 i ← i + 1

The KMP Algorithm (contd.)

- A graphical representation of the KMP string searching algorithm

```
| a | b | a | c | a | a | b | a | c | c | a | b | a | c | a | b | a | a |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 |
| a | b | a | c | a | b |
| 7 |
| a | b | a | c | a | b |
| 8 | 9 | 10 | 11 | 12 |
| a | b | a | c | a | b |
| 13 |
| a | b | a | c | a | b |
| 14 | 15 | 16 | 17 | 18 | 19 |
| a | b | a | c | a | b |
```

no comparison needed here
Regular Expressions

• notation for describing a set of strings, possibly of infinite size

• \(\varepsilon \) denotes the empty string

• \(ab + c \) denotes the set \{ab, c\}

• \(a^* \) denotes the set \{\(\varepsilon \), a, aa, aaa, ...\}

• Examples
 - \((a+b)^* \) all the strings from the alphabet \{a,b\}
 - \(b^*(ab^a)^*b^* \) strings with an even number of a’s
 - \((a+b)^*\text{sun}(a+b)^* \) strings containing the pattern “sun”
 - \((a+b)(a+b)(a+b)a \) 4-letter strings ending in a
Finite State Automaton

• “machine” for processing strings
Composition of FSA’s

Strings and Pattern Matching
Tries

• A trie is a tree-based data structure for storing strings in order to make pattern matching faster.

• Tries can be used to perform **prefix queries** for information retrieval. Prefix queries search for the longest prefix of a given string X that matches a prefix of some string in the trie.

• A trie supports the following operations on a set S of strings:

 - **insert(X)**: Insert the string X into S

 Input: String
 Output: None

 - **remove(X)**: Remove string X from S

 Input: String
 Output: None

 - **prefixes(X)**: Return all the strings in S that have a longest prefix of X

 Input: String
 Output: Enumeration of strings
Tries (cont.)

- Let S be a set of strings from the alphabet Σ such that no string in S is a prefix to another string. A **standard trie** for S is an ordered tree T that:
 - Each edge of T is labeled with a character from Σ
 - The ordering of edges out of an internal node is determined by the alphabet Σ
 - The path from the root of T to any node represents a prefix in Σ that is equal to the concatenation of the characters encountered while traversing the path.

- For example, the standard trie over the alphabet $\Sigma = \{a, b\}$ for the set $\{aabab, abaab, babbb, bbbaa, bbab\}$

![Trie Diagram](attachment:image.png)
Tries (cont.)

• An internal node can have 1 to d children when d is the size of the alphabet. Our example is essentially a binary tree.

• A path from the root of T to an internal node v at depth i corresponds to an i-character prefix of a string of S.

• We can implement a trie with an ordered tree by storing the character associated with an edge at the child node below it.
Compressed Tries

- A **compressed trie** is like a standard trie but makes sure that each trie had a degree of at least 2. Single child nodes are compressed into an single edge.

- A **critical node** is a node \(v \) such that \(v \) is labeled with a string from \(S \), \(v \) has at least 2 children, or \(v \) is the root.

- To convert a standard trie to a compressed trie we replace an edge \((v_0, v_1)\) each chain on nodes \((v_0, v_1 \ldots v_k)\) for \(k \geq 2 \) such that
 - \(v_0 \) and \(v_1 \) are critical but \(v_1 \) is critical for \(0 < i < k \)
 - each \(v_1 \) has only one child

- Each internal node in a compressed tire has at least two children and each external is associated with a string. The compression reduces the total space for the trie from \(O(m) \) where \(m \) is the sum of the the lengths of strings in \(S \) to \(O(n) \) where \(n \) is the number of strings in \(S \).
Compressed Tries (cont.)

• An example:

```
ab
ab
a
b
bb
bb
b
bb
a
aa
aa
a
b
12 3 45
abab baab babbb
aaa bab12 3 45
```
Prefix Queries on a Trie

Algorithm prefixQuery\((T, X)\):

Input: Trie \(T\) for a set \(S\) of strings and a query string \(X\)

Output: The node \(v\) of \(T\) such that the labeled nodes of
the subtree of \(T\) rooted at \(v\) store the strings
of \(S\) with a longest prefix in common with \(X\)

\(v \leftarrow T\).root()
\(i \leftarrow 0\) \{ \(i\) is an index into the string \(X\) \}

repeat

for each child \(w\) of \(v\) do

let \(e\) be the edge \((v, w)\)

\(Y \leftarrow \text{string}(e)\) \{ \(Y\) is the substring associated with \(e\) \}

\(l \leftarrow Y\).length() \{ \(l=1\) if \(T\) is a standard trie \}

\(Z \leftarrow X\).substring\((i, i+l-1)\) \{ \(Z\) holds the next \(l\) characters of \(X\) \}

if \(Z = Y\) then

\(v \leftarrow w\)

\(i \leftarrow i+1\) \{ move to \(W\), incrementing \(i\) past \(Z\) \}

break out of the **for** loop

else if a proper prefix of \(Z\) matched a proper prefix
of \(Y\) then

\(v \leftarrow w\)

break out of the **repeat** loop

until \(v\) is external or \(v \neq w\)

return \(v\)
Insertion and Deletion

- Insertion: We first perform a prefix query for string X. Let us examine the ways a prefix query may end in terms of insertion.
 - The query terminates at node v. Let X₁ be the prefix of X that matched in the trie up to node v and X₂ be the rest of X. If X₂ is an empty string we label v with X and the end. Otherwise we create a new external node w and label it with X.
 - The query terminates at an edge e = (v, w) because a prefix of X match prefix(v) and a proper prefix of string Y associated with e. Let Y₁ be the part of Y that X matched to and Y₂ the rest of Y. Likewise for X₁ and X₂. Then X = X₁ + X₂ = prefix(v) + Y₁ + X₂. We create a new node u and split the edges (v, u) and (u, w). If X₂ is empty then w label u with X. Otherwise we create a node z which is external and label it X.

- Insertion is O(dn) when d is the size of the alphabet and n is the length of the string t insert.
Strings and Pattern Matching

Insertion and Deletion (cont.)

```
abab  baab  abbb

search stops here

insert(bbaaabb)
```

```
abab  baab  abbb

abbb

bab

aaa

search stops here

insert(bbaaabb)
```
Lempel Ziv Encoding

• Constructing the trie:
 - Let phrase 0 be the null string.
 - Scan through the text
 - If you come across a letter you haven’t seen before, add it to the top level of the trie.
 - If you come across a letter you’ve already seen, scan down the trie until you can’t match any more characters, add a node to the trie representing the new string.
 - Insert the pair (nodeIndex, lastChar) into the compressed string.

• Reconstructing the string:
 - Every time you see a ‘0’ in the compressed string add the next character in the compressed string directly to the new string.
 - For each non-zero nodeIndex, put the substring corresponding to that node into the new string, followed by the next character in the compressed string.
Lempel Ziv Encoding (contd.)

- A graphical example:

Uncompressed text: \textbf{how now brown cow in town.}

phrases: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Compressed text: 0h0o0w0_0n2w4b0r6n4c6_0i5_0t9.

Trie:
File Compression

- text files are usually stored by representing each character with an 8-bit ASCII code (type `man ascii` in a Unix shell to see the ASCII encoding)

- the ASCII encoding is an example of **fixed-length encoding**, where each character is represented with the same number of bits

- in order to reduce the space required to store a text file, we can exploit the fact that some characters are more likely to occur than others

- **variable-length encoding** uses binary codes of different lengths for different characters; thus, we can assign fewer bits to frequently used characters, and more bits to rarely used characters.

- Example:
 - text: `java`
 - encoding: `a = “0”, j = “11”, v = “10”`
 - encoded text: `110100` (6 bits)

- How to decode?
 - `a = “0”, j = “01”, v = “00”`
 - encoded text: `010000` (6 bits)
 - is this `java, jvv, jaaaa ...`
Encoding Trie

• to prevent ambiguities in decoding, we require that the encoding satisfies the **prefix rule**, that is, no code is a prefix of another code
 - \(a = \text{“0”}, j = \text{“11”}, v = \text{“10”} \) satisfies the prefix rule
 - \(a = \text{“0”}, j = \text{“01”}, v = \text{“00”} \) does **not** satisfy the prefix rule (the code of \(a \) is a prefix of the codes of \(j \) and \(v \))

• we use an **encoding trie** to define an encoding that satisfies the prefix rule
 - the characters stored at the external nodes
 - a left edge means 0
 - a right edge means 1

\[
\begin{align*}
A &= 010 \\
B &= 11 \\
C &= 00 \\
D &= 10 \\
R &= 011
\end{align*}
\]
Example of Decoding

- trie:

- encoded text:
 01011011010000101001011011010

- text:
 A = 010
 B = 11
 C = 00
 D = 10
 R = 011

- text:

\[
\text{encoded text:} \\
01011011010000101001011011010 \\
\text{text:}
\]
Trie this!

Strings and Pattern Matching
Optimal Compression

- An issue with encoding tries is to insure that the encoded text is as short as possible:

 ABRACADABRA
 010110110100001010010110110101
 29 bits

 ABRACADABRA
 0010110001000011001100
 24 bits
Huffman Encoding Trie

ABRACADABRA

<table>
<thead>
<tr>
<th>character</th>
<th>A</th>
<th>B</th>
<th>R</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequency</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

A

B

R

C

D

5

2

2

1

1

6

4

2

2

1

1

B

R

C

D
Huffman Encoding Trie (contd.)

```plaintext
5
A

5
A

4
2
B

2
2
R

6
1
C

2
1
D

11
0
B

0
R

1
C

1
D

0
1
0
1

0
1
0
1
```
Final Huffman Encoding Trie

A B R A C A D A B R A
0 100 101 0 110 0 111 0 100 101 0

23 bits
Another Huffman Encoding Trie

ABRACADABRA

<table>
<thead>
<tr>
<th>character</th>
<th>A</th>
<th>B</th>
<th>R</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequency</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

A
5
B
2
R
2
D
1
C
1

Strings and Pattern Matching
Another Huffman Encoding Trie

Strings and Pattern Matching
Another Huffman Encoding Trie

Strings and Pattern Matching
Another Huffman Encoding Trie

A B R A C A D A B R A
0 10 110 0 1100 0 1111 0 10 110 0
23 bits
Construction Algorithm

- with a Huffman encoding trie, the encoded text has minimal length

Algorithm Huffman(X):

Input: String X of length n

Output: Encoding trie for X

Compute the frequency $f(c)$ of each character c of X. Initialize a priority queue Q.

for each character c in X **do**

Create a single-node tree T storing c

Q.insertItem($f(c)$, T)

while Q.size() > 1 **do**

f_1 \leftarrow Q.minKey()

T_1 \leftarrow Q.removeMinElement()

f_2 \leftarrow Q.minKey()

T_2 \leftarrow Q.removeMinElement()

Create a new tree T with left subtree T_1 and right subtree T_2.

Q.insertItem($f_1 + f_2$)

return tree Q.removeMinElement()

- running time for a text of length n with k distinct characters: $O(n + k \log k)$
Image Compression

- we can use Huffman encoding also for binary files (bitmaps, executables, etc.)
- common groups of bits are stored at the leaves
- Example of an encoding suitable for b/w bitmaps