
1

SCHOOL OF COMPUTING SCIENCE

Hash Table Demonstrator

Dragoş Miron - Najam Hussain - Lukasz Prelic - Daniel Budeanu - Jon Elliot

2

TABLE OF CONTENTS

Introduction to Hashing 3

Collision Handling

4

How to use the demonstrator

6

3

INTRODUCTION TO HASHING

Definition

A hash table consists of two components: a bucket array and a hash function. The hash

function maps elements into the bucket array.

Hash Functions

Hash functions are algorithms that return hash codes used for elements to be entered into

the bucket array. The ideal hash function generates different hash values for different

elements, but this is not the case in real-life. Whenever a hash function returns the same

hash code for two elements, a collision occurs. There are different ways of handling

collisions (see COLLISIONS HANDLING chapter).

Uses

Hash functions are mostly used to generate fixed-length output data that acts as a

shortened reference to the original data. This is useful when the output data is too large to

use entirely.

One practical use is a data structure called a hash table where the data is stored

associatively. This demonstrator will show how this data structure is created, how elements

are inserted, removed or found and how collisions can be dealt with.

Another use is in cryptography, the science of encoding and safeguarding data. It is easy to

generate hash values from input data and easy to verify that the data matches the hash, but

hard to 'fake' a hash value to hide malicious data.

Performance of hash tables

Hash tables aim to have all their operations (insert, remove or find) in constant time. The

worst case scenarios complexity depend on the manner in which the program deals with

collisions (see COLLISIONS HANDLING chapter). The hash function also has an impact on the

performance because if the number of collisions is minimised, the data structure will be

more time efficient.

4

COLLISION HANDLING

There are lots of ways in which collisions are dealt with. This tutorial discusses two:

linear probing and separate chaining.

Linear Probing

In case of linear probing, when the program tries to insert an element in a bucket that

already contains another element, it will simply iterate over the buckets until it finds an

empty one and insert the element there. In the worst case scenario, this can have an O(n)

complexity, where n represents the number of buckets. Also, when finding or removing an

element that has been placed in a bucket which was found by linear probing the

performance might drop to O(n).

In the case of linear probing, the buckets can have three states: empty, deleted or full.

When a bucket is empty, it means it doesn’t and never contained an element. When a

bucket is deleted, it means that currently it does not contain an element, but there has one

that has been removed. The third state is when the bucket currently contains an element.

 Inserting

When inserting an element in a bucket array and using separate chaining to deal with

collisions there are 4 situations:

 If the bucket is empty, the insertion takes place

 If the bucket contains the element, the insertion fails because duplication is

not allowed

 If the bucket contains a different element, the program iterates over the

buckets to find an empty or deleted bucket to insert the word in

 If the bucket is in the deleted state, the program assigns a checker to iterate

over the buckets until in finds an empty bucket or until it loops over, checking

the full array. This is done because the checker might find the word in the

array, in which case, insertion fails due to duplication restriction. Otherwise,

insertion takes place in the deleted bucket.

5

 Removing and finding

When removing or finding an element, the program starts at the index indicated by the

hash function, after which it iterates from that point onwards until in finds:

 an empty bucket in which case, the element does not exist, or

 the element, in which case the element is removed or found or

 a different element or a deleted bucket, in which case it continues to iterate

If the programed iterated and looped over the same bucket, it means that the element is

not in the hash table.

Separate Chaining

In the case of separate chaining, each bucket is a small map, for example a linked list. When

the program wants to insert, remove or find an element, it calculates the hash code for it

and then it accesses the indicated bucket. If the bucket contains that element, insert fails,

but remove or find succeed. If the bucket doesn’t contain the word or if it is empty,

insertion succeeds while remove and find fail.

The worst case scenario complexity of inserting, removing or finding an element in this data

structure depends of the data structure used for each bucket list. If a linked list is used, the

operations have a worst case scenario complexity of O(n), where n is the number of

elements in the table.

6

HOW TO USE THE DEMONSTRATOR

To run the demonstrator simply double click on one of the executable .jar files named

HashTableLP.jar or HashTableSP.jar and the following screen will appear:

To interact with the demonstrator, you first select one of the hashing functions from the

Hash Functions menu. AddHash is selected by default. After, you can type in a word in the

text box and press one of the three buttons in the button area. The animation will take

place in the Computation Area and in the Bucket Array while the Pseudocode area will

show the steps the algorithms is going through. The speed of the animation can be modified

using the speed control slider.

Demo:

Firstly, run HashTableLP.jar with selected AddHash from the Hash Functions menu. Then:

1. Insert asd, then ads, sda, sad, dsa and das. This will show you how collisions are

handled.

2. Now delete ads and sad. This shows you how the program iterates to find the

elements.

3. Now try to delete sad again. Notice how the program checks until in finds an empty

bucket. To demonstrate why it is not enough to stop at a deleted bucket, do step 4.

7

4. Delete sda. Notice that if the iterator would have stopped at the first deleted bucket,

it would not have found the element.

5. Insert sda. Notice the checker iterating until it finds an empty bucket. This is done to

avoid collisions. In this case, insertion will be permitted. Do step 6 to see another

example.

6. Insert das. In this case the checker finds the word and does not allow insertion.

7. Insert jar, jra, ajr and arj. Now insert sad. See how the checker loops over and meets

a checked value. In this case, even if it did not encounter a duplicate or an empty

bucket, it still grants permission to insert.

8. Now insert ads. The capacity is now full. Try to insert anything.

9. Play with it. Try to insert, remove and find elements. If you want to reset the buckets

to empty, select any hashing algorithm from the menu.

Now run HashTableSC.jar. A similar screen will appear. The difference is that the buckets

can now support more than just one element. So when two elements have the same

hash code, they are both inserted in the same bucket. The number on the buckets

represents the number of items in that bucket. This demonstrator has a limit of 10 elements

per bucket. To see the elements from a bucket, hover the mouse over that bucket and they

will appear on the left of the Computation Area.

Note: An empty bucket will be grey. A bucket containing one or few elements will be green.

As the number of elements of a bucket gets close to the limit, the bucket will shift color to

red.

Demo:

1. Import animals.txt contained in this pack. (File -> Import)

2. Insert duplicate elements to notice that their insertion is denied. Insert sms to notice

that insertion is denied because the bucket is full.

3. Try to find or to remove existent and inexistent elements.

Congratulations, now you should be able to understand Hash Tables.

