Binary Search Trees

Binary search trees

A binary search tree is a binary tree where all elements in the
left subtree are less than elements in the right subtree

Binary search trees

A binary search tree is a binary tree where all elements in the
left subtree are less than elements in the right subtree

o As we saw earlier, inorder
traversal is

o o abcdefghijwhichisin

o o o o sorted order

0 o o So this is a binary search tree

Binary search trees

A binary search tree is a binary tree whose inorder traversal is
in sorted order

o As we saw earlier, inorder
traversal is

o o abcdefghijwhichisin

o o o o sorted order

0 o o So this is a binary search tree

There are many more (binary) search trees that
have inorder traversalabcdefghi

Binary search trees

A binary search tree is a binary tree whose inorder traversal is
in sorted order

o As we saw earlier, inorder
traversal is

o o abcdefghijwhichisin

o o o o sorted order

0 o o So this is a binary search tree

All entries are unique!
Typical use ... representing a set

File

[«]

4A_.‘_- - S— -
ﬁ’ http:_.Ewehclii?.-unizar.ﬁ_.-'asig D~ ﬁ AVL tree applet W - & {frﬁ gj\,?
Edit View Favorites Tools Help
AVA MIODELS
The inset below illustrates the behaviour of binary search trees.
Donald Knuth. "The Art of Computer Programming”: Searching and Sorting Algorithms.
.M. Adelson-Velskii and E.M. Landis. "An algorithm for the organization of information”, 1962
D. Sleator and R. Tarjan. "Self-adjusting Binary Search Trees", 1985
"Symmetrc binary B-trees. Data structure and maintenance algorithms.”. R.Bayer, 1972
"A diochromatic framework for balanced trees.”: L.J. Guibas and R. Sedgewick, 1978
@ SPL
23
[(-\// \(\ RB
01 a9
& @ & @ AvL

#
/
v
5

Inserting 25. 28 inserted.

Ry

Insert

Find

Delete

Min

DeleteAll

Traverse | in-order -

demo

http://webdiis.unizar.es/asignaturas/EDA/AVLTree/avltree.html

http://webdiis.unizar.es/asignaturas/EDA/AVLTree/avltree.html

Implementing search in a binary search tree

Search
- Can implement binary search in O(log n) time on average
- Takes longer if the tree is badly balanced

For every node X, value in all nodes in left subtree of X are less
than value in X, and value of all nodes in right subtree are
greater than value in X

Algorithm is simple:
if x < node then search left subtree

if x > node then search right subtree

When the tree is balanced the path length to the leaves is log(n)

Find 17

)

A
!
5P
i

[. = — = | &
OO0 - e —

ﬁ’ http://webdiis.unizar.es/asic O v C ﬁ AVL tree applet

File Edit

View Favorites Tools Help

JAVA MIODELS

The inset below illustrates the behaviour of binary search trees.

Donald Knuth. "The Art of Computer Programming”: Searching and Sorting Algorithms.
.M. Adelson-Velskii and E.M. Landis. "An algorithm for the organization of information”, 1962
D. Sleator and R. Tarjan. "Self-adjusting Binary Search Trees", 1985
"Symmetrc binary B-trees. Data structure and maintenance algorithms.”. R.Bayer, 1972
"A diochromatic framework for balanced trees.”: L.J. Guibas and R. Sedgewick, 1978

SPL

®
—— ’ T R-B
E PN e o AVL

Ry

7
v &
g

Inserting 25. 28 inserted.

Insert | Find | Delete | Min | DeleteAll | Traverse | in-order -

Find 17

-
ee P hitp://webdiis.unizar.es/asic 0 ~ & I-eﬁ AVL tree applet X ‘ _‘ . - AL

JAVA MIODELS s

The inset below illustrates the behaviour of binary search trees.

Donald Knuth. "The Art of Computer Programming”: Searching and Sorting Algorithms.
.M. Adelson-Velskii and E.M. Landis. "An algorithm for the organization of information”, 1962
D. Sleator and R. Tarjan. "Self-adjusting Binary Search Trees", 1985
"Symmetrc binary B-trees. Data structure and maintenance algorithms.”. R.Bayer, 1972
"A diochromatic framework for balanced trees.”: L.J. Guibas and R. Sedgewick, 1978

SPL

®

@ M/ \@ R-B
i Gu\/ \fﬁ\ 6?5\/ \611\ AVL
7

!.

E

Ry

Animation paused.

Insert | Find | Delete | Min | DeleteAll | Traverse | in-order -

Find 17

-
ee P hitp://webdiis.unizar.es/asic 0 ~ & I-eﬁ AVL tree applet X ‘ _‘ . - AL

JAVA MIODELS s

The inset below illustrates the behaviour of binary search trees.

Donald Knuth. "The Art of Computer Programming”: Searching and Sorting Algorithms.
.M. Adelson-Velskii and E.M. Landis. "An algorithm for the organization of information”, 1962
D. Sleator and R. Tarjan. "Self-adjusting Binary Search Trees", 1985
"Symmetrc binary B-trees. Data structure and maintenance algorithms.”. R.Bayer, 1972
"A diochromatic framework for balanced trees.”: L.J. Guibas and R. Sedgewick, 1978

SPL

®

@ @// \@ R-B
i Gu\/ ﬁ% 6?5\/ \611\ AVL
7

!.

E

™,

Ry

Animation paused.

Insert | Find | Delete | Min | DeleteAll | Traverse | in-order -

Find 17

-
ee P hitp://webdiis.unizar.es/asic 0 ~ & I-eﬁ AVL tree applet X ‘ _‘ . - AL

JAVA MIODELS s

The inset below illustrates the behaviour of binary search trees.

Donald Knuth. "The Art of Computer Programming”: Searching and Sorting Algorithms.
.M. Adelson-Velskii and E.M. Landis. "An algorithm for the organization of information”, 1962
D. Sleator and R. Tarjan. "Self-adjusting Binary Search Trees", 1985
"Symmetrc binary B-trees. Data structure and maintenance algorithms.”. R.Bayer, 1972
"A diochromatic framework for balanced trees.”: L.J. Guibas and R. Sedgewick, 1978

SPL

®

@ @// \@ R-B
i Gu\/ \fﬁ\ 6?5\/ \611\ AVL
.’ .
!.

E

Ry

Animation paused.

Insert | Find | Delete | Min | DeleteAll | Traverse | in-order -

Find 17

-
ee P hitp://webdiis.unizar.es/asic 0 ~ & I-eﬁ AVL tree applet X ‘ _‘ . - AL

JAVA MIODELS s

The inset below illustrates the behaviour of binary search trees.

Donald Knuth. "The Art of Computer Programming”: Searching and Sorting Algorithms.
.M. Adelson-Velskii and E.M. Landis. "An algorithm for the organization of information”, 1962
D. Sleator and R. Tarjan. "Self-adjusting Binary Search Trees", 1985
"Symmetrc binary B-trees. Data structure and maintenance algorithms.”. R.Bayer, 1972
"A diochromatic framework for balanced trees.”: L.J. Guibas and R. Sedgewick, 1978

SPL

®

@ @// \@ R-B
i Gu\/ \fﬁ\ 6?5\/ \611\ AVL
7 o
!.

g

Ry

Animation paused.

Insert | Find | Delete | Min | DeleteAll | Traverse | in-order -

Find 17

®
®
#
J/
!.
v

Animation paused.

Fails to find 17

-
- ~ w - J ' = (O]
eo_ﬁ http://webdiis.unizar.es/asic O ~ ¢ I-.ﬁ AVL tree applet X ‘ : - T, ‘;:3 {%’:}
File Edit View Favorites Tools Help
AVA MIODELS .
The inset below illustrates the behaviour of binary search trees.
Donald Knuth. "The Art of Computer Programming”: Searching and Sorting Algorithms.
.M. Adelson-Velskii and E.M. Landis. "An algorithm for the organization of information”, 1962
D. Sleator and R. Tarjan. "Self-adjusting Binary Search Trees", 1985
"Symmetrc binary B-trees. Data structure and maintenance algorithms.”. R.Bayer, 1972
"A diochromatic framework for balanced trees.”: L.J. Guibas and R. Sedgewick, 1978
SPL
23
(-\// \(\ RB
01 a9
& @ & @ AvL

Insert | Find | Delete | Min | DeleteAll | Traverse | in-order -

Insert New Node

Inserting a hew node

This method works whether we are using the tree to implement a
set, sequence efc. as long as it is an /njective binary search tree.

Inserting a new node in general we must:
- Add to bottom of tree at all times (add a leaf)
- Keep the search tree property (left less than right)

15

[- - - . o= P

-
ee P hitp://webdiis.unizar.es/asic 0 ~ & I’ﬁ AVL tree applet X ‘ _:_ ‘ - Tk

File Edit

View Favorites Tools Help

JAVA MIODELS

The inset below illustrates the behaviour of binary search trees.

Donald Knuth. "The Art of Computer Programming”: Searching and Sorting Algorithms.
.M. Adelson-Velskii and E.M. Landis. "An algorithm for the organization of information”, 1962
D. Sleator and R. Tarjan. "Self-adjusting Binary Search Trees", 1985
"Symmetrc binary B-trees. Data structure and maintenance algorithms.”. R.Bayer, 1972
"A diochromatic framework for balanced trees.”: L.J. Guibas and R. Sedgewick, 1978

SPL

@
" T—a RB

i & @ & @ AVL

@B m B 2
o o)

7
v Ry
g

Animation resumed.

Insert | Find | Delete | Min | DeleteAll | Traverse | in-order -

Insert 40

[- - . E=SNEEN

ee b http:_..r_..fwehclii5:nizar.es_-'asig Jo b e I-eﬁ AVL tree applet X ‘ _‘ . - AL
File Edit - View Favorites Tools Help -
JAVA MIODELS 4

The inset below illustrates the behaviour of binary search trees.

Donald Knuth. "The Art of Computer Programming”: Searching and Sorting Algorithms.
.M. Adelson-Velskii and E.M. Landis. "An algorithm for the organization of information”, 1962
D. Sleator and R. Tarjan. "Self-adjusting Binary Search Trees", 1985
"Symmetrc binary B-trees. Data structure and maintenance algorithms.”. R.Bayer, 1972
"A diochromatic framework for balanced trees.”: L.J. Guibas and R. Sedgewick, 1978

SPL

® L
@ " @ "B
i fﬁé\’f \@ @// \@ AVL
7
!.
g

@B m B 2
o o)

Ry

Animation paused.

Insert | Find | Delete | Min | DeleteAll | Traverse | in-order -

Insert 40

[- - . E=SNEEN

ee b http:_..r_..fwehclii5:nizar.es_-'asig Jo b e I-eﬁ AVL tree applet X ‘ _‘ . - AL
File Edit - View Favorites Tools Help -
JAVA MIODELS 4

The inset below illustrates the behaviour of binary search trees.

Donald Knuth. "The Art of Computer Programming”: Searching and Sorting Algorithms.
.M. Adelson-Velskii and E.M. Landis. "An algorithm for the organization of information”, 1962
D. Sleator and R. Tarjan. "Self-adjusting Binary Search Trees", 1985
"Symmetrc binary B-trees. Data structure and maintenance algorithms.”. R.Bayer, 1972
"A diochromatic framework for balanced trees.”: L.J. Guibas and R. Sedgewick, 1978

SPL

@ 44

@ PN o \ﬁ\ R-B
E & ® & 8 AVL
7

!.

B

@B m B 2
o o)

Ry

Animation paused.

Insert | Find | Delete | Min | DeleteAll | Traverse | in-order -

Insert 40

[- - . E=SNEEN

ee b http:_..r_..fwehclii5:nizar.es_-'asig Jo b e I-eﬁ AVL tree applet X ‘ _‘ . - AL
File Edit - View Favorites Tools Help -
JAVA MIODELS 4

The inset below illustrates the behaviour of binary search trees.

Donald Knuth. "The Art of Computer Programming”: Searching and Sorting Algorithms.
.M. Adelson-Velskii and E.M. Landis. "An algorithm for the organization of information”, 1962
D. Sleator and R. Tarjan. "Self-adjusting Binary Search Trees", 1985
"Symmetrc binary B-trees. Data structure and maintenance algorithms.”. R.Bayer, 1972
"A diochromatic framework for balanced trees.”: L.J. Guibas and R. Sedgewick, 1978

SPL

%/ T o R-B

®
®
i fﬁé\’f T @// \@ AVL
7
!.
E

Ry

Animation paused.

Insert | Find | Delete | Min | DeleteAll | Traverse | in-order -

Insert 40

[- - . E=SNEEN

ee b http:_..r_..fwehclii5:nizar.es_-'asig Jo b e I-eﬁ AVL tree applet X ‘ _‘ . - AL
File Edit - View Favorites Tools Help -
JAVA MIODELS 4

The inset below illustrates the behaviour of binary search trees.

Donald Knuth. "The Art of Computer Programming”: Searching and Sorting Algorithms.
.M. Adelson-Velskii and E.M. Landis. "An algorithm for the organization of information”, 1962
D. Sleator and R. Tarjan. "Self-adjusting Binary Search Trees", 1985
"Symmetrc binary B-trees. Data structure and maintenance algorithms.”. R.Bayer, 1972
"A diochromatic framework for balanced trees.”: L.J. Guibas and R. Sedgewick, 1978

SPL

44
@/ T o R-B

®
®
i fE'\’f \% @// \@ AVL
7
!.
E

4
fﬁé{ \(1'5\ Eﬁ 42 \(és\ e &
o a0
Ry

&
y

Animation paused.

Insert | Find | Delete | Min | DeleteAll | Traverse | in-order -

Insert 40

[- - . E=SNEEN

ee b http:_..r_..fwehclii5:nizar.es_-'asig Jo b e I-eﬁ AVL tree applet X ‘ _‘ . - AL
File Edit - View Favorites Tools Help -
JAVA MIODELS 4

The inset below illustrates the behaviour of binary search trees.

Donald Knuth. "The Art of Computer Programming”: Searching and Sorting Algorithms.
.M. Adelson-Velskii and E.M. Landis. "An algorithm for the organization of information”, 1962
D. Sleator and R. Tarjan. "Self-adjusting Binary Search Trees", 1985
"Symmetrc binary B-trees. Data structure and maintenance algorithms.”. R.Bayer, 1972
"A diochromatic framework for balanced trees.”: L.J. Guibas and R. Sedgewick, 1978

SPL

®
o T—m R
E & e & e AVL

7
v N Ry
g

Animation resumed. 40 inserted.

Insert | Find | Delete | Min | DeleteAll | Traverse | in-order -

Another illustration of insertion ...

22

Insert New Node
Adding a node with value x = 5. (Example)

IS

23

Insert New Node
Adding a node with value x = 5. (Example)

Compare 5 with node:
5 > 3 so go right

24

Insert New Node
Adding a node with value x = 5. (Example)

O
() O

Compare 5 with node:
5 <6 s0 go left

25

Insert New Node
Adding a node with value x = 5. (Example)

(&)
() (&

Compare 5 with node:
5 > 4 so go right

26

Insert New Node
Adding a node with value x = 5. (Example)

(&)
() (&

Can’t go right as that is null
Insert node right of here, as a leaf

27

Insert New Node
Adding a node with value x = 5. (Example)

() O

Can’t go right as that is null
Insert node right of here, as a leaf

28

Why bO’\’th?

n=3, log(n+1)-1 = 1 < height < n-1

T e

31

n=7, log(n+1)-1 = 2 < height ¢ n-1

RN

32

n=15, log(n+1)-1 = 3 < height < n-1

33

n=31, log(n+1)-1 = 4 < height < n-1

34

n=63, log(n+1)-1 = 5 < height < n-1

35

n=127, log(n+1)-1 = 6 < height < n-1

36

0!0 '.

M |

!

I m

And this is crucial

height (h) log,(n+1)-1<h < n-1

If we get it right we can access data in logarithmic time!

Log to the base 2 of ...

=00 AN
?I\n non

whn =
D

1024 = 10

Log to the base 2 of ...

N
"

G =7 0000000000 00 0000

—
IOI\”

wn =
D

S = S0 0000 0000000000000 0 0000

logs(x) -

SRR 0000 0000

1024 = 10 a

Brilliant!

java implementation

41

Node

42

Node

-

Mj Mode - Notepad

ESEEEE)

File Edit Format View Help

public class Node {
private 5tring element;
private Node Teft;
private Node right;
private Node parent;
public Node(D{this(null,null,null,null1); %

public Node(string e, Node Teft,Node right,Node parent){

this.element = e;
this. Teft = Teft;
this.right = right;
this.parent = parent;

public string getElement(){return element;}
public Node getLeft(J{return left;}

public Node getRight(J){return right;}

public Node getParent(){return parent;}

public void setElement(5tring e){element = e;}

public void setLeft({Node node){left = node; if (node != null) node.setParent(this);}
public void setRight(Node node){right = node; if (node !'= null) node.setParent(this);}
public wvoid setParent(Node node){parent = node;}

public boolean isRoot(){return qarent = null; 7}

public boolean isLeaf(J){return left == null && right == null;}

public boolean isInternal (J{ireturn left !'= null && right '= null;7}

public boolean isLeftchild(){return parent.getLeft() == this;}

public boolean isrightChild(}{return parent.getRight() == this;}

public boolean hasLeft(D{return left !'= null;}

public boolean hasright(){return right !'= null;} |

public 5tring tostring(){return element.to5tring(); ¥

43

Node

-

M:l Mode - Notepad

[E=REER)

File

Edit Format View Help

public class Node {

private 5tring element;
private Node Teft;
private Node right;
private Node parent;

public Node(D{this(null,null,null,null1); %

public Node(string e, Node Teft,Node right,Node parent){

this.element = e;
this. left = left;
this.right = right;
this.parent = parent;

public string getElement(){return element;}
public Node getLeft(J{return left;}

public Node getRight(){return right;}

public Node getParent(){return parent;}

public void setElement(string e){element = e;}

public void setLeft(Node node){left = node; if (node !'= null) node.setParent(this);?}
public void setRight(Node node){right = node; if (node '= null) node.setParent(this);?
public wvoid setParent(Node node){parent = node;}

public boolean isRoot(){return qarent == null;}

public boolean isLeaf(){return left == null && right == null;}

public boolean isInternal(){return left != null & right '= null;}

public boolean isLeftchild(){return parent.getLeft() == this;}

public boolean isRightChild(){return parent.getRight() == this;}

public boolean hasLeft(D{return left !'= null;}

public boolean hasright(){return right !'= null;} |

public string tostring(){return element.tostring();}

Vi)

Node

-

M:| Mode - Notepad

ESEEEE)

File Edit Format View Help

public class Node {

private 5tring element;
private Node Teft;
private Node right;

brivate Node parent: Default constructor
public Node(D{this(null,null,null,null1); %

public Node(string e, Node Teft,Node right,Node parent){

this.element = e;
this. Teft = Teft;
this.right = right;
this.parent = parent;

public string getElement(){return element;}
public Node getLeft(J{return left;}

public Node getRight(J){return right;}

public Node getParent(){return parent;}

public void setElement(5tring e){element = e;}

public void setLeft({Node node){left = node; if (node != null) node.setParent(this);}
public void setRight(Node node){right = node; if (node !'= null) node.setParent(this);}
public wvoid setParent(Node node){parent = node;}

public boolean isRoot(){return qarent = null; 7}

public boolean isLeaf(J){return left == null && right == null;}

public boolean isInternal (J{ireturn left !'= null && right '= null;7}

public boolean isLeftchild(){return parent.getLeft() == this;}

public boolean isrightChild(}{return parent.getRight() == this;}

public boolean hasLeft(D{return left !'= null;}

public boolean hasright(){return right !'= null;} |

public 5tring tostring(){return element.to5tring(); ¥

45

Node

-

M:| Mode - Notepad l = | =] m]
File Edit Format View Help
public class Node { i
private 5tring element;
private Node Teft;
private Node right;
private Node parent; parameterised constructor

public Node(){this(null,nulT,null,null);} note use Of this
public Node(string e, Node Teft,Node right,Node parent){

this.element = e;
this. Teft = Teft;
this.right = right;
this.parent = parent;

public string getElement(){return element;}
public Node getLeft(J{return left;}

public Node getRight(J){return right;}

public Node getParent(){return parent;}

public void setElement(5tring e){element = e;}

public void setLeft({Node node){left = node; if (node != null) node.setParent(this);}
public void setRight(Node node){right = node; if (node !'= null) node.setParent(this);}
public wvoid setParent(Node node){parent = node;}

public boolean isRoot(){return qarent = null; 7}

public boolean isLeaf(J){return left == null && right == null;}

public boolean isInternal (J{ireturn left !'= null && right '= null;7}

public boolean isLeftchild(){return parent.getLeft() == this;}

public boolean isrightChild(}{return parent.getRight() == this;}

public boolean hasLeft(D{return left !'= null;}

public boolean hasright(){return right !'= null;} |

public 5tring tostring(){return element.to5tring(); ¥

46

Node

-

M:| Mode - Notepad

ESEEEE)

File Edit Format View Help

public class Node {
private 5tring element;
private Node Teft;
private Node right;
private Node parent;
public Node(D{this(null,null,null,null1); %

public Node(string e, Node Teft,Node right,Node parent){

this.element = e;
this. Teft = Teft;
this.right = right;
this.parent = parent;

public string getElement(){return element;}
public Node getLeft(J{return left;} e-”-er.s
public Node getRight(J){return right;} 9

public Node getParent(){return parent;}

public void setElement(5tring e){element = e;}

public void setLeft({Node node){left = node; if (node != null) node.setParent(this);}
public void setRight(Node node){right = node; if (node !'= null) node.setParent(this);}
public wvoid setParent(Node node){parent = node;}

public boolean isRoot(){return qarent = null; 7}

public boolean isLeaf(J){return left == null && right == null;}

public boolean isInternal (J{ireturn left !'= null && right '= null;7}

public boolean isLeftchild(){return parent.getLeft() == this;}

public boolean isrightChild(}{return parent.getRight() == this;}

public boolean hasLeft(D{return left !'= null;}

public boolean hasright(){return right !'= null;} |

public 5tring tostring(){return element.to5tring(); ¥

47

Node

-

M:| Mode - Notepad l — | (=] |_-53-]1
File Edit Format View Help

public class Node {
private 5tring element;
private Node Teft;
private Node right;
private Node parent;
public Node(D{this(null,null,null,null1); %

public Node(string e, Node Teft,Node right,Node parent){

this.element = e;
this. Teft = Teft;
this.right = right;
this.parent = parent;

public string getElement(){return element;}
public Node getLeft(J{return left;}

public Node getRight(J){return right;}

public Node getParent(){return parent;}

public void setElement(5tring e){element = e;}

public void setLeft({Node node){left = node; if (node != null) node.setParent(this);}

public void setRight(Node node){right = node; if (node !'= null) node.setParent(this);} S@TTCI"S
public wvoid setParent(Node node){parent = node;}

public boolean isRoot(){return qarent = null; 7}

public boolean isLeaf(J){return left == null && right == null;}

public boolean isInternal (J{ireturn left !'= null && right '= null;7}

public boolean isLeftchild(){return parent.getLeft() == this;}

public boolean isrightChild(}{return parent.getRight() == this;}

public boolean hasLeft(D{return left !'= null;}

public boolean hasright(){return right !'= null;} |

public 5tring tostring(){return element.to5tring(); ¥

43

Node

-

M:| Mode - Notepad

ESEEEE)

File Edit Format View Help

public class Node {

private 5tring element;
private Node Teft;
private Node right;
private Node parent;

public Node(D{this(null,null,null,null1); %

public Node(string e, Node left,Node right,Node parent){
this.element H
this. Teft Teft;
this.right right;
this. parent parent;

public string getElement(){return element;}
public Node getLeft(J{return left;}

public Node getRight(J){return right;}

public Node getParent(){return parent;}

public void setElement(5tring e){element = e;}

public void setLeft({Node node){left = node; if (node != null) node.setParent(this);}
public void setRight(Node node){right = node; if (node !'= null) node.setParent(this);}
public wvoid setParent(Node node){parent = node;}

public boolean isRoot(){return qarent = null; 7}

public boolean isLeaf(J){return left == null && right == null;}
public boolean isInternal (J{ireturn left !'= null && right '= null;7}
public boolean isLeftchild(){return parent.getLeft() == this;}
public boolean isrightChild(}{return parent.getRight() == this;}
public boolean hasLeft(D{return left !'= null;}

public boolean hasright(){return right !'= null;} |

predicates

public 5tring tostring(){return element.to5tring(); ¥

49

Node

-

M:| Mode - Notepad

ESEEEE)

File Edit Format View Help

public class Node {
private 5tring element;
private Node Teft;
private Node right;
private Node parent;
public Node(D{this(null,null,null,null1); %

public Node(string e, Node Teft,Node right,Node parent){

this.element = e;
this. Teft = Teft;
this.right = right;
this.parent = parent;

public string getElement(){return element;}
public Node getLeft(J{return left;}

public Node getRight(J){return right;}

public Node getParent(){return parent;}

public void setElement(5tring e){element = e;}

public void setLeft(Node node){left = node; if (node !'= null) node.setParent(this);}
public void setright(Node node){right = node; if (node != null) node.setParent(this);}
public void setParent(Node node){parent = node;}
public boolean isRoot(){return qarent = null; 7}
public boolean isLeaf(){return left == null && right == null;}
public boolean isInternal(){return left != null & right '= null;}
public boolean isLeftchild(){return parent.getLeft() == this;}
public boolean isrightChild(){return parent.getRight() == this;}
public boolean hasLeft(J{return left != null;}
public boolean hasRight(){return right '= null;} |
) public string tostring(){return element.tostring();} For‘ pr'lnflng

o0

The BSTree class

BinarySearchTree (BSTree)

BSTree

=

MJW BSTree - Notepad

| B e

File Edit Format Wiew Help

public class B5Tree {
private Node root;
private int size;

public BsTree(){root = null; size = 0;%

public Mode root{(J{return root;}
public boolean isEmpty(J{ireturn root == null;}
public int size(){return size;}

public void insert(string s)i}

/ insert the string s into a tree
(1) if the tree 15 empty

then create a new node with s in it and setthe size of the tree to be 1 ... otherwise
(2) insert the string s into the tree rooted on the current node ... see below

T e, e

(4) if s is greater than the current node and the current node has no right child
then create a new node containing s, call it newNode
make the right child of the current node be the newMode
make the parent of the newNode be the current node

B ey v | RH“&."&‘&E

;ivate void insert{5tring s,Node node){}

J dinsert the string s into the tree rooted on the current node

S (1) if 5 is less than the current node and the current node has a left child
F then insert s into the tree rooted on the left child ... otherwise

S (2) if 5 is Tless than the current node and the current node has no left child
/ then create a new node containing s, call it newNode

F make the left child of the current node be the newNode

/ make the parent of the newNode be the current node ... otherwise

/ (3) if 5 is greater than the current node and the current node has a right child
? then insert s into the tree rooted on the right child ... otherwise

/

/

/!

/

public boolean isfresent{string s){return root != null && find(s,root)!= null; %}

/4 s is present if the tree isn't empty and we can find a node that contains s

!/

m

-

BSTree

=

MJW BSTree - Notepad

] D

-

File

Edit Format Wiew Help

puh

private Node root;

private int size; A binary search tree has a root
public B5Tree(D{root = null; size = 0;7} Where The root is a nOde

public Node root(){return root;} It Cllso haS a Size, Wher'e Size is
PTie Seolean ey Qireturn root = nulls the number of nodes in the tree

public void insert(string s)i}

/ insert the string s into a tree

(1) if the tree 15 empty

F then create a new node with s in it and setthe size of the tree to be 1 ... otherwise
J (2) dnsert the string s into the tree rooted on the current node ... see below

/!

(4) if s is greater than the current node and the current node has no right child
then create a new node containing s, call it newNode
make the right child of the current node be the newMode
make the parent of the newNode be the current node

B ey v | RH“&."&‘&E

;ivate void insert{5tring s,Node node){}

J dinsert the string s into the tree rooted on the current node

S (1) if 5 is less than the current node and the current node has a left child
F then insert s into the tree rooted on the left child ... otherwise

S (2) if 5 is Tless than the current node and the current node has no left child
/ then create a new node containing s, call it newNode

F make the left child of the current node be the newNode

/ make the parent of the newNode be the current node ... otherwise

/ (3) if 5 is greater than the current node and the current node has a right child
? then insert s into the tree rooted on the right child ... otherwise

/

/

/!

/

public boolean isfresent{string s){return root != null && find(s,root)!= null; %}

/4 s is present if the tree isn't empty and we can find a node that contains s

!/

m

BSTree

=

| BSTree - Notepad l = | (=] |_il?-l
|

File Edit Format Wiew Help

public class B5Tree {

private Node root;

private int size; Default constructor, an emp’ry tree
BsTree(J{root = null; size = 0;% e— | with an emp‘l‘y root

public

public Mode root{(J{return root;}

public boolean isEmpty(J{ireturn root == null;}
public int size(){return size;}

public void insert(string s)i}

/ insert the string s into a tree

(1) if the tree 15 empty

F then create a new node with s in it and setthe size of the tree to be 1 ... otherwise
J (2) dnsert the string s into the tree rooted on the current node ... see below

/!

(4) if s is greater than the current node and the current node has no right child
then create a new node containing s, call it newNode
make the right child of the current node be the newMode
make the parent of the newNode be the current node

B ey v | RH“&."&‘&E

;ivate void insert{5tring s,Node node){}

J dinsert the string s into the tree rooted on the current node

S (1) if 5 is less than the current node and the current node has a left child
F then insert s into the tree rooted on the left child ... otherwise

S (2) if 5 is Tless than the current node and the current node has no left child
/ then create a new node containing s, call it newNode

F make the left child of the current node be the newNode

/ make the parent of the newNode be the current node ... otherwise

/ (3) if 5 is greater than the current node and the current node has a right child
? then insert s into the tree rooted on the right child ... otherwise

/

/

/!

/

public boolean isfresent{string s){return root != null && find(s,root)!= null; %}

/4 s is present if the tree isn't empty and we can find a node that contains s

!/

m

-

BSTree

=

MJW BSTree - Notepad

] D

File Edit Format Wiew Help

public class B5Tree {
private Node root;

private int

public BsTree(){root = null; size = 0;%

size; GCT The root
Test if free is empty

public Node

public boolean isEmpty(J{ireturn root == null;}
public int size(){return size;}

root (){return root:} GeT The size Of The tree

public woid

(1) if s
then
(2) if s
then

(3) if s
then
(4% if s
then

B ey v | RH“&."&‘&E

e e e e e e T e e e e e T

insert{string sJ{}

/ insert the string s into a tree

(1) if the tree 15 empty

F then create a new node with s in it and setthe size of the tree to be 1 ... otherwise
J (2) dnsert the string s into the tree rooted on the current node ... see below

/!

ivate void insert(5tring s,Node node){}

insert the string s into the tree rooted on the current node

is less than the current node and the current node has a left child
insert s into the tree rooted on the left child ... otherwise

is less than the current node and the current node has no left child
create a new node containing s, call it newNode

make the left child of the current node be the newNode

make the parent of the newNode be the current node ... otherwise
is greater than the current node and the current node has a right child
insert s into the tree rooted on the right child ... otherwise

is greater than the current node and the current node has no right child
create a new node containing s, call it newNode

make the right child of the current node be the newMode

make the parent of the newNode be the current node

public boolean isfresent{string s){return root != null && find(s,root)!= null; %}

/4 s is present if the tree isn't empty and we can find a node that contains s

!/

m

-

BSTree

=

MJW BSTree - Notepad

] D

File Edit Format Wiew Help

public class B5Tree {
private Node root;
private int size;

public BSTree(){root

Insert string s intfo the tree

= null; size = 0;7%

public Mode root{(J{return root;}
public boolean isEmpty(J{ireturn root == null;}
public int size(){return size;}

J insert the strin

T e, e

public void insert(string s)i}

(1) if the tree 15 empty
then create a new node with s in it and setthe size of the tree to be 1 ... otherwise
(2) insert the string s into the tree rooted on the current node ... see below

s into a tree

insert the string
then insert s
make the

make the

then insert s

make the
make the

B ey v | RH“&."&‘&E

e e e e e e T e e e e e T

ivate void insert(5tring s,Node node){}

s into the tree rooted on the current node

(1) if 5 is Tless than the current node and the current node has a left child

into the tree rooted on the left child ... otherwise

{2) if s is less than the current node and the current node has no left child
then create a new node containing s, call it newNode

left child of the current node be the newNode
parent of the newNode be the current node ... otherwise

(3) if 5 is greater than the current node and the current node has a right child

into the tree rooted on the right child ... otherwise

(4) if s is greater than the current node and the current node has no right child
then create a new node containing s, call it newNode

right child of the current node be the newMode
parent of the newNode be the current node

public boolean isfresent{string s){return root != null && find(s,root)!= null; %}

/4 s is present if the tree isn't empty and we can find a node that contains s

!/

m

-

BSTree

=

MJW BSTree - Notepad

] D

File Edit Format Wiew Help

public class B5Tree {
private Node root;
private int size;

public BsTree(){root = null; size = 0;%
public Mode root{(J{return root;}

public boolean isEmpty(J{ireturn root == null;}
public int size(){return size;}

Insert string s intfo the tree

public void insert(string s)i}

insert the string s into a tree
(1) if the tree 15 empty

then create a new node with s in it and setthe size of the tree to be 1 ... otherwise
{2) insert the string 5 into the tree rooted on the current node ...

see below

-

ivate void insert(5tring s,Node node){}

B ey v | RH“&."&‘&E

e e e e e e T e e e e e T

insert the string s into the tree rooted on the current node
(1) if 5 is Tless than the current node and the current node has a left child
then insert s into the tree rooted on the left child ...
{2) if s is less than the current node and the current node has no left child
then create a new node containing s, call it newNode
make the left child of the current node be the newNode
make the parent of the newNode be the current node ...
(3) if 5 is greater than the current node and the current node has a right child
then insert s into the tree rooted on the right child ...
(4) if s is greater than the current node and the current node has no right child
then create a new node containing s, call it newNode
make the right child of the current node be the newMode
make the parent of the newNode be the current node

otherwise

otherwise

otherwise

public boolean isfresent{string s){return root != null && find(s,root)!= null; %}

/4 s is present if the tree isn't empty and we can find a node that contains s

!/

m

-

BSTree

=

MJW BSTree - Notepad

] D

File Edit Format Wiew Help

public class B5Tree {

private Node root;

private int size; Insert s’rr'ing s into the subtree
rooted on the current node

public BsTree(){root = null; size = 0;%

public Mode root{(J{return root;}
public boolean isEmpty(J{ireturn root == null;}
public int size(){return size;}

public void insert(string s)i}

/ insert the string s into a tree
(1) if the tree 15 empty

then create a new node with s in it and se
(2) insert the string 5 into the tree roote

e size of the tree to be 1 ... otherwise
n the current node ... see below

bon ey, e, e
B

ivate void insert(5tring s,Node node){}

insert the string s into the tree rooted on the current node
(1) if 5 is Tless than the current node and the current node has a left child
then insert s into the tree rooted on the left child ... otherwise
{2) if s is less than the current node and the current node has no left child
then create a new node containing s, call it newNode
make the left child of the current node be the newNode

make the parent of the newNode be the current node ... otherwise
(3) if 5 is greater than the current node and the current node has a right child
then insert s into the tree rooted on the right child ... otherwise

(4) if s is greater than the current node and the current node has no right child
then create a new node containing s, call it newNode
make the right child of the current node be the newMode
make the parent of the newNode be the current node

B ey v |
e e e e e e T e e e e e T

public boolean isfresent{string s){return root != null && find(s,root)!= null; %}

/4 s is present if the tree isn't empty and we can find a node that contains s

!/

m

-

BSTree

=

MJW BSTree - Notepad

] D

File Edit Format Wiew Help

public class B5Tree {

' d ; ..
private int size; If sis in the left subtree ...

public BsTree(){root = null; size = 0;%

public Mode root{(J{return root;}
public boolean isEmpty(J{ireturn root == null;}
public int size(){return size;}

public void insert(string s)i}

/ insert the string s into a tree
(1) if the tree 15 empty

then create a new node with s in it and setthe sjfe of the tree to be 1 ... otherwise
(2) insert the string s into the tree rooted on thg/current node ... see below

T e, e

ivate void insert(5tring s,Node node){}

the current node
(1) if 5 is Tless than the current node and the current node has a left child
then 1HSErt s 1ﬂtn the tree rnnted on the left child ... ntherw159
L) ir =% ID IEDD LHﬂH LHE LT T EITE HUUE nnu LHE LT T EITE HUUE Hﬂh T IEIL LHIIU
then create a new node containing s, call it newNode

make the left child of the current node be the newNode

make the parent of the newNode be the current node ... otherwise
if s 1is greater than the current node and the current node has a right child
then insert s into the tree rooted on the right child ... otherwise

(4) if s is greater than the current node and the current node has no right child
then create a new node containing s, call it newNode

make the right child of the current node be the newMode

make the parent of the newNode be the current node

B e e e B ey s RH“&."&‘&E

B T |
5]
Lid
-

public boolean isfresent{string s){return root != null && find(s,root)!= null; %}

/4 s is present if the tree isn't empty and we can find a node that contains s

!/

m

-

BSTree

=

MJW BSTree - Notepad

] D

File Edit Format Wiew Help

public class BgTree i
D ivate int sizer’ If sisin the left subtree and
we need to create a new node

public BsTree(){root = null; size = 0;%

public Mode root{(J{return root;}
public boolean isEmpty(J{ireturn root == null;}
public int size(){return size;}

public void insert(string s)i}

/ insert the string s into a tree
(1) if the tree 15 empty

then create a new node with s in it and setthe size
(2) insert the string s into the tree rooted on the c

the tree to be 1 ... otherwise
ent node ... see below

T e, e

ivate void insert(5tring s,Node node){}
insert the string s into the tree rooted on e current node
(1) if 5 is Tless than the current node an he current node has a left child
LIt 17520 5 170D LTl Lee MaoLlg2d Ofl reg 12l CIiT T ... OLTI2Nwilse
{2) if s is less than the current node and the current node has no left child
then create a new node containing s, call it newNode
make the left child of the current node be the newNode
make the parent of the newNode be the current node ... otherwise
(3) 1T 5 15 greater than the current node and the current node has a r1gﬁt child
then insert s into the tree rooted on the right child ... otherwise
(4) if s is greater than the current node and the current node has no right child
then create a new node containing s, call it newNode
make the right child of the current node be the newMode
make the parent of the newNode be the current node

e T T i e e [e e i Wﬁfhﬁﬂﬁt

B i T e |

public boolean isfresent{string s){return root != null && find(s,root)!= null; %}

/4 s is present if the tree isn't empty and we can find a node that contains s

!/

m

-

BSTree

MJW BSTree - Notepad l = | (=] |_il?-l
File Edit Format Wiew Help

- N

public class B5Tree {
private Node root;

private int size; If sisin the r'lgh'l' subtree ...

public BsTree(){root = null; size = 0;%

public Mode root{(J{return root;}
public boolean isEmpty(J{ireturn root == null;}
public int size(){return size;}

m

public void insert(string s)i}

/ insert the string s into a tree
(1) if the tree 15 empty

then create a new node with s in it and setthe size of /the tree to be 1 ... otherwise
(2) insert the string s into the tree rooted on the curredAt node ... see below

T e, e

Ihen dosert = dnoto tThe Tree roored on the rigbr child orherwize
(4) if s is greater than the current node and the current node has no right child
then create a new node containing s, call it newNode
make the right child of the current node be the newMode
make the parent of the newNode be the current node

e T T i i ey RHHKHE

;ivate void insert{5tring s,Node node){}

J dinsert the string s into the tree rooted on the cupfent node

S (1) if 5 is less than the current node and the cwrent node has a left child
F then insert s into the tree rooted on the left child ... otherwise

S (2) if 5 is Tess than the current node and the/Current node has no left child
/ then create a new node containing s, call/it newNode

F make the left child of the current fiode be the newNode

J make the parent of the newNode beptfhe current node ... otherwise

i (3) 1T 5 15 greater than the current node and the current node has a right child
/!

/

/

/!

/

public boolean isfresent{string s){return root != null && find(s,root)!= null; %}

/4 s is present if the tree isn't empty and we can find a node that contains s

!/

BSTree

=

MJW BSTree - Notepad

] D

File Edit Format Wiew Help

public class B5Tree {
private Node root;

private int size; If sisin the r'lgh'l' subtree and
we heed to create a new node

public BsTree(){root = null; size = 0;%

public Mode root{(J{return root;}
public boolean isEmpty(J{ireturn root == null;}
public int size(){return size;}

public void insert(string s)i}

/ insert the string s into a tree
(1) if the tree 15 empty

then create a new node with s in it and setthe size of thg/tree to be 1 ... otherwise
(2) insert the string s into the tree rooted on the current pode ... see below

T e, e

(4) if s is greater than the current node and the current node has no right child
then create a new node containing s, call it newNode
make the right child of the current node be the newMode
make the parent of the newNode be the current node

e ey s | RH“&."&‘&E

;ivate void insert{5tring s,Node node){}

J dinsert the string s into the tree rooted on the curre node

S (1) if 5 is less than the current node and the curredt node has a left child
F then insert s into the tree rooted on the left £Lhild ... otherwise

S (2) if 5 is Tess than the current node and the cuyrent node has no left child
/ then create a new node containing s, call it/newNode

F make the left child of the current nogé be the newNode

/ make the parent of the newNode be t current node ... otherwise

/ (3) if 5 is greater than the current node apd the current node has a right child
I Ihen dosert = doto the Tres Frooted on cight child orherwize

/!

/

/

/!

Fi

public boolean isfresent{string s){return root != null && find(s,root)!= null; %}

/4 s is present if the tree isn't empty and we can find a node that contains s

!/

m

-

finding a node

finding a node

BSTree

=

MJW BSTree - Notepad

-

| B e

File Edit Format Wiew Help

Ji (4) if s is greater than the current node and the current node has no right child

i then create a new node containing s, call it newNode

rr make the right child of the current node be the newNode

§§ make the parent of the newNode be the current node

ublic boolean disPresent{string s){return root != null && find(s,root)!= null;}
/!

/ 5 is present if the tree isn't empty and we can find a node that contains s
/!

ivate void delete(Node node){}

Y
(1) if the node is internal, i.e. has a left and right child

{1.1) then find the smallest node in the right subtree, call this minNode
(1.2) replace the contents of the node with the contents of the minNode

P

/!

/!

/

Epﬁvate Node find(5tring s,Node node){return null;}

/4 given a node and a string s

rri ?D} we have found s if s is equal to the data in the node otherwise ...
A1) if 5 is less than the data in the node and the node has a Teft child

i then search for s is in the tree rooted at the left child ... otherwise
Ji (2) if s is greater than the data in the node and the node has a right child
i then search for s is in the tree rooted at the right child ... otherwise
A4 (3) the string 5 is not in the tree!

1y

5?b1ic void delete(string s){i}

S5 (0 find the node in the tree that contains s

A4 (1) if not found then nothing to delete ... done!

A7 (2) if the node is the root and the root is a leaf, make the tree empty ... otherwise
A (3) if the node is the root and the root has a right child and no left child
i then make the right child the root of the tree ... otherwise

A5 (4) if the node is the root and the root has a left child and no right child
rri then make the left child the new root of the tree ... otherwise

J¢ (5) delete the node using the steps in method deletel{node) below

?i (6) Regardless, in cases (1) to (5), once done decrement the size counter

P

/

/!

/

/!

T e T

m

finding a node

BSTree

=

MJW BSTree - Notepad

] D

-

File

Edit Format Wiew Help

Ji (4) if s is greater than the current node and the current node has no right child

i then create a new node containing s, call it newNode

rr make the right child of the current node be the newNode

§§ make the parent of the newNode be the current node

public boolean isPresent{string s){return root != null &% find(s,root)!= null;}

/4 s is present if the tree isn't empty and we can find a node that contains s

ivate Node find{5tring s,Node node){return nu

iven a node and a string s
?D} we have found s if s is equal to the data in the node otherwi .
{1) if s is less than the data in the node and the node has a left chi

then search for s is in the tree rooted at the le

(2) if s is greater than the data in the node and the The STI"ing S iS pl"esenT in The tree

then search for s is in the tree rooted at the rig

(3) the string s is not in the tree! if the tree isn't emPTY and we can
find a node that contains s

T e, e e e e L T

m

void delete(string s){}

C
0) find the node in the tree that contains s
1) if not found then nothing to delete ... done!
2) if the node is the root and the root is a leaf, make the tree empty ... otherwise
3) if the node is the root and the root has a right child and no left child
then make the right child the root of the tree ... otherwise
{4) if the node is the root and the root has a left child and no right child

then make the left child the new root of the tree ... otherwise
(5) delete the node using the steps in method delete(node) below
(6) Regardless, in cases (1) to (5), once done decrement the size counter

S e e e e T e

ivate void delete(Node node){}

Y
(1) if the node is internal, i.e. has a left and right child

{1.1) then find the smallest node in the right subtree, call this minNode
(1.2) replace the contents of the node with the contents of the minNode

e T e T T e ey i | e T e e e ey

T e T

finding a node

BSTree

=

MJW BSTree - Notepad

-

] D

File Edit Format Wiew Help

Ji (4) if s is greater than the current node and the current node has no right child

i then create a new node containing s, call it newNode

rr make the right child of the current node be the newNode

§§ make the parent of the newNode be the current node

ublic boolean disPresent{string s){return root != null && find(s,root)!= null;}
/!

/ 5 is present if the tree isn't empty and we can find a node that contains s
!

m

P

/!

/!

J

Epﬁvate Node find(5tring s,Node node){return null;}

/4 given a node and a string s

rri ?D} we have found s if s is equal to the data in the node otherwise ...

A1) if 5 is less than the data in the node and the node has a Teft child

i then search for s is in the tree rooted at the left child ... otherwise

Ji (2) if s is greater than the data in the node and the node has a right child

i then search for s is in the tree rooted at the right child ... otherwise

A4 (3) the string 5 is not in the tree!

1y

5?b1ic void delete(string s){i}

S5 (0 find the node in the tree that contains s

A4 (1) if not found then nothing to delete ... done!

A4 (2) if the node is the root and the root is a leaf, make tree empty ... otherwise
A4 (3) if the node is the root and the root has a right child an left child

i then make the right child the root of the tree ... otherwise

A5 (4) if the node is the root and the root has a left child and no right ild

rri then make the left child the new root of the tree ... otherwise

J¢ (5) delete the node using the steps in method deletel{node) below

/4 (6) Regardless, in cases (1) to (5), once done decrement th ,. . .

// find string s in the subtree rooted
Ep'ivate void delete(Node node){} on the current node
A if the node is internal, i.e. has a left and right child

A4 (1.1) then find the smallest node in the right subtree, call this minNode

Jid(1.2) replace the contents of the node with the contents of the minMode

finding a node

BSTree

=

MJW BSTree - Notepad

-

] D

File Edit Format Wiew Help

Ji (4) if s is greater than the current node and the current node has no right child

i then create a new node containing s, call it newNode

rr make the right child of the current node be the newNode

§§ make the parent of the newNode be the current node

public boolean isPresent{string s){return root != null &% find(s,root)!= null;}

/4 s is present if the tree isn't empty and we can find a node that contains s

private Node find(5tring s,Node node){return null;}

77

/4 given a node and a string s

rri ?D} we have found s if s is equal to the data in the node otherwise ...

; (L} ir =1 ib 1E33 Lhd” Lht dde iH |

/ then search for s is in the tree ted at the left child ... otherwise
J (2) if s 1is greater than the data in the de and the node has a right child
/ then search for s is in the tree rooted the right child ... otherwise
? (3) the string 5 is not in the tree!

m

ivate void delete(Node node){}

1) if the node is internal, i.e. has a left and right ch

?b1ic void delete(string s){i}

S (0) find the node in the tree that contains s

J (1) if not found then nothing to delete ... done!

S (2) if the node is the root and the root is a leaf, make the tree e .. otherwise

/ (3) if the node is the root and the root has a right child and no left ild

/ then make the right child the root of the tree ... otherwise

/ (4) if the node is the root and the root has a left child and no right chil

F then make the left child the new root of the tree ... otherwise

/ (5) delete the node using the steps in method delete(node) below

/ (6) Regardless, in cases (1) to (5), once done decrement th . .
/ If s is equal to the data in the current

node then return the current node
as a result.

e T e T T e ey i | e e e e e 1

T e T

Y

(. : |

{(1.1) then find the smallest node in the right subtree, cal
(1.2) replace the contents of the node with the contents of

the minNode

finding a node

BSTree

=

| BSTree - Notepad l = | (=] |_il?-l
|

-

File Edit Format Wiew Help

Ji (4) if s is greater than the current node and the current node has no right child

i then create a new node containing s, call it newNode

rr make the right child of the current node be the newNode

i make the parent of the newNode be the current node

/i

public boolean isPresent{string s){return root != null &% find(s,root)!= null;}
Iy

/4 s is present if the tree isn't empty and we can find a node that contains s
'y

private Node find(5tring s,Node node){return null;}

Iy

/4 given a node and a string s

i 1% s bavs foyumd ¢ 3fF = Je o=l 10 the Asts 40 the mods athorwico

/ (1) if s is less than the data in the node and the node has a left child

L then search for = 43 dn the tree rogted at the Jeft child otherwizse

Ji (2) if s is greater than the data in
then search for s is in the tree roo

A4 (3) the string 5 is not in the tree!

!/

node and the node has a right child
d at the right child ... otherwise

void delete(string s){}

C

0) find the node in the tree that contains s

1) if not found then nothing to delete ... done!
23 if the node is the root and the root is a leaf, make the
3) if the node is the root and the root has a right child and
then make the right child the root of the tree ... otherwise
{4) if the node is the root and the root has a left child and no rig
then make the left child the new root of the tres orherwice

ee empty ... otherwise
left child

child

m

(5) delete the node using the steps in method

(8) Regardless, in cases (1) to (5), once don| LT S iS less than the data in the current
node and the current node has a left child
e i | then try and find s in the subtree rooted
Eif’u then Find the smaiiect bode in the rign on the left child

S e e e e T e

ivate void delete(Node node){}

e T e T T e ey i |

T e T

1.2) repWace the contents of the node with the—cormerms—or—o=—mrmmoos

finding a node

BSTree

=

MJW BSTree - Notepad

] D

File

Edit Format Wiew Help

Ji (4) if s is greater than the current node and the current node has no right
i then create a new node containing s, call it newNode

rr make the right child of the current node be the newNode

§§ make the parent of the newNode be the current node

public boolean isPresent{string s){return root != null &% find(s,root)!= null;}
Iy

/4 s is present if the tree isn't empty and we can find a node that contains s
'y

private Node find(5tring s,Node node){return null;}

Iy

/4 given a node and a string s

rri ?D} we have found s if s is equal to the data in the node otherwise ...

// (1) if s is less than the data in the node and the node has_a Teft child

J (2) if s s greater than the data in the node and the node has a right child

then search for s is in the tree rooted at the right child ... otherwise
the string s 15 Not 1n the tree!

void delete(string s){}

C
0) find the node in the tree that contains s

1) if not found then nothing to delete ... done!

23 if the node is the root and the root is a Teaf, make th ree empty ...
3) if the node is the root and the root has a right child an left child
then make the right child the root of the tree ... otherwise

{4) if the node is the root and the root has a left child and no rig child
then make the left child the new root of the tres orherwice

child

otherwise

m

(5) delete the node using the steps in method

S e e e e T e

ivate void delete(Node node){}

e T e T T e ey i |

T e T

Y
(1) if the node is internal, i.e. has a lef . .
El.l} then find the smallest node in the righ on The r"ghT Ch||d

(6) Regardless, in cases (1) to (5), once don| LT S iS greater than the data in the current
node and the current node has a right child
then try and find s in the subtree rooted

1.2) repWace the contents of the node with the—cormermsor—o=—mrmmoos

-

finding a node

BSTree

=

MJW BSTree - Notepad

-

] D

File

Edit Format Wiew Help

Ji (4) if s is greater than the current node and the current node has no right child

i then create a new node containing s, call it newNode

rr make the right child of the current node be the newNode

§§ make the parent of the newNode be the current node

public boolean isPresent{string s){return root != null &% find(s,root)!= null;}
Iy

/4 s is present if the tree isn't empty and we can find a node that contains s
/Y

private Node find(5tring s,Node node){return null;}

Iy

/4 given a node and a string s

rri ?D} we have found s if s is equal to the data in the node otherwise ...
A1) if 5 is less than the data in the node and the node has a Teft child

i then search for s is in the tree rooted at the left child ... otherwise
Ji (2) if s is greater than the data in the node and the node has a right child

then search for s is in the tree rooted at the right child ... otherwise
The string s 15 NOL 1h the Ltree!

=
=

5?b1ic void delete(string s

S5 (0 find the node in the tree TRat contains s

A4 (1) if not found then nothing to te ... done!

A4 (2) if the node is the root and the r is a Teaf, make the tree empty ... otherwise
A4 (3) if the node is the root and the root a right child and no Teft child

i then make the right child the root of th ree ... otherwise

4 (4 if the node is the root and the root has a t child and no right child

rri then make the left child the new ront of the tF otherwize

A5 (8) delete the nod . . .
/7 (6) regardiess, id S IS less than the current node and it has no left child
/" or s is greater than the current node and it has no
rivate void deletelN . . .

7 ™ right child ... deliver null!

,.-"I,.-"l (l::' if the node 4= TTMICET T Ty T =. a3 & T=l T ol T Tgiic oIiir Td

A4 (1.1) then find the smallest node in the right subtree, call this minNode

Jid(1.2) replace the contents of the node with the contents of the minMode

m

Deletion of a node

Deletion of a node

Ly

Deletion of a node

Copy contents

Deletion of a node

6 o

Find the smallest node in the right subtree

Deletion of a node

Find the smallest node in the right subtree

Deletion of a node

Find the smallest node in the right subtree

Deletion of a node

"o

Copy contents

Deletion of a node

Copy contents

Deletion of a node

Delete leaf

Deletion of a node

Delete leaf

Deletion of a node

o

This process maintains the inorder property

Deletion of a node

e:\a

This process maintains the inorder property

There is a symmeftric equivalent: find largest node in left branch ..

Deletion of a node

6 o

Find the /argest node in the /eft subtree

Deletion of a node

6 o

Find the /argest node in the /eft subtree

Deletion of a node

Copy contents

Deletion of a node

Delete leaf

Deletion of a node

Delete leaf

Deletion of a node

o O

Therefore we have 2 options resulting in two different trees, both valid

Deletion of a node

Well baby, is there an
algorithm for this?

Deletion of a node

(5) delete the node using the steps in method delete(node) below
(6) RrRegardless, in cases (1) to (5), once done decrement the size counter

"j B5Tree - Motepad I. = | (=] |_ﬂh
File Edit Format View Help

£ -

ublic void delete(String s){}

/!

S (0) find the node in the tree that contains s

/(1) if not found then nothing to delete ... done!

/ (2) if the node is the root and the root is a leaf, make the tree empty ... otherwise

/ (3) if the node is the root and the root has a right child and no left child

/ then make the right child the root of the tree ... otherwise

; (4) if the node is the root and the root has a left child and no right child

ﬁ then make the left child the new root of the tree ... otherwise

/

/

ivate void delete(Node node){}

(1) if the node is internal, i.e. has a left and right child

(1.1) then find the smallest node in the right subtree, call this minNode

(1.2) replace the contents of the node with the contents of the minnode
MOTE: this preserves inorder prupert¥

{1.3) minNode is NOT internal, therfore deleteNotInternal (minNode)

(2) node is not internal, therefore deleteNotInternal (node)

T T, e, ey, T, e, e, TS

m

ivate Node getMin({Node node){return null;}

r
/
J/ deliver the node with smallest element in the subtree rooted on node

S (1) if node has a left child

/ then find the smallest node in the tree rooted on the left child ... otherwise
S (2) node has no left child and is therefore the smallest child.

§ peliver that node as a result

e e i T ey = | e e e T e i My | T, T, M, e, ey, T, e, T T Ty T, T, T, P, T, e, e, e, T

rivate void deleteNotInternal (Node node){}

S (0) the node is a leaf or has one child

/ (1) get the parent of the current node to be_deleted, and call it v

/ (2) 1f the node 1is a right child and has no left child of its own

S then the parent’'s right child is now the current node’s right child ... otherwise
/ (3) if the node is a right child and has no right child of its own

/! then the parent's right child becomes the current node’s Teft child ... otherwise

Deletion of a non-internal node (a node with less than 2 children)

6 cases to consider

Non-internal - less than 2 children

Deletion of a non-internal node

)
'S

Actually only 4 cases to consider

Non-internal - less than 2 children

Deletion of a non-internal node

-
j BiTree - Motepad 1 l = | (5] Lﬂﬂ
File Edit Format View Help

A5 (0) the node is a leaf or has one child
A4 (1) get the parent of the current node to deleted, and call it w
1 € node 15 a r1g Chi1 ET)) as no left child of its own
i then the parent’s right child is now the current node's right child ... otherwise
[/ (3) if the node is a right child and has no right child of its own
i then the parent’s right child becomes the current node’'s left child ... otherwise
g5 (4 if the node is a left child and has no left child of its own
L then the parent’s left child becomes the current node's right child ... otherwise
[/ (5) the node is a left child and has no right child of its own N |
L consequently the parent’'s left child becomes the current node’'s Tleft child m
I
4| m k

B N
S

Assuming we have already found the node to delete

Deletion of a non-internal node

-

j B5Tree - Motepad ' l — | =] Lﬂq
File Edit Format View Help

A5 (0) the node is a leaf or has one child

A4 (1) get the parent of the current node to deleted, and call it w

1 € node 15 a r1g Chi1 ET)) as no left child of its own

i then the parent’s right child is now the current node's right child ... otherwise

[/ (3) if the node is a right child and has no right child of its own

i then the parent’s right child becomes the current node’'s left child ... otherwise

g5 (4 if the node is a left child and has no left child of its own

L then the parent’s left child becomes the current node's right child ... otherwise

[/ (5) the node is a left child and has no right child of its own

L consequently the parent’'s left child becomes the current node’'s Tleft child m

I
L I I+

Assuming we have already found the node to delete

«— | subsumed

N
E A .

Deletion of a non-internal node

-

j B5Tree - Motepad l — | (5] |ih_J

File

Edit Format View Help

private void deleteNotInternal (Node node){}
0) the node is a leaf or has one child
eT the parent o the current node To be deleted, and call 1t v

(5) the node is a left child and has no right child of its own
consequently the parent’'s left child becomes the current node’'s Tleft child

A5 (23 1fF the node s a right child and has no left child of its own

i then the parent’s right child is now the current node’s right child ... otherwise
d4 LaJd Tl LTI Tiode T2 o T ITYiTL LT T 4l Thas T T TYrTL i el U LS LRATI

i then the parent’s right child becomes the current node’'s left child ... otherwise
g5 (4 if the node is a left child and has no left child of its own

§§ then the parent’s left child becomes the current node's right child ... otherwise
I

I

{11 F

B SN
S

Deletion of a non-internal node

-

j B5Tree - Motepad l — | [5] |ﬁl

File

Edit Format View Help

private void deleteNotInternal (Node node){}
0) the node is a leaf or has one child
eT the parent o the current node To be deleted, and call 1t v

(5) the node is a left child and has no right child of its own
consequently the parent’'s left child becomes the current node’'s Tleft child

A5 (23 1fF the node s a right child and has no left child of its own

i then the parent’s right child is now the current node’s right child ... otherwise
d4 LaJd Tl LTI Tiode T2 o T ITYiTL LT T 4l Thas T T TYrTL i el U LS LRATI

i then the parent’s right child becomes the current node’'s left child ... otherwise
g5 (4 if the node is a left child and has no left child of its own

§§ then the parent’s left child becomes the current node's right child ... otherwise
I

I

T} 3

ol e, e
S

Deletion of a non-internal node

-

j B5Tree - Motepad l — | (5] |ih_J

File

Edit Format View Help

private void deleteNotInternal (Node node){}
A5 (0) the node is a leaf or has one child
J5 A get the parent of the current node to be deleted, and call it v

2) 1f the node is a right child and has no left child of its own

then the parent s right chi 15 now The current node s right child ... oTtherwise
(3) if the node is a right child and has no right child of its own

then the parent’s right child becomes the current node’'s left child ... otherwise
W20 1T LTS TIUAE TS 4 TET L LT T 4l Tids T TET L i T U I'Ls LAATI

then the parent’s left child becomes the current node's right child ... otherwise

(5) the node is a left child and has no right child of its own
consequently the parent’'s left child becomes the current node’'s Tleft child

Ty S, S, My, ol P, P
o T, T, T el e, e

{11 F

oo e e
S

Deletion of a non-internal node

-

j B5Tree - Motepad l — | [5] |ﬁl

File

Edit Format View Help

private void deleteNotInternal (Node node){}
A5 (0) the node is a leaf or has one child
J5 A get the parent of the current node to be deleted, and call it v

2) 1f the node is a right child and has no left child of its own

then the parent s right chi 15 now The current node s right child ... oTtherwise
(3) if the node is a right child and has no right child of its own

then the parent’s right child becomes the current node’'s left child ... otherwise
W20 1T LTS TIUAE TS 4 TET L LT T 4l Tids T TET L i T U I'Ls LAATI

then the parent’s left child becomes the current node's right child ... otherwise

(5) the node is a left child and has no right child of its own
consequently the parent’'s left child becomes the current node’'s Tleft child

Ty S, S, My, ol P, P
o T, T, T el e, e

T} 3

o AL A
S

Deletion of a non-internal node

| BSTree - Notepad l = | (=] |ih_J
File Edit Format View Help
private void deleteNotInternal (Node node){}
A5 (0) the node is a leaf or has one child
J5 A get the parent of the current node to be deleted, and call it v
A5 (23 1fF the node s a right child and has no left child of its own
i then the parent’s right child is now the current node's right child ... otherwise
S (23 4f the node 45 3 rioht child and has no rioht child of jt=s own
/! then the parent’s right child becomes the current node’s left child ... otherwise
S (4) if the node is a left child and has no Teft child of its own
/ then the parent’s left child becomes the current node’s right child ... otherwise
e node 15 a 18 Ch1 an as no rig I OT 1L5 OWr
§§ consequently the parent’'s left child becomes the current node’'s Tleft child
L I I+

B N
o el sl

Deletion of a non-internal node

| BSTree - Notepad l = | (=] |ih_J
File Edit Format View Help
private void deleteNotInternal (Node node){}
A5 (0) the node is a leaf or has one child
J5 A get the parent of the current node to be deleted, and call it v
A5 (23 1fF the node s a right child and has no left child of its own
i then the parent’s right child is now the current node's right child ... otherwise
S (23 4f the node 45 3 rioht child and has no rioht child of jt=s own
/! then the parent’s right child becomes the current node’s left child ... otherwise
S (4) if the node is a left child and has no Teft child of its own
/ then the parent’s left child becomes the current node’s right child ... otherwise
e node 15 a 18 Ch1 an as no rig I OT 1L5 OWr
§§ consequently the parent’'s left child becomes the current node’'s Tleft child
L I I+

B N
SO R

Deletion of a non-internal node

| BSTree - Notepad l = | (=] |ih_J
File Edit Format View Help
private void deleteNotInternal (Node node){}
A5 (0) the node is a leaf or has one child
J5 A get the parent of the current node to be deleted, and call it v
A5 (23 1fF the node s a right child and has no left child of its own
i then the parent’s right child is now the current node's right child ... otherwise
[/ (3) if the node is a right child and has no right child of its own
i then the parent’s right child becomes the current node’'s left child ... otherwise
g5 (4 if the node is a left child and has no left child of its own
/ then the parent’s left child becomes the current node’s right child ... otherwise
e node 15 a 18 Ch1 an as no rig I OT 1L5 OWr
§ consequently the parent’'s left child becomes the current node’'s Tleft child
L I I+

B N
o el el

Deletion of a non-internal node

| BSTree - Notepad l = | (=] |ﬁl
File Edit Format View Help
private void deleteNotInternal (Node node){}
A5 (0) the node is a leaf or has one child
J5 A get the parent of the current node to be deleted, and call it v
A5 (23 1fF the node s a right child and has no left child of its own
i then the parent’s right child is now the current node's right child ... otherwise
[/ (3) if the node is a right child and has no right child of its own
i then the parent’s right child becomes the current node’'s left child ... otherwise
g5 (4 if the node is a left child and has no left child of its own
/ then the parent’s left child becomes the current node’s right child ... otherwise
e node 15 a 18 Ch1 an as no rig I OT 1L5 OWr
§ consequently the parent’'s left child becomes the current node’'s Tleft child
Fl I 3

B T %
o [[s]

Deletion of an internal node

Only 2 cases to consider

Deletion of an internal node

Internal - 2 children Actually only 1 case to consider

Deletion of an internal node

1.

get the node, call it w, to the right of this node

Deletion of an internal node

1.

get the node, call it w, to the right of this node

Deletion of an internal node

1. get the node, call it w, to the right of this node
2. get the "smallest” node, call it y, in the subtree rooted at w

Deletion of an internal node

1. get the node, call it w, to the right of this node
2. get the "smallest” node, call it y, in the subtree rooted at w

Deletion of an internal node

1. get the node, call it w, to the right of this node
2. get the "smallest” node, call it y, in the subtree rooted at w

Deletion of an internal node

1. get the node, call it w, to the right of this node
2. get the "smallest” node, call it y, in the subtree rooted at w
3. replace what's in node with what's in'y

Deletion of an internal node

1. get the node, call it w, to the right of this node
2. get the "smallest” node, call it y, in the subtree rooted at w
3. replace what's in node with what's in'y

Deletion of an internal node

Hwn=

get the node, call it w, to the right of this node

get the "smallest” node, call it y, in the subtree rooted at w
replace what's in node with what's iny

node y is not-internal, delete it (as before)

Deletion of an internal node

Hwn=

get the node, call it w, to the right of this node

get the "smallest” node, call it y, in the subtree rooted at w
replace what's in node with what's iny

node y is not-internal, delete it (as before)

Deletion of an internal node

swpr

get the node, call it w, to the right of this node

get the "smallest” node, call it y, in the subtree rooted at w
replace what's in node with what's iny

node y is not-internal, delete it (as before)

-

mj BSTree - Motepad

|| e

File Edit Format Wiew Help

ivate void delete{Mode node){}

1) if the node is internal, i.e. has a left and right child

(1.1} then find the smallest node in the right subtree, call this minNode

(1.2) replace the contents of the node with the contents of the minNode
NOTE: this preserves inorder prupert¥

(1.3} minNode is NOT internal, therfore deleteNotInternal (minNode)

{(2) node is not internal, therefore deleteNotInternal (noded

B T

ivate Mode getMin{Mode node){return null;}

deliver the node with smallest element in the subtree rooted on node
(1) if node has a left child

then find the smallest node in the tree rooted on the left child ...
(2) node has no left child and is therefore the smallest child.

peliver that node as a result

T T T T e iy v | e e e T T ey

T |

otherwise

m

Deletion of a node

Groovey. But what if the
node is the root?

Deletion of the root

Only 4 cases to consider

Deletion of the root

Only 4 cases to consider ... or is there?

Deletion of the root

-

j B5Tree - Motepad l — | [=] Liz-_J
File Edit Format View Help

blic void delete(string s){}

(D) find the node in the tree that contains s
(1) if not found then nothing to delete ... done!
(2) if the node is the root and the root 1is a leaf, make the tree empty ... otherwise
(3) if the node is the root and the root has a right child and no Teft child
then make the right child the root of the tree ... otherwise
(4) if the node is the root and the root has a left child and no right child
then make the left child the new root of the tree ... otherwise
(5) delete the node using the steps in method delete(node) below
(6) Regardless, in cases (1) to (5), once done decrement the size counter

e e T e T e T e e Sy -
B =

Deletion of the root

-

| BSTree - Notepad | B [

File

Edit Format View Help

5?b1ﬁc void delete(string s){}

JO00) Find the node in the tree that contains s

P 1 P L7 L = 0 L e = = e ¢ (9 =4

SA2Y) if the node is the root and the root is a leaf, make the tree empty ... otherwise
S/ (3) 1T the node 1s the root and the root has a right chi and no TeTt chi

L then make the right child the root of the tree ... otherwise

// (4) if the node is the root and the root has a Teft child and no right child

Ll then make the left child the new root of the tree ... otherwise

?? (5) delete the node using the steps in method delete(node) below

/Y

Regardless, in cases (1) to (5), once done decrement the size counter

Deletion of the root

-

| BSTree - Notepad | B [
File Edit Format WView Help

blic void delete(string s){}

ED} find the node in the tree that contains s

1) if not found then nothing to delete ... done!
2) if the node is the root and the root is a leaf, make the tree empty ... otherwise
3) 1T the node 15 the root and the root has a right chi and no lett chi
+hon malas the ri0bt bild the ront of the troo Athorwico
4) if the node is the root and the root has a left child and no right child

C
then make the left child the new root of the tree ... otherwise
(5) delete the node using the steps in method delete(node) below
(6) Regardless, in cases (1) to (5), once done decrement the size counter

e e T e T e T e e Sy -
B =

Deletion of the root

-

| BSTree - Notepad | B [

File

Edit Format View Help

Sy T, e, e, e e 2

then make the right child the root of the tree ... otherwise
| T = noue 15 € TOOL ang Lhe oot nas & 18l chi1g ang no rigne cnita

blic void delete(string s){}
(D) find the node in the tree that contains s
(1) if not found then nothing to delete ... done!
(2) if the node is the root and the root 1is a leaf, make the tree empty ... otherwise
(3) if the node is the root and the root has a right child and no Teft child

e e T e T e T e e Sy -

R

ke the Jeft child the new root of the tres . otherwise
5) delete the node using the steps in method delete(node) below
6) Regardless, in cases (1) to (5), once done decrement the size counter

Yy

Deletion of the root

-

Mj B5Tree - Notepad l — | [5] |ﬁl
File Edit Format View Help

E?b1ic void delete(string s){}

S (0) find the node in the tree that contains s

/7 (1) if not found then nothing to delete ... done!

/7 (2) if the node is the root and the root is a leaf, make the tree empty ... otherwise
// (3) if the node is the root and the root has a right child and no left child

l then make the right child the root of the tree ... otherwise

J/ (4) if the node is the root and the root has a left child and no right child

i then make the left child the new root of the tree ... otherwise

§ (5) delete the ﬂqde using the steps in method de1ete(nnde}lbe19w

/Y

Finding the node to delete

Deletion of a node

Mj B5Tree - Notepad l = | 5] |_ih_J
File Edit Format View Help

?;1vate Node find(string s,Node node){return null;} 1

// qiven a node and a string s

F %D} we have found s if 5 is egual to the data in the node otherwise ...

S5 (1) if s is less than the data in the node and the node has a left child

I then search for s is in the tree rooted at the left child ... otherwise

/7 (2) if 5 1is greater than the data in the node and the node has a right child

F then search for s is in the tree rooted at the right child ... otherwise

/4 (3) the string 5 is not in the tree!

/Y il
4 [

As before ...

All of the code for deletion

All of the code Deletion of a node

(5) delete the node using the steps in method delete(node) below
(6) Regardless, in cases (1) to (5), once done decrement the size counter

”j B5Tree - Motepad l = | =] |_ih
File Edit Format WView Help
/7 -
?b1ic void delete(string s){}
S (0) find the node in the tree that contains s
/(1) if not found then nothing to delete ... done!
/ (2) if the node is the root and the root is a Teaf, make the tree empty ... otherwise
/ (3) if the node is the root and the root has a right child and no left child
/ then make the right child the root of the tree ... otherwise
i / (4) if the node is the root and the root has a left child and no right child
? then make the left child the new root of the tree ... otherwise
/
/!

ivate void delete(Node node){}

(1) if the node is dinternal, i.e. has a left and right child

{(1.1) then find the smallest node in the right subtree, call this minnNode
replace the contents of the node with the contents of the minnode
NOTE: this preserves inorder prnpert¥

{1.3) minNode is NOT internal, therfore deleteNotInternal{minNode)

(2) node is not internal, therefore deletenotInternal (node)

M T, e, My, e, ey, e, TS
L
=
Fd
Bt

m

e e T e e e e e T e T, T, g, T, Sy, e, e, T P, T, T, e, T, T, e, Ty, e, e, T

;ivate Node getMin{Node node){return null;}

/ deliver the node with smallest element in the subtree rooted on node

S (1) if node has a left child

7 then find the smallest node in the tree rooted on the left child ... otherwise

/S (2) node has no left child and is therefore the smallest child.

§ Deliver that node as a result

rivate void deleteNotInternal (Node node){}

/S (0) the node is a leaf or has one child

/ (1) get the parent of the current node to be deleted, and call it v

S (2) if the node is a right child and has no Teft child of its own

/! then the parent's right child is now the current node’s right child ... otherwise
/ (3) if the node is a right child and has no right child of its own -

Is therea
demo?

(N4 l i
import java.io.® ;

public class Test {
public static void main(string[] args) throws Exception, FileNotFoundException {

string commands = "“nBTree Tester (wversion 1.3247179) “n" +
"insert (+), delete (-}, present (7), read, “n" +
"root, show, draw, size, clear, quit (g)";

system. out. printin{commands);
Scanner sc = new Scanner (System.in);
scanner fin = null;

System.out.print{"= "J;

string command = sc.next();

ES5Tree tl = new BSTree();

Graphic graphic = new Graphic(tl);
string s = "";

if (args.length > 0){
fin = new Scanner (new File(args[0]));
while (fin.hasNext()){s = fin.next{); tl.insert(s);}
fin.close();

while (!'command.equals("quit") && !'command.equals({"q")}){
if (command. equals("help”)}) System.out.printin{commands);
if (command.equals("size")) System.out.printin(tl.size());
if (command. equals("insert") || command.equals("ins") || command.equals("+")){
system.out.print("insert »= ");
5 = sc.next{);

tl.insert(s);
graphic.draw(};

m

4, Standard Draw

BIree Tester (version 1.3247179>
insert (+), delete (=), present (?), read.,
proot, show, draw, size, clear, quit (g
> draw
> show
(((((({—,abase.(—,about,.—>),abyss, ({({(—,admix,.—),adult.—>,.ahead,.—>>,.alder.—>.alla
augur ((*,ahure,*) haldy,*))) halsa. (((((* hehop,*) hefng,((* helle C= bench,*))
1 =>.bream,.{(—,.breve.—->>.,.bulky,.->>>,.bundy.(—,.burnt.{(-,.butyl.->>>,.bylauw,.({-.cadre.
oud,*)),clump,*)),conic,((((*.cooky,*),coral,(*,corps,*)),count,*),couer,*)))),c
»—>.death,.({(—,.debuy.—-).degas,(—.demit.—>>>),.devil, ({—.dirty,(—,.drake.—>).drape.
voy,.(((—,exalt.—Dd.,expel,({(—,.fault,.(—,.fetus,.— D), . first,(((—,.flick.-D>.flown,.—>.flus
~gaunt . {({(—,geese.—d.glint,.{({—,.gloss.—),.grant.,.—>>3>)) . group,.({{({{({—,.guile,({-,.haz
—,idyll,->>,.iliac,{(—,infix,.—>)>,jolly,.—> kraft.{(—,laugh,. (-, layup.{({(-,leave.—, led|
({(—,.magic.—).march,.—->) . .marry,(-.medal.->>,.messy.{(—.metal,.(—,.mixup,.—>>>.molar.->.
»{—,.panda.,. {(—.parry.—>>>>>>>)).pence,.{{({—,piggy.{({—,.pixel.—D>,.pizza,—>).price,({—,
> . raven.({(—,.reave.{—.repel,.—d) . .rheun,.->>) . ripen,. ({({({({—,robot.,.—D ., .roudy.—) . .rumen
corn,(—.serif,(—,sever.—>)),.shall,(—,.shawl,.{(—,.sheep.—>>>>),.shirt,.({(—,.shoot.—-),.sh
>.sloth,-),.slurp.{{—,.soapy.—d.spear.—d>d),.spitz,.{(—,.spoof ., (({{(—,spurn.—d.stack. ({
»—2)),.sushi, (({({—,swear,(—.swipe,.{(—,swoop.{(—.tappa.—>>)).tenon,.({—,.tepee.,.—).terr
ithe.—-)>>).topaz,.(({({(—,.trace.{(—,.trail,—d).tramp,.(—,.trash,.->),.treat.,.({(—,.trial,.—>.t
;),urine,(—,utter,(((—,uacua,—),uowel,—),uaist,(—,uheat,—))))))),who:e,((—,uiden

> help
\[BTree Tester C(version 1.3247179)

insert (+>, delete (-), present (?), read.
root, show, draw, size, clear, quit (g
>

AVS Video
Converter

=

eclipse - Scana
Shortcut document ...

- m © 1838

Your mission, should you choose to accept it ...

http://www.google.co.uk/url?sa=i&rct=j&q=your+mission+should+you+choose+to+accept+it&source=images&cd=&cad=rja&docid=3XtvczFon4Qd5M&tbnid=reE2RYq0hGyUfM:&ved=0CAUQjRw&url=http://neilojwilliams.net/missioncreep/2009/your-mission-should-you-choose-to-accept-it/&ei=rvgPUYqdFOeY0QWMz4DgCw&bvm=bv.41867550,d.d2k&psig=AFQjCNEXS9q9Iz_IiT4hv9rVoHocnFy5yA&ust=1360087558354028

Implement insert, find , height, the traversals, bfs, dfs,

http://www.google.co.uk/url?sa=i&rct=j&q=your+mission+should+you+choose+to+accept+it&source=images&cd=&cad=rja&docid=3XtvczFon4Qd5M&tbnid=reE2RYq0hGyUfM:&ved=0CAUQjRw&url=http://neilojwilliams.net/missioncreep/2009/your-mission-should-you-choose-to-accept-it/&ei=rvgPUYqdFOeY0QWMz4DgCw&bvm=bv.41867550,d.d2k&psig=AFQjCNEXS9q9Iz_IiT4hv9rVoHocnFy5yA&ust=1360087558354028

