
1

Binary Search Trees

2

Binary search trees

• A binary search tree is a binary tree where all elements in the
left subtree are less than elements in the right subtree

3

Binary search trees

• A binary search tree is a binary tree where all elements in the
left subtree are less than elements in the right subtree

As we saw earlier, inorder
traversal is

a b c d e f g h i j which is in
sorted order

So this is a binary search tree

4

Binary search trees

• A binary search tree is a binary tree whose inorder traversal is
in sorted order

As we saw earlier, inorder
traversal is

a b c d e f g h i j which is in
sorted order

So this is a binary search tree

There are many more (binary) search trees that
have inorder traversal a b c d e f g h i j

5

Binary search trees

• A binary search tree is a binary tree whose inorder traversal is
in sorted order

As we saw earlier, inorder
traversal is

a b c d e f g h i j which is in
sorted order

So this is a binary search tree

All entries are unique!
Typical use … representing a set

6

7

demo

http://webdiis.unizar.es/asignaturas/EDA/AVLTree/avltree.html

http://webdiis.unizar.es/asignaturas/EDA/AVLTree/avltree.html

8

Implementing search in a binary search tree
• Search

– Can implement binary search in O(log n) time on average
– Takes longer if the tree is badly balanced

• For every node X, value in all nodes in left subtree of X are less

than value in X, and value of all nodes in right subtree are
greater than value in X

• Algorithm is simple:
 if x < node then search left subtree
 if x > node then search right subtree

 When the tree is balanced the path length to the leaves is log(n)

9

Find 17

10

Find 17

11

Find 17

12

Find 17

13

Find 17

14

Find 17

Fails to find 17

15

Inserting a new node

This method works whether we are using the tree to implement a
set, sequence etc. as long as it is an injective binary search tree.

Inserting a new node in general we must:

• Add to bottom of tree at all times (add a leaf)

• Keep the search tree property (left less than right)

Insert New Node

16

17

Insert 40

18

Insert 40

19

Insert 40

20

Insert 40

21

Insert 40

22

Another illustration of insertion …

23

Adding a node with value x = 5. (Example)

6

3

2

0 4

Insert New Node

24

Adding a node with value x = 5. (Example)

6

3

2

0 4

Compare 5 with node:

 5 > 3 so go right

Insert New Node

25

Adding a node with value x = 5. (Example)

6

3

2

0 4

Compare 5 with node:

 5 < 6 so go left

Insert New Node

26

Adding a node with value x = 5. (Example)

6

3

2

0 4

Compare 5 with node:

 5 > 4 so go right

Insert New Node

27

Adding a node with value x = 5. (Example)

6

3

2

0 4

Can’t go right as that is null

Insert node right of here, as a leaf

Insert New Node

28

Adding a node with value x = 5. (Example)

6

3

2

0 4

Can’t go right as that is null

Insert node right of here, as a leaf

5

Insert New Node

31

n=3, log(n+1)-1 = 1 ≤ height ≤ n-1

32

n=7, log(n+1)-1 = 2 ≤ height ≤ n-1

33

n=15, log(n+1)-1 = 3 ≤ height ≤ n-1

34

n=31, log(n+1)-1 = 4 ≤ height ≤ n-1

35

n=63, log(n+1)-1 = 5 ≤ height ≤ n-1

36

n=127, log(n+1)-1 = 6 ≤ height ≤ n-1

37

n=255, log(n+1)-1 = 7 ≤ height ≤ n-1

height (h) log2(n+1)-1 ≤ h ≤ n-1

And this is crucial

If we get it right we can access data in logarithmic time!

Log to the base 2 of …

2 = 1
4 = 2
8 = 3
16 = 4
…
…
…
1024 = 10
…
…
…

Log to the base 2 of …

2 = 1
4 = 2
8 = 3
16 = 4
…
…
…
1024 = 10
…
…
…

Brilliant!

41

java implementation

42

Node

43

Node

44

Node

45

Node

Default constructor

46

Node

parameterised constructor
note use of this.

47

Node

getters

48

Node

setters

49

Node

predicates

50

Node

For printing

The BSTree class

BinarySearchTree (BSTree)

BSTree

BSTree

A binary search tree has a root
where the root is a node
It also has a size, where size is
the number of nodes in the tree

BSTree

Default constructor, an empty tree
with an empty root

BSTree

Get the root
Test if tree is empty
Get the size of the tree

BSTree

Insert string s into the tree

BSTree

Insert string s into the tree

BSTree

Insert string s into the subtree
rooted on the current node

BSTree

If s is in the left subtree …

BSTree

If s is in the left subtree and
we need to create a new node

BSTree

If s is in the right subtree …

If s is in the right subtree and
we need to create a new node

BSTree

finding a node

BSTree finding a node

BSTree finding a node

The string s is present in the tree
if the tree isn’t empty and we can
find a node that contains s

BSTree finding a node

find string s in the subtree rooted
on the current node

BSTree finding a node

If s is equal to the data in the current
node then return the current node
as a result.

BSTree finding a node

If s is less than the data in the current
node and the current node has a left child
then try and find s in the subtree rooted
on the left child

BSTree finding a node

If s is greater than the data in the current
node and the current node has a right child
then try and find s in the subtree rooted
on the right child

BSTree finding a node

s is less than the current node and it has no left child
or s is greater than the current node and it has no
right child … deliver null!

Deletion of a node

Deletion of a node

40

16

20

30

7

11

13

25 18

Deletion of a node

40

16

20

30

7

11

13

25 18

Delete 7

Deletion of a node

40

16

20

30

7

11

13

25 18

Delete 7

Deletion of a node

40

16

20

30 11

13

25 18

Delete 7

Deletion of a node

40

16

20

30 11

13

25 18

Delete 11

Deletion of a node

40

16

20

30 11

13

25 18

Delete 11

Deletion of a node

40

16

20

30 11

13

25 18

Delete 11

Copy contents

Deletion of a node

40

16

20

30 13

13

25 18

Delete 11

Copy contents

Deletion of a node

40

16

20

30 13

13

25 18

Delete 11

Copy contents

Deletion of a node

40

16

20

30 13

13

25 18

Delete 11

Delete leaf

Deletion of a node

40

16

20

30 13

25 18

Delete 11

Deletion of a node

40

16

20

30 13

25 18

Delete 16

Deletion of a node

40

16

20

30 13

25 18

Delete 16

Deletion of a node

40

16

20

30 13

25 18

Delete 16

Find the smallest node in the right subtree

Deletion of a node

40

16

20

30 13

25 18

Delete 16

Find the smallest node in the right subtree

Deletion of a node

40

16

20

30 13

25 18

Delete 16

Find the smallest node in the right subtree

Deletion of a node

40

16

20

30 13

25 18

Delete 16

Copy contents

Deletion of a node

40

18

20

30 13

25 18

Delete 16

Copy contents

Deletion of a node

40

18

20

30 13

25 18

Delete 16

Delete leaf

Deletion of a node

40

18

20

30 13

25

Delete 16

Delete leaf

Deletion of a node

40

18

20

30 13

25

Delete 16

This process maintains the inorder property

Deletion of a node

40

18

20

30 13

25

Delete 16

This process maintains the inorder property

There is a symmetric equivalent: find largest node in left branch …

Deletion of a node

40

16

20

30 13

25 18

Delete 16

Find the largest node in the left subtree

Deletion of a node

40

16

20

30 13

25 18

Delete 16

Find the largest node in the left subtree

Deletion of a node

40

13

20

30 13

25 18

Delete 16

Copy contents

Deletion of a node

40

13

20

30 13

25 18

Delete 16

Delete leaf

Deletion of a node

40

13

20

30

25 18

Delete 16

Delete leaf

Deletion of a node

40

13

20

30

25 18

Delete 16

Therefore we have 2 options resulting in two different trees, both valid

40

18

20

30 13

25

Well baby, is there an
algorithm for this?

Deletion of a node

Deletion of a node

Deletion of a non-internal node (a node with less than 2 children)

Non-internal – less than 2 children 6 cases to consider

Deletion of a non-internal node

Actually only 4 cases to consider Non-internal – less than 2 children

Deletion of a non-internal node

Assuming we have already found the node to delete

Deletion of a non-internal node

Assuming we have already found the node to delete

subsumed

Deletion of a non-internal node

Deletion of a non-internal node

Deletion of a non-internal node

Deletion of a non-internal node

Deletion of a non-internal node

Deletion of a non-internal node

Deletion of a non-internal node

Deletion of a non-internal node

Deletion of an internal node

Only 2 cases to consider

Deletion of an internal node

Actually only 1 case to consider Internal – 2 children

Deletion of an internal node

1. get the node, call it w, to the right of this node

Deletion of an internal node

1. get the node, call it w, to the right of this node

w

Deletion of an internal node

w

1. get the node, call it w, to the right of this node
2. get the “smallest” node, call it y, in the subtree rooted at w

Deletion of an internal node

w

1. get the node, call it w, to the right of this node
2. get the “smallest” node, call it y, in the subtree rooted at w

y

Deletion of an internal node

w

1. get the node, call it w, to the right of this node
2. get the “smallest” node, call it y, in the subtree rooted at w

y

Deletion of an internal node

w

y

1. get the node, call it w, to the right of this node
2. get the “smallest” node, call it y, in the subtree rooted at w
3. replace what’s in node with what’s in y

Deletion of an internal node

y

w

y

1. get the node, call it w, to the right of this node
2. get the “smallest” node, call it y, in the subtree rooted at w
3. replace what’s in node with what’s in y

Deletion of an internal node

y

w

y

1. get the node, call it w, to the right of this node
2. get the “smallest” node, call it y, in the subtree rooted at w
3. replace what’s in node with what’s in y
4. node y is not-internal, delete it (as before)

Deletion of an internal node

y

w

y

1. get the node, call it w, to the right of this node
2. get the “smallest” node, call it y, in the subtree rooted at w
3. replace what’s in node with what’s in y
4. node y is not-internal, delete it (as before)

Deletion of an internal node

1. get the node, call it w, to the right of this node
2. get the “smallest” node, call it y, in the subtree rooted at w
3. replace what’s in node with what’s in y
4. node y is not-internal, delete it (as before)

Groovey. But what if the
node is the root?

Deletion of a node

Deletion of the root

Only 4 cases to consider

Deletion of the root

Only 4 cases to consider … or is there?

Deletion of the root

Deletion of the root

Deletion of the root

Deletion of the root

Deletion of the root

Deletion of a node Finding the node to delete

As before …

All of the code for deletion

Deletion of a node All of the code

Is there a
demo?

Your mission, should you choose to accept it …

http://www.google.co.uk/url?sa=i&rct=j&q=your+mission+should+you+choose+to+accept+it&source=images&cd=&cad=rja&docid=3XtvczFon4Qd5M&tbnid=reE2RYq0hGyUfM:&ved=0CAUQjRw&url=http://neilojwilliams.net/missioncreep/2009/your-mission-should-you-choose-to-accept-it/&ei=rvgPUYqdFOeY0QWMz4DgCw&bvm=bv.41867550,d.d2k&psig=AFQjCNEXS9q9Iz_IiT4hv9rVoHocnFy5yA&ust=1360087558354028

Implement insert, find , height, the traversals, bfs, dfs, ……

http://www.google.co.uk/url?sa=i&rct=j&q=your+mission+should+you+choose+to+accept+it&source=images&cd=&cad=rja&docid=3XtvczFon4Qd5M&tbnid=reE2RYq0hGyUfM:&ved=0CAUQjRw&url=http://neilojwilliams.net/missioncreep/2009/your-mission-should-you-choose-to-accept-it/&ei=rvgPUYqdFOeY0QWMz4DgCw&bvm=bv.41867550,d.d2k&psig=AFQjCNEXS9q9Iz_IiT4hv9rVoHocnFy5yA&ust=1360087558354028

