Priority Queue

What is that?
Implementation with linked list with O(n) behaviour
The Heap (O(log(n))
An implementation using an array
Your mission ...

Store a collection of prioritized elements

Allow insertion of an element
Can only remove the element with highest priority

Elements are comparable

Comes first in order

Q.insert(e)

e = Q.removeMin()
Q.size()
Q.isEmpty()
Q.min()

Priority queue

We present 3 implementations

Priority queue

Example applications of a priority queue

* Dispatching processes in a computer

* Hospital waiting lists

* Standby passengers for a flight

* Queuing at call centres

* Internal data structure for another algorithm (graph algorithm)

How can we compare objects?

Store a collection of prioritized elements

Allow insertion of an element
Can only remove the element with highest priority

Elements are comparable

Comes first in order

Two examples on comparing things

Priority queue

How can we compare objects? An example

This is a Vertex

Import java.util.®;
public class vertex implements Comparable<vertexs {

int index, degree, colour, saturation, nebDeq;
boolean[] domain;

public vertex (int index,int degree) {

this.index = index;
this.degree = degree;
nebDeg = 0;

How can we compare objects? An example

This is a Comparator for vertices

rie CLIIL FLIridL viEww il

fimport java.util.¥®;
public class MCRComparator implements Comparator {

public int compare(object ol, Object 02){
vertex u = (Vertex) ol;
vertex v = (Vertex) o2;
if (u.degree < v.degree ||

u.degree == v.degree && u.nebDeg < v.nebDeg ||
u.degree == v.degree && u.nebDeg == v.nebDeg && u.index > v.index) return 1;
return -1;
//
// to sort vertices by decreasing degree, tie breaking on neighbourhood degree (nebbDeg)
/f

How can we compare objects? An example

Using the comparator to sort an array of Vertex

boolean conflicts{int v,ArrayL15t{Integer} colourClass){
for (int i=0;i=colourClass.size();1++)1{
int w = colourClass.get(i);
if (Alv][w] == 1) return true;

return false;

void ordervertices(ArrayList<Inteqer> Colord){
vVertex[] v = new vertex[n];
for (int i=0;i<n;i++) V[i] = new vertex(i,degree[i]);
for (int i=0;i<n;i++)
for {(int '=U;j{ﬂ;j++}
it (ali][3] == 1) v[i].nebbeg = v[i].nebDeg + degree[j];
if (style == 1) Arrays.sort(v);
if (style = 2) minwidthorder {v);

void minwidthorder (Vertex[] v){

ArrayList<vertex> L = new ArrayList<vertex={n);

stack<Vertex> 5 = new Stack<Vertex>{);

for (vertex v : V) L.add(v);

while ('L.iseEmpty()){
vertex v = L.get(0);
for (vertex u : L) if (u.degree < v.degree) v = u;
S.push(v); L.remove(v);
for (vertex u : L) if (A[u.index][v.index] == 1) u.degree--;

int k = 0;
while (!s.isempty()) v[k++] = s.pop();

How can we compare objects? An example

Another example: a Car

public class Car {
string make, model;
public car(string sl1,5tring s2)1{
make = s51; model = s52;
public string make(){return make;}
public string model(){return model;}

public string tostring(){return make +" "+ model;}

How can we compare objects? An example

This is a CarComparator

import java.util.*®;
public class CarComparator implements Comparator<Car> {
public int compare(Car a,Car b){

int ¢l = a.make().compareTo(b.make());
int c2 = a.model (). compareTo(b.model());

if {(cl == 0) return c2;
return cl;
X
/i |
?i make is most significant

How can we compare objects? An example

Using the CarComparator

import java.util.*®;
public class Test2 {
pubTlic static void main(string args[]){

Treeset<=Car> 5 = new TreeSet<Car=(new CarComparator{));

Car ¢l = new Car{"'Citroen”,"C1");

Car c2 = new Car(“Fnrd“,“MUEtaﬂg”};

car c3 = new Car{"Ferarri”,"GTO);

Car cd = new Car('"'Cadillac”,"Elderado™);
car c5 = new Car("Ford","Mustang");
S.add{cl);

S.add{c2);

5. add(c3);

S.add{cd);

S.add{c5);

system.out. printin(s);

LZispubhlic_htmlsads2sjavascompare >javac Test2. java

Lispublic_htmlsads2sjavascompare >java Test2
[Cadillac Elderado, Citroen Cl, Ferarri GI0O,. Ford Mustangl

Liwpublic_htmlsad=s2javascompare >

Implementing a priority queue with an unsorted list

We might use a linked list
 To insert we add to the front of the list

* To find the minimum we must iterate over entire the list

unsorted list

* To remove the minimum we must find the minimum and remove it

* Maintain a counter of number of elements in the list

size
iISEmpty
insert
removeMin

min

O(1)
O(1)
O(1)
O(n)
O(n)

Implementing a priority queue with an sorted list sorted list

We might use a linked list

e The list is maintained in non-decreasing order

* To insert we scan to find position and splice in (see below)

* To find the minimum we deliver the first element in the list

* To remove the minimum we return and remove the first element

public void insert(E s){

if (head == null || head. HetE1ement(} compareTo(s) = 0)
head = new Node<E>(s,head
else {

Node<E> cursor = head;

Node<E> next = cursor.getNext();

while (next !'= null && next.getElement ().compareTo(s) <= 0){
Cursor = next;
next = next.getNext();

¥

cursor.setNext (new Node<=E>(s,next));

g

Size O(1)
iISEmpty O(1)
insert O(n)
removeMin O(1)

min O(1)

An alternative
THE HEAP

* a heap H is a binary tree

heap

* a heap His a binary tree
* H is a complete binary tree

heap

* a heap His a binary tree
* H is a complete binary tree

heap

Fill up level d before moving to level d+1
* each level but the last must be full
* in last level fill from left to right

* a heap His a binary tree
* H is a complete binary tree

o We

heap

Fill up level d before moving to level d+1
* each level but the last must be full
* in last level fill from left to right

* a heap His a binary tree
* H is a complete binary tree

heap

Fill up level d before moving to level d+1
* each level but the last must be full
* in last level fill from left to right

* a heap His a binary tree
* H is a complete binary tree

heap

oA o B e

Not a heap!

Fill up level d before moving to level d+1
* each level but the last must be full
* in last level fill from left to right

* a heap H is a binary tree
* H is a complete binary tree
* heap order property is maintained

heap

heap

* a heap H is a binary tree
* H is a complete binary tree
* heap order property is maintained

Given a node v (not the root)
* the parent of v is less than or equal to v

heap

* a heap His a binary tree
* H is a complete binary tree
* heap order property is maintained

Given a node v (not the root)
* the parent of v is less than or equal to v

heap

* a heap His a binary tree
* H is a complete binary tree
* heap order property is maintained

Given a node v (not the root)
* the parent of v is less than or equal to v

A heap H with n nodes has height O(log(n))

Example: adding to a heap

Example: adding to a heap

heap

Example: adding to a heap

Insert 8

heap

Example: adding to a heap

Insert 8

heap

Example: adding to a heap

heap

Insert 8

8 is greater than parent (7) ... done

Example: adding to a heap

heap

Example: adding to a heap

Insert 2

heap

Example: adding to a heap

Insert 2

heap

Example: adding to a heap

Insert 2

heap

2 is less than parent 20

Example: adding to a heap

heap

Insert 2

2 is less than parent 20 ... swap!

Example: adding to a heap

Insert 2

heap

Example: adding to a heap

Insert 2

heap

Example: adding to a heap

Insert 2

heap

2 is less than parent 6

Example: adding to a heap

Insert 2

heap

2 is less than parent 6 ... swap!

Example: adding to a heap

Insert 2

heap

2 is less than parent 6 ... swap!

Example: adding to a heap

Insert 2

heap

Example: adding to a heap

Insert 2

heap

2 is less than parent 4

Example: adding to a heap

Insert 2

heap

2 is less than parent 4 ... swap!

Example: adding to a heap

Insert 2

heap

2 is less than parent 4 ... swap!

Example: adding to a heap

Insert 2

heap

Example: adding to a heap

Insert 2

heap

Done!

Example: adding to a heap

heap

Example: removal from a heap

NOTE: it is a heap in a different state

Example: removal from a heap

heap

Example: removal from a heap

Save off top of heap

heap

Example: removal from a heap

heap

Save off top of heap

Example: removal from a heap

heap

Copy last item in heap to top of heap

Example: removal from a heap

heap

Copy last item in heap to top of heap

Example: removal from a heap

heap

Copy last item in heap to top of heap

Example: removal from a heap

heap

Copy last item in heap to top of heap

Example: removal from a heap

Delete last item in heap

heap

Example: removal from a heap

heap

Example: removal from a heap

heap

Compare current node with its children

Example: removal from a heap

heap

Compare current node with its children

Example: removal from a heap

heap

If greater then swap with smallest child

Example: removal from a heap

heap

If greater then swap with smallest child

Example: removal from a heap

heap

If greater then swap with smallest child

Example: removal from a heap

heap

Example: removal from a heap

heap

Compare current node with its children

Example: removal from a heap

heap

If greater then swap with smallest child

Example: removal from a heap

heap

If greater then swap with smallest child

Example: removal from a heap

heap

If greater then swap with smallest child

Example: removal from a heap

heap

Example: removal from a heap

heap

Compare current node with its children

Example: removal from a heap

heap

If greater then swap with smallest child

Example: removal from a heap

heap

If greater then swap with smallest child

Example: removal from a heap

heap

If greater then swap with smallest child

Example: removal from a heap

heap

If greater then swap with smallest child

Example: removal from a heap

heap

Example: removal from a heap

Return result

heap

Example: removal from a heap

heap

Done ©

What we just saw

upheap bubbling: when we add to the heap

downheap bubbling: when we remove from the heap

Add and remove are O(log(n)) processes

An implementation of a Heap data structure

An implementation of a Heap data structure

Number the vertices as follows An implementation of a Heap data structure

Number the vertices as follows An implementation of a Heap data structure

15

Number the vertices as follows An implementation of a Heap data structure

15

Note: parent of nodeiisi/2

Number the vertices as follows An implementation of a Heap data structure

15

Note: parent of nodeiisi/2

Number the vertices as follows An implementation of a Heap data structure

15

Note: parent of nodeiisi/2

Number the vertices as follows An implementation of a Heap data structure

15

Note: left child of i is ix2

Number the vertices as follows An implementation of a Heap data structure

15

Note: right child of i is (ix2) +1

An implementation of a Heap data structure

15

Represent as a one dimensional array

Represent as a one dimensional array § An implementation of a Heap data structure

15

. llllllllllllllll

10 11 12 13 14 15

Represent as a one dimensional array § An implementation of a Heap data structure

15

. Hlllllllllllllll

10 11 12 13 14 15

To simplify implementation we do not use S[0]

Represent as a one dimensional array § An implementation of a Heap data structure

. Hlllllllllllllll

10 11 12 13 14 15

Require two integer variables, last and capacity where last is initially 0
In our example capacity is 15

Represent as a one dimensional array § An implementation of a Heap data structure

. Hlllllllllllllll

10 11 12 13 14 15

last: O
capacity: 15

An implementation of a Heap data structure

Consider the following heap H

Consider the following heap H An implementation of a Heap data structure

Hﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂl‘l
S

10 11 12 13 14 15

last: 12
capacity: 15

An implementation of a Heap data structure

H.add(6)

Hﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂl‘l
S

10 11 12 13 14 15

last: 12
capacity: 15

An implementation of a Heap data structure

S[last+1] = 6

Hﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂl‘l
S

10 11 12 13 14 15

last: 12
capacity: 15

An implementation of a Heap data structure

last++

Hﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂl‘l
S

10 11 12 13 14 15

last: 13
capacity: 15

An implementation of a Heap data structure

upheapBubble(13)

Hﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂl‘l
S

10 11 12 13 14 15

last: 13
capacity: 15

An implementation of a Heap data structure

upheapBubble(13)

Hﬂﬂﬂﬂlﬂﬂﬂﬂﬂﬂl‘l
S

10 11 12 13 14 15

last: 13
capacity: 15

An implementation of a Heap data structure

upheapBubble(13)
S[6] > S[13] ?

Hﬂﬂﬂﬂlﬂﬂﬂﬂﬂﬂl‘l
S

10 11 12 13 14 15

last: 13 I I

capacity: 15

An implementation of a Heap data structure

upheapBubble(13)
swap S[6] S[13]

Hﬂﬂﬂﬂlﬂﬂﬂﬂﬂﬂl‘l
S

10 11 12 13 14 15

last: 13 I I

capacity: 15

An implementation of a Heap data structure

Hﬂﬂﬂﬂlﬂﬂﬂﬂﬂﬂﬂl‘
S

10 11 12 13 14 15

last: 13
capacity: 15

An implementation of a Heap data structure

upheapBubble(6)

Hﬂﬂﬂﬂlﬂﬂﬂﬂﬂﬂﬂl‘
S

10 11 12 13 14 15

last: 13
capacity: 15

An implementation of a Heap data structure

upheapBubble(6)

Hﬂﬂlﬂlﬂﬂﬂﬂﬂﬂﬂl‘
S

10 11 12 13 14 15

last: 13
capacity: 15

An implementation of a Heap data structure

upheapBubble(6)
S[3] > S[6] ?

Hﬂﬂlﬂlﬂﬂﬂﬂﬂﬂﬂll
S

10 11 12 13 14 15
last: 13 I I

capacity: 15

An implementation of a Heap data structure

upheapBubble(6)
swap S[3] S[6]

Hﬂﬂlﬂlﬂﬂﬂﬂﬂﬂﬂll
S

10 11 12 13 14 15
last: 13 I I

capacity: 15

An implementation of a Heap data structure

Hﬂﬂlﬂﬂﬂﬂﬂﬂﬂﬂﬂl‘
S

10 11 12 13 14 15

last: 13
capacity: 15

An implementation of a Heap data structure

upheapBubble(3)

Hﬂﬂlﬂﬂﬂﬂﬂﬂﬂﬂﬂl‘
S

10 11 12 13 14 15

last: 13
capacity: 15

An implementation of a Heap data structure

upheapBubble(3)

Hlﬂlﬂﬂﬂﬂﬂﬂﬂﬂﬂll
S

10 11 12 13 14 15

last: 13
capacity: 15

An implementation of a Heap data structure

upheapBubble(3)
S[1] > S[3] ?

Hlﬂlﬂﬂﬂﬂﬂﬂﬂﬂﬂll
S

10 11 12 13 14 15
last: 13 I I

capacity: 15

An implementation of a Heap data structure

Done!

Hﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂl‘
S

10 11 12 13 14 15

last: 13
capacity: 15

Removal from the heap H

An implementation of a Heap data structure

H.remove()

Hﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂl‘
S

10 11 12 13 14 15

last: 13
capacity: 15

An implementation of a Heap data structure

kX

Save S[1]

Hlﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂll
S

10 11 12 13 14 15

last: 13
capacity: 15

An implementation of a Heap data structure

kX

S[1] = S[last]

Hlﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂlll
S

10 11 12 13 14 15

last: 13
capacity: 15

An implementation of a Heap data structure

kX

S[1] = S[last]

Hlﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂlll
S

10 11 12 13 14 15

last: 13
capacity: 15

An implementation of a Heap data structure

last--

Hlﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂlll
S

10 11 12 13 14 15

last: 12
capacity: 15

An implementation of a Heap data structure

kX

downHeapBubble(1)

Hlﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂlll
S

10 11 12 13 14 15

last: 12
capacity: 15

An implementation of a Heap data structure

2
downHeapBubble(1)
findMin(S[2],5[3])

| 72608 [welwole e s |
S

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

oz [

capacity: 15

An implementation of a Heap data structure

2
downHeapBubble(1)
findMin(S[2],5[3])

| 72608 [welwole e s |
S

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

oz [T

capacity: 15

An implementation of a Heap data structure

2
downHeapBubble(1)

swap(S[1],S[3])
9

Lo | 1702608 [1el1ole 32 iess]|
S

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

last: 12 I I

capacity: 15

An implementation of a Heap data structure

2
downHeapBubble(1)

swap(S[1],S[3])
9

Lo | 1702608 [1el1ole 2 e s |
S

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

last: 12 I I

capacity: 15

An implementation of a Heap data structure

kX

downHeapBubble(1)

Hﬂﬂlﬂﬂﬂﬂﬂﬂﬂﬂﬂl‘l
S

10 11 12 13 14 15

last: 12
capacity: 15

An implementation of a Heap data structure

2
downHeapBubble(3)
findMin(S[6],5[7])

9

Hﬂﬂlﬂﬂllﬂﬂﬂﬂﬂlll
S

O 1 2 3 4 5 6 7 10 11 12 13 14 15
last: 12 I II

capacity: 15

An implementation of a Heap data structure

2
downHeapBubble(3)
findMin(S[6],5[7])

9

Hﬂﬂlﬂﬂllﬂﬂﬂﬂﬂlll
S

O 1 2 3 4 5 6 7 10 11 12 13 14 15
last: 12 I II

capacity: 15

An implementation of a Heap data structure

2
downHeapBubble(3)

swap(S[3],5[6])
9

6 o | 17026 Jel1ole 2 iess] |
S

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

last: 12 I I

capacity: 15

An implementation of a Heap data structure

2
downHeapBubble(3)

swap(S[3],5[6])
9

6 1o | 17026 Jel1ole 2 iess] |
S

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

last: 12 I I

capacity: 15

An implementation of a Heap data structure

kX

downHeapBubble(6)

Hﬂﬂﬂﬂﬂlﬂﬂﬂﬂﬂﬂl‘l
S

10 11 12 13 14 15

last: 12
capacity: 15

An implementation of a Heap data structure

2
downHeapBubble(6)
findMin(S[12])

9

16 1o (8 17026 Jwelwle el ||
S

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

last: 12 I I

capacity: 15

An implementation of a Heap data structure

2
downHeapBubble(6)

No swap

Hﬂﬂﬂﬂﬂlﬂﬂﬂﬂﬂl‘l‘
S

10 11 12 13 14 15

last: 12 I I

capacity: 15

An implementation of a Heap data structure

2
downHeapBubble(6)

No swap

Hﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂl‘l
S

10 11 12 13 14 15

last: 12
capacity: 15

An implementation of a Heap data structure

Return result

Hﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂl‘l
S

10 11 12 13 14 15

last: 12
capacity: 15

heap

size O(1)
iSEmpty O(1)
insert O(log(n))
removeMin O(log(n))

min O(1)

Have a look at priority queue as given in Java distribution

) E http://docs.oracle.com/javase/1.5.0/docs/api/java/util/PriorityQueue. html

E PriorityQueue (Java 2 Platfo.., . -

A '.' Search ~ | More

x Google | java priority queue

- v [] = v Pagev Safety~ Tools~ @~ N N &)

Overview Package [HEIY] Use Tree Deprecated Index Help

PREV CLASS MEXTCLASS

SUMMARY: NESTED | FIELD | COMSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

FRAMES HNOFRAMES All Classes

java.util

Class PriorityQueue<E>

java.lang.CObject
L java.util.hAbstractCollection<E>
L Java.util.BAbstractQueus<E>
L java.util.PriorityQuene<E>

Type Parameters:
E - the type of elements held in this collection

All Implemented Interfaces:
Serializable, Iterable<E>, Collection<E>, Queune<E>

pukblic class PriorityQunene<E>
extends Abstractueus<E>
implements Serializakle

An unbounded priority queue based on a priority heap. This quene orders elements according to an order specified at construction time, which is specified either according to their narural order (see Comparable), or
according to a Comparator, depending on which constructor is used. A priority queue does not permit nul1 elements. A priority queue relying on natural ordering also does not permit insertion of non-comparable objects

(doing so may result in ClassCastException).

The head of this queue is the Jeast element with respect to the specified ordering. If multiple elements are tied for least value, the head is one of those elements -- ties are broken arbitrarily. The queue retrieval operations

poll, remove, peek, and element access the element at the head of the queue.

A priority queue is unbounded, but has an internal capacify governing the size of an array used to store the elements on the queue. It is always at least as large as the quene size. As elements are added to a priority queue,

. capa orows a.ul. The details the growth policy are not specified.

il Ble-il] - o Nl

. based on a priority heap

) E http://docs.oracle.com/javase/1.5.0/docs/api/java/util/PriorityQueue. html

E PriorityQueue (Java 2 Platfo.., . » / - 4 -

x Go gle java priority queue - '.' Search = | Mofe 3 Signln 9, ~
- v [] = v Pagev Safety~ Tools~ @~ N N &)

Overview Package [MEEL]Use Tree Deprecated Index Help Java™ 2 Platform [
PREV CLASS MEXT CLASS FRAMES MO FRAMES All Classes Standard Ed. 5.0 |=
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.util

Class PriorityQueue<E>

java.lang.CObject
L java.util.hAbstractCollection<E>

L Java.util.BAbstractQueus<E>
L java.ntil.Priority(nene<E>

Type Parameters:
E - the type of elements held in this collection

All Implemented Interfaces:
Serializable, Iterable<E>, Collection<E>, Queune<E>

pukblic class PriorityQunene<E>
extends Abstractueus<E>
implements Serializakle

An unbounded priority queue based on a priority heap. I :'5 queue orders elements according to an order specified at construction time, which is specified either according to their natural order (see Conparable), or
dingte - : s tor is used. A priority queue does not permit null elements. A priority queue relying on natural ordering also does not permit insertion of non-comparable objects

(doing so may result in ClassCastException).

The head of this queue is the Jeast element with respect to the specified ordering. If multiple elements are tied for least value, the head is one of those elements -- ties are broken arbitrarily. The queue retrieval operations
poll, remove, peek, and element access the element at the head of the queue.

A pnonty queue is unbounded, but has an internal capacify governing the size of an array used to store the elements on the queue. It is always at least as large as the quene size. As elements are added to a priority queue,
orows a.ulomahcally The details of the growth policy are not specified.

) E http://does.oracle.com/javasefl.5.0/docs/api/java/util/PriorityQueue.html

E PriorityQueue (Java 2 Platfo... ¥ L._'-' - & & - = & ‘ B -
% Google | java priority queue + | % search - |- More 3> Signln 9 -
& ~ -3 @ v Page~v Safety~ Tools~ @v @ @ a

o

T S SIS

PriorityQmene (SortedSet<? extends E> c)
Creates a PriorityQueus containing the elements in the specified collection.

Method Summary

beelean | add (E o)

Adds the specified element to this queue. H

veid | glear ()

Removes all elements from the priority queue.

Compazaser<? | comparator ()
super E Returns the comparator used to order this collection, or nu11 if this collection is sorted according to its elements natural ordering (using Comparakle).

Izeratoz<Er | jterator ()
Returns an iterator over the elements in this quene.

beelean | offer (E o)

Inserts the specified element into this priority queue.

E | peek()
Retrieves, but does not remove, the head of this queue, returning nu11 if this queue is empty.

poll ()
Retrieves and removes the head of this quene, or nu11 if this quene is empty.

I

Eboolean | remove (Objsct o)
Removes a single instance of the specified element from this queue, it is present.

int | zize ()

Returns the number of elements in this collection.

Methods inherited from class java.util AbstractQueue

addall, eslement, remove

- [me G ONT 18:04

Different method names ... add rather than insert

Your mission, should you choose to accept it ...

Exercise 4 (assessed)
* Implement the Heap
* Use it for sorting

http://www.google.co.uk/url?sa=i&rct=j&q=your+mission+should+you+choose+to+accept+it&source=images&cd=&cad=rja&docid=3XtvczFon4Qd5M&tbnid=reE2RYq0hGyUfM:&ved=0CAUQjRw&url=http://neilojwilliams.net/missioncreep/2009/your-mission-should-you-choose-to-accept-it/&ei=rvgPUYqdFOeY0QWMz4DgCw&bvm=bv.41867550,d.d2k&psig=AFQjCNEXS9q9Iz_IiT4hv9rVoHocnFy5yA&ust=1360087558354028

r'IN

