
Heap User Manual

Team T:
Jurij Afanasjev
Martin Bevc

Richard Fleming
Craig McLaughlin
Zinonas Pilakouris

February 11, 2013

1



Contents

1 Interacting with the heap application 3

2 Heap Algorithm 3

2



1 Interacting with the heap application

• Launch the application using the command: java -jar Heap.jar

You will see a screen similar to that in Figure 1. Use the input field to specify an integer in the
range 0 to 99 to insert into the heap. Pressing the “Insert” button will result in a node, with the
specified value, being displayed in both views of the data structure. At this stage, the animation is
in the up-heap bubbling phase. Comparisons and swaps between the inserted node and it’s parent
node will continue until the node no longer violates the heap property.

To single step through this process ensure the checkbox to left of the the “Step” button is
ticked as shown in the figure. To go to the next step in the animation push, the now activated,
step button.

To delete the element at the top of the heap press the “Delete” button. This operation causes
the last element of the heap (leaf node furthest to the right) to be swapped with the top element.
The leaf is then deleted and the down-heap bubbling operation is performed starting at the root of
the tree. Successive comparisons and swaps between the parent and it’s largest child will continue
until the node no longer violates the heap property.

Lastly, you can clear the contents of the heap using the “Clear Contents” button.

Figure 1: Program comparing two nodes

2 Heap Algorithm

The algorithms in this section describe the heap and it’s two main operations for maintaining
the heap property: up-heap bubbling upon an insertion and down-heap bubbling upon a deletion.
Algorithm 1 describes the up-heap bubbling procedure and the auxillary procedure to exchange
values in the heap. Algorithm 2 describes the down-heap bubbling operation.

3



Algorithm 1: up-heap bubbling operation: Restoring the heap property after an insertion.
1 void upHeapBubbling(Array H)
2 begin
3 index← H.size− 1
4 while index > 0 do
5 parent← (index− 1)÷ 2
6 if H[index] >= H[parent] then return
7 swap(H, index, parent)
8 index = parent

9 void swap(Heap H, int i, int j)
10 begin
11 temp← H[i]
12 H[i]← H[j]
13 H[j]← temp

Algorithm 2: down-heap bubbling operation: Restoring the heap property after a deletion.
1 void downHeapBubbling(Array H)
2 begin
3 index← 0
4 while true do
5 child← index× 2 + 1
6 if child >= H.size then return
7 if child + 1 < H.size then
8 if H[child] > H[child + 1] then child← child + 1

9 if H[index] ≤ H[child] then return
10 swap(H, index, child)
11 index← child

4


