
Theory and Methodology

Guided local search and its application to the traveling salesman
problem

Christos Voudouris a,*, Edward Tsang b,1

a Intelligent Systems Research Group, BT Laboratories, MLB 1/PP 12 Martlesham Heath, Ipswich, Su�olk IP5 3RE, UK
b Department of Computer Science, University of Essex, Colchester, Essex CO4 3SQ, UK

Received 12 October 1995; accepted 24 February 1998

Abstract

The Traveling Salesman Problem (TSP) is one of the most famous problems in combinatorial optimization. In this

paper, we are going to examine how the techniques of Guided Local Search (GLS) and Fast Local Search (FLS) can be

applied to the problem. GLS sits on top of local search heuristics and has as a main aim to guide these procedures in

exploring e�ciently and e�ectively the vast search spaces of combinatorial optimization problems. GLS can be com-

bined with the neighborhood reduction scheme of FLS which signi®cantly speeds up the operations of the algorithm.

The combination of GLS and FLS with TSP local search heuristics of di�erent e�ciency and e�ectiveness is studied in

an e�ort to determine the dependence of GLS on the underlying local search heuristic used. Comparisons are made with

some of the best TSP heuristic algorithms and general optimization techniques which demonstrate the advantages of

GLS over alternative heuristic approaches suggested for the problem. Ó 1999 Elsevier Science B.V. All rights reserved.

Keywords: Heuristics; Combinatorial optimization; Traveling salesman; Guided local search; Tabu search

1. Introduction

The Traveling Salesman Problem (TSP) is one
of the most famous combinatorial optimization
problems. The problem is known to be NP-hard
and over the years has been the testing ground for
numerous techniques inspired from a variety of
sources. Nowadays, TSP plays a very important
role in the development, testing and demonstration

of new optimization techniques. In this context, we
are presenting the application to the TSP of a new
metaheuristic approach called Guided Local Search
(GLS) and its accompanying neighborhood re-
duction scheme called Fast Local Search (FLS).

GLS originally proposed by Voudouris and
Tsang [47] is a general optimization technique
suitable for a wide range of combinatorial opti-
mization problems. Successful applications of the
technique so far include practical problems such as
Frequency Allocation [47], Workforce Scheduling
[45] and Vehicle Routing [2,25] and also classic
problems such as the TSP, Quadratic Assignment

European Journal of Operational Research 113 (1999) 469±499

* Corresponding author. E-mail: chrisv@info.bt.co.uk.
1 E-mail: edward@essex.ac.uk.

0377-2217/99/$ ± see front matter Ó 1999 Elsevier Science B.V. All rights reserved.

PII: S 0 3 7 7 - 2 2 1 7 (9 8) 0 0 0 9 9 - X

Problem (QAP) and Global Optimization [48]. In
this paper, we present the technique to the wider
Operations Research (OR) audience by explaining
its application to the TSP, a widely known prob-
lem in the OR community.

GLS belongs to a class of techniques known as
Meta-heuristics [37,38,40]. Prominent members of
this class include Tabu Search [12±18], Simulated
Annealing [1,9,26,28], GRASP [10], Genetic Algo-
rithms [8,19,39], Scatter Search [13] and others.
Meta-heuristics aim at enhancing the performance
of heuristic methods in solving large and di�cult
combinatorial optimization problems.

In the case of GLS, the main focus is on the
exploitation of problem and search-related infor-
mation to e�ectively guide local search heuristics
in the vast search spaces of NP-hard optimization
problems. This is achieved by augmenting the
objective function of the problem to be minimized
with a set of penalty terms which are dynamically
manipulated during the search process to steer the
heuristic to be guided. Higher goals, such as the
distribution of the search e�ort to the areas of the
search space according to the promise of these
areas to contain high quality solutions, can be
expressed and pursued.

GLS is closely related to the Frequency-Based
Memory approaches introduced in Tabu Search
[14,18], extending these approaches to take into
account the quality of structural parts of the so-
lution and also react to feedback from the local
optimization heuristic under guidance.

The paper is structured as follows. We ®rst
describe the basics of local search which is the
foundation for most meta-heuristics. Following
that we explain the di�erent components of GLS
and how it can be combined with the sister scheme
of FLS particularly suited for speeding up the
search of neighborhoods when GLS is used. The
rest of the paper is devoted to the application of
GLS and FLS to the famous TSP when these are
combined with commonly used heuristics such as
2-Opt, 3-Opt and Lin±Kernighan. The bene®ts
from using GLS and FLS with these heuristics are
demonstrated and the dependence of GLS on them
is investigated. Conclusions are drawn on the re-
lation between GLS and the underlying local
search procedures. Finally comparisons are con-

ducted with other well-known general or TSP-
speci®c metaheuristic techniques such as Simu-
lated Annealing, Tabu Search, Iterated Lin±
Kernighan and Genetic Algorithms. GLS is shown
to perform equally well compared with state-of-
the-art specialized methods while outperforming
classic variants of well-known general optimiza-
tion techniques. In all cases, publicly available TSP
instances are used for which the optimal solutions
are known so that the performance of algorithms
can be measured with respect to approximating the
optimal solutions.

2. Local search

Local Search, also referred to as Neighborhood
Search or Hill Climbing, is the basis of many
heuristic methods for combinatorial optimization
problems. In isolation, it is a simple iterative
method for ®nding good approximate solutions.
The idea is that of trial and error. For the purposes
of explaining local search, we will consider the
following de®nition of a combinatorial optimiza-
tion problem.

A combinatorial optimization problem is de-
®ned by a pair (S, g), where S is the set of all
feasible solutions (i.e. solutions which satisfy the
problem constraints) and g is the objective func-
tion that maps each element s in S to a real
number. The goal is to ®nd the solution s in S that
minimizes the objective function g. The problem is
stated as

min g�s�; s 2 S:

In the case where constraints di�cult to satisfy are
also present, penalty terms may be incorporated in
g(s) to drive toward satisfying these constraints. A
neighborhood N for the problem instance (S, g)
can be de®ned as a mapping from S to its pow-
erset:

N : S ! 2S :

N(s) is called the neighborhood of s and contains all
the solutions that can be reached from s by a single
move. Here, the meaning of a move is that of an
operator which transforms one solution to another
with small modi®cations. A solution x is called a

470 C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499

local minimum of g with respect to the neighbor-
hood N i�

g�x�6 g�y�; 8y 2 N�x�:
Local search is the procedure of minimizing the
cost function g in a number of successive steps in
each of which the current solution x is being re-
placed by a solution y such that

g�y� < g�x�; y 2 N�x�:
A basic local search algorithm begins with an

arbitrary solution and ends up in a local minimum
where no further improvement is possible. In be-
tween these stages, there are many di�erent ways
to conduct local search. For example, best im-
provement (greedy) local search replaces the cur-
rent solution with the solution that improves most
in cost after searching the whole neighborhood.
Another example is ®rst improvement local search
which accepts a better solution when it is found.
The computational complexity of a local search
procedure depends on the size of the neighbor-
hood and also the time needed to evaluate a move.
In general, the larger the neighborhood, the more
the time one needs to search it and the better the
local minima.

Local minima are the main problem with local
search. Although these solutions may be of good
quality, they are not necessarily optimal. Fur-
thermore if local search gets caught in a local
minimum, there is no obvious way to proceed any
further toward solutions of better cost. Metaheu-
ristics are trying to remedy that. One of the ®rst
methods in this class is Repeated Local Search
where local search is restarted from a new arbi-
trary solution every time it reaches a local minima
until a number of restarts is completed. The best
local minimum found over the many runs is re-
turned as an approximation of the global mini-
mum. Modern metaheuristics tend to be much
more sophisticated than repeated local search
pursuing a range objectives that go beyond simply
escaping from local minima. Also, the way they
utilize local search may vary and not limited to
applying it to a single solution but to a population
of solutions as it is the case in some Hybrid Ge-
netic Algorithms.

3. Guided local search

GLS has its root in a Neural Network archi-
tecture named GENET developed by Wang and
Tsang [49]. GENET is applicable to a class of
problems known as Constraint Satisfaction Prob-
lems [46] which are closely related to the class of
SAT problems. GLS generalizes some of the ele-
ments present in the GENET architecture and
applies them to the general class of combinatorial
optimization problems. For more information on
GENET and related techniques for CSP and SAT
problems the reader can refer to Refs. [7,36,43].

GLS augments the cost function of the problem
to include a set of penalty terms and passes this,
instead of the original one, for minimization by the
local search procedure. Local search is con®ned by
the penalty terms and focuses attention on prom-
ising regions of the search space. Iterative calls are
made to local search. Each time local search gets
caught in a local minimum, the penalties are
modi®ed and local search is called again to mini-
mize the modi®ed cost function.

3.1. Solution features

GLS employs solution features to characterize
solutions. A solution feature can be any solution
property that satis®es the simple constraint that is
a non-trivial one. What it is meant by that is that
not all solutions have this property. Some solu-
tions have the property while others do not. So-
lution features are problem dependent and serve as
the interface between the algorithm and a partic-
ular application.

Constraints on features are introduced or
strengthened on the basis of information about the
problem and also the course of local search. In-
formation pertaining to the problem is the cost of
features. The cost of features represents the direct
or indirect impact of the corresponding solution
properties on the solution cost. Feature costs may
be constant or variable. Information about the
search process pertains to the solutions visited by
local search and in particular local minima. A
feature fi is represented by an indicator function in
the following way:

C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499 471

Ii�s� �
1 solution s has property i;

0 otherwise;

�
s 2 S:

The notion of solution features is very similar
to the notion solution attributes used in Tabu
Search. The only di�erence is that features, as
considered in here, are always associated with a
binary state given by their indicator function. They
also have certain properties such as their penalty
and cost. The indicator functions of features are
directly incorporated in the problem's cost func-
tion to produce the augmented cost function. The
augmented cost function replaces the objective
function of the problem during the search process
and it is dynamically manipulated by GLS to guide
the local optimization algorithm used. In the fol-
lowing, we explain constrains on features and the
augmented cost function.

3.2. Augmented cost function

Constraints on features are made possible by
augmenting the cost function g of the problem to
include a set of penalty terms. The new cost
function formed is called the augmented cost
function and it is de®ned as follows:

h�s� � g�s� � k �
XM
i�1

pi � Ii�s�; �1�

where M is the number of features de®ned over
solutions, pi the penalty parameter corresponding
to feature fi and k (lambda) a parameter for con-
trolling the strength of constraints with respect to
the actual solution cost. The penalty parameter pi

gives the degree up to which the solution feature fi

is constrained. The parameter k represents the
relative importance of penalties with respect to the
solution cost and it provides a means to control
the in¯uence of the information on the search
process. We are going to further explain the role of
k later in this paper when we refer to the appli-
cation of the algorithm on the TSP. For an in
depth analysis of the role of the parameter k the
reader is directed to Ref. [48].

GLS iteratively uses local search passing it the
augmented cost function for minimization and it
simply modi®es the penalty vector p given by

p � �p1; . . . ; pM �
each time local search settles in a local minimum.
Modi®cations are made on the basis of infor-
mation. Initially, all the penalty parameters are
set to 0 (i.e. no features are constrained) and a
call is made to local search to ®nd a local mini-
mum of the augmented cost function. After the
®rst local minimum and every other local mini-
mum, the algorithm takes a modi®cation action
on the augmented cost function and re-applies
local search, starting from the previously found
local minimum. The modi®cation action is that of
simply incrementing by one the penalty parameter
of one or more of the local minimum features.
Prior and historical information is gradually uti-
lized to guide the search process by selecting
which penalty parameters to increment. Sources
of information are the cost of features and the
local minimum itself. Let us assume that each
feature fi de®ned over the solutions is assigned a
cost ci. This cost may be constant or variable. In
order to simplify our analysis, we consider fea-
ture costs to be constant and given by the cost
vector c:

c � �c1; . . . ; cM �
which contains positive or zero elements.

Before explaining the penalty modi®cation
scheme in detail, we would like to draw the read-
er's attention to the meaning of local minima in
the context of GLS. The local minima encountered
by local search when GLS is used are with respect
to the augmented cost function and may be dif-
ferent from the local minima with respect to the
original cost function of the problem. Hereafter
and whenever we refer to a local minimum in the
context of GLS, we mean the former and not the
later. Before any penalties are applied, the two are
identical but as the search progresses the local
minima with respect to the original cost function
may not be local minima with respect to the aug-
mented cost function. This allows local search to
escape from the local minima of the original cost
function since GLS is altering their local minimum
status under the augmented cost function using the
penalty modi®cation mechanism to be explained
next.

472 C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499

3.3. Penalty modi®cations

The penalty modi®cation mechanism is re-
sponsible for manipulating the augmented cost
function when local search is trapped in a local
minimum. A particular local minimum solution s�
exhibits a number of features and the indicators of
the features fi exhibited take the value 1 (i.e.
Ii�s�� � 1). When local search is trapped in s�, the
penalty parameters are incremented by one for all
features fi that maximize the utility expression:

util�s�; fi� � Ii�s�� � ci

1� pi
: �2�

In other words, incrementing the penalty param-
eter of the feature fi is considered an action with
utility given by Eq. (2). In a local minimum, the
actions with maximum utility are selected and then
performed. The penalty parameter pi is incorpo-
rated in Eq. (2) to prevent the scheme from being
totally biased towards penalizing features of high
cost. The role of the penalty parameter in Eq. (2) is
that of a counter which counts how many times a
feature has been penalized. If a feature is penalized
many times over a number of iterations then the
term ci=�1� pi� in Eq. (2) decreases for the fea-
ture, diversifying choices and giving the chance for
other features to also be penalized. The policy
implemented is that features are penalized with a
frequency proportional to their cost. Due to
Eq. (2), features of high cost are penalized more
frequently than those of low cost. The search e�ort
is distributed according to promise as it is expressed
by the feature costs and the already visited local
minima, since only the features of local minima are
penalized.

Depending on the value of k (i.e. strength of
penalties) in Eq. (1) one or more penalty modi®-
cation iterations as described above may be re-
quired before a move is made out of the local
minimum. High values for k make the algorithm
more aggressive escaping quickly out of the local
minima encountered while low values for k make
the algorithm more cautious requiring more pen-
alty increases before an escape is achieved. Low
values, although slow down the method in terms of
escaping from local minima, lead to a more careful
exploration of the search space putting less weight

on the penalty part of the augmented cost function
h(s) as given by Eq. (1).

Another issue to consider is the always in-
creasing penalties for features and what is the
impact of that. Actually, as soon as penalties reach
the same value for all features in a vicinity of the
search space, they tend to cancel out each other.
For example, if all the features have their penalties
set to 1 this has the same e�ect as all the features
have their penalties set to 0. This is because moves
look at the cost di�erences from exchanging cer-
tain features with others rather than the actual
costs incurred. The basic GLS algorithm as de-
scribed so far is depicted in Fig. 1.

Applying the GLS algorithm to a problem
usually involves de®ning the features to be used,
assigning costs to them and ®nally substituting the
procedure LocalSearch in the GLS loop with a
local search algorithm for the problem in hand.

3.4. Fast local search and other improvements

There are both minor and major optimizations
that signi®cantly improve the basic GLS method.
For example, instead of calculating the utilities for
all the features, we can restrict ourselves to the
local minimum features since for non-local mini-
mum features the utility as given by Eq. (2) takes
the value 0. Also, the evaluation mechanism for
moves needs to be changed to work e�ciently on
the augmented cost function. Usually, this mech-
anism is not directly evaluating the cost of the new
solution generated by the move but it calculates
the di�erence Dg caused to the cost function. This
di�erence in cost should be combined with the
di�erence in penalty. This can be easily done and
has no signi®cant impact on the time needed to
evaluate a move. In particular, we have to take
into account only features that change state (being
deleted or added). The penalty parameters of the
features deleted are summed together. The same is
done for the penalty parameters of features added.
The change in penalty due to the move is then
simply given by the di�erence

ÿ
X

pj
over all features j

�
X

pk
over all features k

:

C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499 473

Leaving behind the minor improvements, we
turn our attention to the major improvements. In
fact, these improvements do not directly refer to
GLS but to local search. Greedy local search se-
lects the best solution in the whole neighborhood.
This can be very time consuming, especially if we
are dealing with large instances of problems. Next,
we are going to present FLS, which drastically
speeds up the neighborhood search process by re-
de®ning it. The method is a generalization of the
approximate 2-opt method proposed in Ref. [3] for
the TSP. The method also relates to Candidate List
Strategies used in tabu search [14].

FLS works as follows. The current neighbor-
hood is broken down into a number of small sub-
neighborhoods and an activation bit is attached to
each one of them. The idea is to scan continuously
the sub-neighborhoods in a given order, searching
only those with the activation bit set to 1. These
sub-neighborhoods are called active sub-neigh-
borhoods. Sub-neighborhoods with the bit set to 0
are called inactive sub-neighborhoods and they are

not being searched. The neighborhood search
process does not restart whenever we ®nd a better
solution but it continues with the next sub-neigh-
borhood in the given order. This order may be
static or dynamic (i.e. change as a result of the
moves performed).

Initially, all sub-neighborhoods are active. If a
sub-neighborhood is examined and does not con-
tain any improving moves then it becomes inactive.
Otherwise, it remains active and the improving
move found is performed. Depending on the move
performed, a number of other sub-neighborhoods
are also activated. In particular, we activate all the
sub-neighborhoods where we expect other im-
proving moves to occur as a result of the move just
performed. As the solution improves the process
dies out with fewer and fewer sub-neighborhoods
being active until all the sub-neighborhood bits
turn to 0. The solution formed up to that point is
returned as an approximate local minimum.

The overall procedure could be many times
faster than conventional local search. The bit

Fig. 1. Guided Local Search in pseudocode.

474 C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499

setting scheme encourages chains of moves that
improve speci®c parts of the overall solution. As
the solution becomes locally better the process is
settling down, examining fewer moves and saving
enormous amounts of time which would otherwise
be spent on examining predominantly bad moves.

Although FLS procedures do not generally ®nd
very good solutions, when they are combined with
GLS they become very powerful optimization
tools. Combining GLS with FLS is straightfor-
ward. The key idea is to associate solution features
to sub-neighborhoods. The associations to be
made are such that for each feature we know
which sub-neighborhoods contain moves that have
an immediate e�ect upon the state of the feature
(i.e. moves that remove the feature from the so-
lution). The combination of the GLS algorithm
with a generic FLS algorithm is depicted in Fig. 2.

The procedure GuidedFastLocalSearch in Fig. 2
works as follows. Initially, all the activation bits
are set to 1 and FLS is allowed to reach the ®rst
local minimum (i.e. all bits 0). Thereafter, and
whenever a feature is penalized, the bits of the
associated sub-neighborhoods and only those are
set to 1. In this way, after the ®rst local minimum,
FLS calls examine only a number of sub-neigh-
borhoods and in particular those which associate
to the features just penalized. This dramatically
speeds up GLS. Moreover, local search is focusing
on removing the penalized features from the so-
lution instead of considering all possible modi®-
cations.

Apart from the combination of GLS with FLS,
other useful variations of GLS include:
· features with variable costs where the cost of a

feature is calculated during search and in the
context of a particular local minimum,

· penalties with limited duration,
· multiple feature sets where each feature set is

processed in parallel by a di�erent penalty mod-
i®cation procedure, and

· feature set hierarchies where more important
features overshadow less important feature sets
in the penalty modi®cation procedure.

More information about these variations can be
found in Ref. [48]. Also for a combination of GLS
with Tabu Search the reader may refer to the work
by Backer et al. [2].

4. Connections with other general optimisation

techniques

4.1. Simulated annealing

Non-monotonic temperature reduction
schemes used in Simulated Annealing (SA) also
referred to as re-annealing or re-heating schemes
are of interest in relation to the work presented in
this paper. In these schemes, the temperature is
decreased as well as increased in a attempt to
remedy the problem that the annealing process
eventually settles down failing to continuously
explore good solutions. In a typical SA, good
solutions are mainly visited during the mid and
low parts of the cooling schedule. For resolving
this problem, it has been even suggested anneal-
ing at a constant temperature high enough to
escape local minima but also low enough to visit
them [5]. It seems extremely di�cult to ®nd such
a temperature because it has to be landscape
dependent (i.e. instance dependent) if not depen-
dent of the area of the search space currently
searched.

GLS presented can be seen as addressing this
problem of visiting local minima but also being
able to escape from them. Instead of random up-
hill moves, penalties are utilized to force local
search out of local minima. The amount of penalty
applied is progressively increased in units of ap-
propriate magnitude (i.e. parameter k) until the
method escapes from the local minimum. GLS can
be seen adapting to the di�erent parts of the
landscape. The algorithm is continuously visiting
new solutions rather than converging to any par-
ticular solution as SA does.

Another important di�erence between this
work and SA is that GLS is a deterministic algo-
rithm. This is also the case for a wide number of
algorithms developed under the Tabu Search
framework.

4.2. Tabu search

GLS is directly related to Tabu Search and to
some extent can be considered a Tabu Search
variant. Solution features are very similar to

C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499 475

solution attributes used in Tabu Search. Both
Tabu Search and GLS impose constrains on them
to guide the underlying local search heuristics.

Tabu Search in its Short-Term Memory form of
Recency-Based Memory is imposing hard con-
straints on solutions attributes of recently visited

Fig. 2. Guided Local Search combined with Fast Local Search in pseudocode.

476 C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499

solutions or recently performed moves [14,18].
This prevents local search from returning to re-
cently visited solutions. Local search is not getting
trapped in a local minimum given the duration of
these constraints is long enough to lead to an area
outside the local minimum basin. Variable dura-
tion of these constraints is sometimes advanta-
geous allowing Tabu Search to adapt better to the
varying radius of the numerous local minimum
basins that could be encountered during the search
[44]. Nonetheless, there is always the risk of cy-
cling if all the escaping routes require constraint
duration longer than that prescribed in the be-
ginning of the search.

The approach taken by GLS is not to impose
hard constraints but instead to leave local search
to settle in a local minimum (of the augmented
cost function) before any of the guidance mecha-
nisms are triggered. The purpose of doing that is to
allow GLS to explore a number of alternative es-
cape routes from the local minimum basin by ®rst
allowing local search to settle in that and conse-
quently applying one or more penalty modi®cation
cycles which depending on the structure of the
landscape may or may not result in a escaping
move. Furthermore the continuous penalization
procedure has the e�ect of progressively ``®lling
up'' the local minimum basin present in the orig-
inal cost function. The risks of cycling are mini-
mized since penalties are not retracted but are
permanently marking substantially big areas of the
search space that incorporate the speci®c features
penalized. Local minima for the original cost
function may not have a local minimum status
under the augmented cost function after a number
of penalty increases is performed. This allows local
search to leave them and start exploring other
areas of the search space.

Long-Term Memory strategies for diversi®ca-
tion used in Tabu Search such as Frequency-Based
Memory have many similarities to the GLS pen-
alty modi®cation scheme. Frequency-Based
Memory based on solution attributes is increasing
the penalties for attributes incorporated in a so-
lution every time this is solution is visited [14,18].
This leads to a diversi®cation function which
guides local search towards attributes not incor-
porated frequently in solutions.

GLS is also increasing the penalties for features
though not in every iteration but only in a local
minimum. Furthermore not all features have their
penalties increased but a selective penalization is
implemented which bases its decisions on the
quality of the features (i.e. cost), decisions made by
the algorithm in previous iterations (i.e. penalties
already applied) and also the current landscape of
the problem which may force more than one pe-
nalization cycles before a move to a new solution is
achieved. If GLS is used in conjunction with FLS,
the di�erent escaping directions from the local
minimum can be quickly evaluated allowing the
selective diversi®cation of GLS to also direct local
search through the moves evaluated and not only
through the augmented cost function.

In general, GLS can alone perform similar
functions to those achieved by the simultaneous
use of both Recency-Based and Frequency-Based
memory as this is the case in many Tabu Search
variants. Other elements like intensi®cation based
on elite solution sets may well be incorporated in
GLS as in Tabu Search.

Concluding, Tabu Search and GLS share a lot
of common ground in both taking the approach of
constraining solution attributes (features) to guide
a local search procedure. Tabu Search mechanisms
are usually triggered in every iteration and local
search is not allowed to settle in a local minimum.
GLS mechanism are triggered when local search
settles in a local minimum and thereafter until it
escapes. Usually, Tabu Search uses a Short-Term
Memory and a Long-Term Memory component,
GLS is not using separate components and it is
trying to perform similar functions using a single
penalty modi®cation mechanism. There is a lot of
promise in investigating hybrids that combine el-
ements from both GLS and Tabu Search in a
single scheme. For an example, the reader can re-
fer to the work by Backer et al. on the Vehicle
Routing Problem [2].

5. The traveling salesman problem

In the previous sections, we examined the
method of GLS and its generic framework. We are
now going to examine the application of the

C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499 477

method to the well-known Travelling Salesman
Problem (TSP). There are many variations of the
problem. In this work, we examine the classic
symmetric TSP. The problem is de®ned by N cities
and a symmetric distance matrix D � �dij� which
gives the distance between any two cities i and j.
The goal in TSP is to ®nd a tour (i.e. closed path)
which visits each city exactly once and is of mini-
mum length. A tour can be represented as a cyclic
permutation p on the N cities if we interpret p(i) to
be the city visited after city i, i � 1; . . . ;N . The cost
of a permutation is de®ned as

g�p� �
XN

i�1

dip�i� �3�

and gives the cost function of the TSP.
Recent and comprehensive surveys of TSP

methods are those by Laporte [29], Reinelt [42]
and Johnson and McGeoch [21]. The reader may
also refer to Ref. [30] for a classical text on the
TSP. The state of the art is that problems up to
1,000,000 cities are within the reach of specialized
approximation algorithms [3]. Moreover, the op-
timal solutions have been found and proven for
non-trivial problems of size up to 7397 cities [21].
Nowadays, TSP plays a very important role in the
development and testing of new optimization
techniques. In this context, we examine how GLS
and FLS can be applied to this problem.

6. Local search heuristics for the TSP

Local search for the TSP is synonymous with
k-Opt moves. Using k-Opt moves, neighboring

solutions can be obtained by deleting k edges
from the current tour and reconnecting the re-
sulting paths using k new edges. The k-Opt
moves are the basis of the three most famous
local search heuristics for the TSP, namely 2-Opt
[6], 3-Opt [31] and Lin±Kernighan (LK) [32].
These heuristics de®ne neighborhood structures
which can be searched by the di�erent neigh-
borhood search schemes described in Sections 2
and 3.4, leading to many local optimization al-
gorithms for the TSP. The neighborhood struc-
tures de®ned by 2-Opt, 3-Opt and LK [20] are as
follows.

2-Opt. A neighboring solution is obtained from
the current solution by deleting two edges, re-
versing one of the resulting paths and reconnecting
the tour (see Fig. 3). The worst case complexity for
searching the neighborhood de®ned by 2-Opt is
O�n2�.

3-Opt. In this case, three edges are deleted. The
three resulting paths are put together in a new
way, possibly reversing one or more of them (see
Fig. 3). 3-Opt is much more e�ective than 2-Opt,
though the size of the neighborhood (possible 3-
Opt moves) is larger and hence more time-con-
suming to search. The worst case complexity for
searching the neighborhood de®ned by 3-Opt is
O(n3).

Lin±Kernighan (LK). One would expect ``4-
Opt'' to be the next step after 3-Opt but actually
that is not the case. The reason is that 4-Opt
neighbors can be remotely apart because ``non-
sequential'' exchanges such as that shown in Fig. 3
are possible for k P 4. To improve 3-Opt further,
Lin and Kernighan developed a sophisticated edge

Fig. 3. k-Opt moves for the TSP.

478 C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499

exchange procedure where the number k of edges
to be exchanged is variable [32]. The algorithm is
mentioned in the literature as the Lin±Kernighan
(LK) algorithm and it was considered for many
years to be the ``uncontested champion'' of local
search heuristics for the TSP. LK uses a very
complex neighborhood structure which we will
brie¯y describe here.

LK, instead of examining a particular 2-Opt or
3-Opt exchange, is building an exchange of vari-
able size k by sequentially deleting and adding
edges to the current tour while maintaining tour
feasibility. Given node t1 in tour T as a starting
point: In step m of this sequential building of the
exchange: edge (t1, t2m) is deleted, edge �t2m; t2m�1�
is added, and then edge �t2m�1; t2m�2� is picked so
that deleting edge �t2m�1; t2m�2� and joining edge
�t2m�2; t1� will close up the tour giving tour Tm. The
edge �t2m�2; t1� is deleted if and when step m + 1 is
executed. The ®rst three steps of this mechanism
are illustrated in Fig. 4.

As we can see in this ®gure, the method is es-
sentially executing a sequence of 2-Opt moves. The
length of these sequences (i.e. depth of search) is
controlled by the LK's gain criterion which limits
the number of the sequences examined. In addition
to that, limited backtracking is used to examine
the sequences that can be generated if a number of
di�erent edges are selected for addition at steps 1
and 2 of the process.

The neighborhood structure described so far,
although it provides the depth needed, is lacking

breadth, potentially missing improving 3-Opt
moves. To gain breadth, LK temporarily allows
tour infeasibility, examining the so-called ``infea-
sibility'' moves which consider various choices for
nodes t4 to t8 in the sequence generation process,
examining all possible 3-Opt moves and more.
Fig. 5 illustrates the infeasibility-move mecha-
nism. The interested reader may refer to the
original paper by Lin and Kernighan [32] for a
more elaborate description of this mechanism.
LK is the standard benchmark against which all
heuristic methods are tested. The worst case
complexity for searching the LK neighborhood is
O(n5).

Implementations of 2-Opt, 3-Opt and LK-
based local search methods may vary in perfor-
mance. A very good reference for e�ciently im-
plementing local search procedures based on 2-Opt
and 3-Opt is that by Bentley [3]. In addition to
that, Reinelt [42] and also Johnson and McGeoch
[21] describe some improvements that are com-
monly incorporated in local search algorithms for
the TSP. We will refer to some of them later in this
paper. The best reference for the LK algorithm is
the original paper by Lin and Kernighan [32]. In
addition to that, Johnson and McGeoch [21]
provide a good insight into the algorithm and its
operations along with information on the many
variants of the method. A modi®ed LK version
which avoids the complex infeasibility moves
without signi®cant impact on performance is de-
scribed in Ref. [33].

Fig. 4. The ®rst three steps of the Lin±Kernighan edge exchange mechanism.

C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499 479

FLS and GLS can be combined with the
neighborhood structures of 2-Opt, 3-Opt and LK
with minimal e�ort. This will become evident in
the next sections where FLS and GLS for the TSP
are presented and discussed.

6.1. Fast local search applied to the TSP

A FLS procedure for the TSP using 2-Opt has
already been suggested by Bentley [3]. Under the
name Don't Look Bits, the same approach has
been used in the context of 2-Opt, 3-Opt and LK
by Codenotti et al. [4] to reduce the running times
of these heuristics in very large TSP instances.
More recently, Johnson et al. [24] also use the
technique to speed up their LK variant (see Ref.
[21]). In the following, we are going to describe
how FLS variants of 2-Opt, 3-Opt and LK can be
developed on the guidelines for FLS presented in
Section 3.4.

2-Opt, 3-Opt and LK-based local search pro-
cedures are seeking tour improvements by con-
sidering for exchange each individual edge in the
current tour and trying to extend this exchange to
include one (2-Opt), two (3-Opt) or more (LK)
other edges from the tour. Usually, each city is
visited in tour order and one or both the edges
adjacent to the city are checked if they can lead to
an edge exchange which improves the solution (in
our work, if approximations are used such as
nearest neighbor lists or fast local search then both
edges adjacent to a city are examined, otherwise
only one of the edges adjacent to the city is ex-
amined).

We can exploit the way local search works on
the TSP to partition the neighborhood in sub-
neighborhoods as required by FLS. Each city in
the problem may be seen as de®ning a sub-neigh-
borhood which contains all edge exchanges origi-
nating from either one of the edges adjacent to the
city. For a problem with N cities, the neighbor-
hood is partitioned into N sub-neighborhoods, one
for each city in the instance. Given the sub-
neighborhoods, FLS for the TSP works in the
following way (see also Section 3.4).

Initially all sub-neighborhoods are active. The
scanning of the sub-neighborhoods, de®ned by the
cities, is done in an arbitrary static order (e.g. from
1st to Nth city). Each time an active sub-neigh-
borhood is found, it is searched for improving
moves. This involves trying either edge adjacent to
the city as bases for 2-Opt, 3-Opt or LK edge ex-
changes, depending on the heuristic used. If a sub-
neighborhood does not contain any improving
moves then it becomes inactive (i.e. bit is set to 0).
Otherwise, the ®rst improving move found is per-
formed and the cities (corresponding sub-neigh-
borhoods) at the ends of the edges involved
(deleted or added by the move) are activated (i.e.
bits are set to 1). This causes the sub-neighbor-
hood where the move was found to remain active
and also a number of other sub-neighborhoods to
be activated. The process always continues with
the next sub-neighborhood in the static order. If
ever a full rotation around the static order is
completed without making a move, the process
terminates and returns the tour found. The tour is
declared 2-Optimal, 3-Optimal or LK-Optimal,
depending on the type of the k-Opt moves used.

Fig. 5. Lin±Kerhighan's infeasibility moves.

480 C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499

6.2. Local search procedures for the TSP

Apart from FLS, ®rst improvement and best
improvement local search (see Section 2) can also
be applied to the TSP. First improvement local
search immediately performs improving moves
while best improvement (greedy) local search per-
forms the best move found after searching the
complete neighborhood.

FLS for the TSP described above can be easily
converted to ®rst improvement local search by
searching all sub-neighborhoods irrespective of
their state (active or inactive). The termination
criterion remains the same with fast local search:
that is, to stop the search when a full rotation of
the static order is completed without making a
move. The LK algorithm as originally proposed by
Lin and Kernighan [32] performs ®rst improve-
ment local search.

FLS can also be modi®ed to perform best im-
provement local search. In this case, the best move
is selected and performed after all the sub-neigh-
borhoods have been exhaustively searched. The
algorithm stops when a solution is reached where
no improving move can be found. The scheme is
very time consuming to be combined with the 3-
Opt and LK neighborhood structures and it is
mainly intended for use with 2-Opt. Considering
the above options, we implemented seven local
search variants for the TSP (implementation de-
tails will be given later). These variants were de-
rived by combining the di�erent search schemes at
the neighborhood level (i.e. fast, ®rst improve-
ment, and best improvement local search) with any
of the 2-Opt, 3-Opt, or LK neighborhood struc-
tures. Table 1 illustrates the variants and also the

names we will use to distinguish them in the rest of
the paper.

7. Guided local search applied to the TSP

7.1. Solution features and augmented cost function

The ®rst step in the process of applying GLS to
a problem is to ®nd a set of solution features that
are accountable for part of the overall solution
cost. For the TSP, a tour includes a number of
edges and the solution cost (tour length) is given
by the sum of the lengths of the edges in the tour
(see Eq. (3)). Edges are ideal features for the TSP.
First, they can be used to de®ne solution proper-
ties (a tour either includes an edge or not) and
second, they carry a cost equal to the edge length,
as this is given by the distance matrix D � �dij� of
the problem. A set of features can be de®ned by
considering all possible undirected edges
eij�i � 1; . . . ;N ; j � i� 1; . . . ;N ; i 6� j� that may
appear in a tour with feature costs given by the
edge lengths dij. Each edge eij connecting cities i
and city j is attached a penalty pij initially set to 0
which is increased by GLS during search. These
edge penalties can be arranged in a symmetric
penalty matrix P � �pij�. As mentioned in Sec-
tion 3.2, penalties have to be combined with the
problem's cost function to form the augmented
cost function which is minimized by local search.
This can be done by considering the auxiliary
distance matrix

D0 � D� k � P � �dij � k � pij�:
Local search must use D0 instead of D in move
evaluations. GLS modi®es P and (through that) D0

whenever local search reaches a local minimum.
The edges penalized in a local minimum are se-
lected according to the utility function (2), which
for the TSP takes the form

util�tour; eij� � Ieij�tour� � dij

1� pij
; �4�

where

Ieij�tour� � 1; eij 2 tour;

0; eij 62 tour:

�

Table 1

Local search procedures implemented for the study of GLS on

the TSP

Name Local search type Neighborhood type

BI-2Opt Best improvement 2-Opt

FI-2Opt First improvement 2-Opt

FLS-2Opt Fast local search 2-Opt

FI-3Opt First improvement 3-Opt

FLS-3Opt Fast local search 3-Opt

FI-LK First improvement LK

FLS-LK Fast local search LK

C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499 481

7.2. Combining GLS with TSP local search proce-
dures

GLS as depicted in Fig. 1 makes no assump-
tions about the internal mechanisms of local
search and therefore can be combined with any
local search algorithm for the problem, no matter
how complex this algorithm is.

The TSP local searches of Section 6.2 to be
integrated with GLS need only to be implemented
as procedures which, provided with a starting tour,
return a locally optimal tour with respect to the
neighborhood considered. The distance matrix
used by local search is the auxiliary matrix D0

described in the last section. A reference to the
matrix D is still needed to enable the detection of
better solutions whenever moves are executed and
new solutions are visited. There is no need to keep
track of the value of the augmented cost function
since local search heuristics make move evalua-
tions using cost di�erences rather than re-com-
puting the cost function from scratch.

Interfacing GLS with fast local searches for the
TSP requires a little more e�ort (see also Sec-
tion 3.4). In particular, each time we penalize an
edge in GLS, the sub-neighborhoods correspond-
ing to the cities at the ends of this edge are acti-
vated (i.e. bits set to 1). After the ®rst local
minimum, calls to fast local search start by ex-
amining only a number of sub-neighborhoods and
in particular those which associate to the edges just
penalized. Activation may spread to a limited
number of other sub-neighborhoods because of
the moves performed though, in general, local
search quickly settles in a new local minimum.
This dramatically speeds up GLS, forcing local
search to focus on edge exchanges that remove
penalized edges instead of evaluating all possible
moves.

7.3. How GLS works on the TSP

Let us now give an overview of the way GLS
works on the TSP. Starting from an arbitrary so-
lution, local search is invoked to ®nd a local
minimum. GLS penalizes one or more of the edges
appearing in the local minimum, using the utility

function (4) to select them. After the penalties have
been increased, local search is restarted from the
last local minimum to search for a new local
minimum. If we are using FLS then the sub-
neighborhoods (i.e. cities) at the ends of the edges
penalized need also to be activated. When a new
local minimum is found or local search cannot
escape from the current local minimum, penalties
are increased again and so forth.

The GLS algorithm constantly attempts to re-
move edges appearing in local minima by penal-
izing them. The e�ort invested by GLS to remove
an edge depends on the edge length. The longer the
edge, the greater the e�ort put in by GLS. The
e�ect of this e�ort depends on the parameter k of
GLS. A high k causes GLS decisions to be in full
control of local search, overriding any local gra-
dient information while a low k causes GLS to
escape from local minima with great di�culty,
requiring many penalty cycles before a move is
executed. However, there is always a range of
values for k for which the moves selected aim at
the combined objective to improve the solution
(taking into account the gradient) and also remove
the penalized edges (taking into account the GLS
decisions). If longer edges persist in appearing in
solutions despite the penalties, the algorithm will
diversify its choices, trying to remove shorter edges
too.

As the penalties build up for both bad and good
edges frequently appearing in local minima, the
algorithm starts exploring new regions in the
search space, incorporating edges not previously
seen and therefore not penalized. The speed of this
``continuous'' diversi®cation of search is con-
trolled by the parameter k. A low k slows down the
diversi®cation process, allowing the algorithm to
spend more time in the current area before it is
forced by the penalties to explore other areas.
Conversely, a high k speeds up diversi®cation, at
the expense of intensi®cation.

From another viewpoint, GLS realizes a ``se-
lective'' diversi®cation which pursues many more
choices for long edges than short edges by penal-
izing the former many more times than the later.
This selective diversi®cation achieves the goal of
distributing the search e�ort according to prior
information as expressed by the edge lengths. Se-

482 C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499

lective diversi®cation is smoothly combined with
the goal of intensifying search by setting k to a
value low enough to allow the local search gradi-
ents to in¯uence the course of local search. Es-
caping from local minima comes at no expense
because of the penalties but alone without the goal
of distributing the search e�ort, as implemented by
the selective penalty modi®cation mechanism, is
not enough to produce high quality solutions.

8. Evaluation of GLS in the TSP

To investigate the behavior of GLS on the TSP,
we conducted a series of experiments. The results
presented in subsequent sections attempt to pro-
vide a comprehensive picture of the performance
of GLS on the TSP. First, we examine the com-
bination of GLS with 2-Opt, the simplest of the
TSP heuristics. The bene®ts from using FLS in-
stead of best improvement local search are clearly
demonstrated, along with the ability of GLS to
®nd high quality solutions in small to medium size
problems. These results for GLS are compared
with results for SA and Tabu Search when these
techniques use the 2-Opt heuristic.

From there on, we focus on e�cient techniques
for the TSP based on GLS. The di�erent combi-
nations of GLS with the local search procedures of
Section 6.2 are examined and conclusions are
drawn on the relation between GLS and local
search. E�cient GLS variants are compared with
methods based on the LK algorithm (known to be
the best heuristic techniques for the TSP).

8.1. Experimental setting

In the experiments conducted, we used prob-
lems from the publicly available library of TSP
problems, TSPLIB [41]. Most of the instances in-
cluded in TSPLIB have already been solved to
optimality and they have been used in many pa-
pers in the TSP literature.

For each algorithm evaluated, ten runs from
di�erent random initial solutions were performed
and the various performance measures (solution
quality, running time etc.) were averaged. The

solution quality was measured by the percentage
excess above the best known solution (or optimal
solution if known), as given by the formula

excess

� Solution costÿ Best known solution cost

Best known solution cost

� 100: �5�
Unless otherwise stated, all experiments were
conducted on DEC Alpha 3000/600 machines (175
MHz) with algorithms implemented in GNU C++.

8.2. Parameter k

The only parameter of GLS which requires
tuning is the parameter k. The GLS algorithm
performed well for a relatively wide range of
values when we tested it on problems from
TSPLIB with either one of the 2-Opt, 3-Opt or
LK heuristics. Experiments showed that GLS is
quite tolerant to the choice of k as long as k is
equal to a fraction of the average edge length in
good solutions (e.g. local minima). These ®ndings
were expressed by the following equation for
calculating k:

k � a � g�local minimum�
N

; �6�

where g�local minimum� is the cost of a local
minimum tour produced by local search (e.g. ®rst
local minimum before penalties are applied) and N
the number of cities in the instance. Eq. (6) in-
troduces a parameter a which, although instance-
dependent, results in good GLS performance for
values in the more manageable range (0,1]. Ex-
perimenting with a, we found that it depends not
only on the instance but also on the local search
heuristic used. In general, there is an inverse rela-
tion between a and local search e�ectiveness. Not-
so-e�ective local search heuristics such as 2-Opt
require higher a values than more e�ective heu-
ristics such as 3-Opt and LK. This is because the
amount of penalty needed to escape from local
minima decreases as the e�ectiveness of the heu-
ristic increases and therefore lower values for a
have to be used to allow the local gradients to

C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499 483

a�ect the GLS decisions. For 2-Opt, 3-Opt and
LK, the following ranges for a generated high
quality solutions in the TSPLIB problems (see
Table 2).

The lower bounds of these intervals represent
typical values for a that enable GLS to escape
from local minima at a tolerable rate. If values less
than the lower bounds are used, then GLS requires
too many penalty cycles to escape from local
minima. In general, the lower bounds depend on
the local search heuristic used and also the struc-
ture of the landscape (i.e. depth of local minima).
On the other hand, the upper bounds give a good
indication of the maximum values for a that can
still produce good solutions. If values greater than
the upper bounds are used then the algorithm is
exhibiting excessive bias towards removing long
edges and failing to reach high quality local min-
ima. In general, the upper bounds also depend on
the local search heuristic used but they are mainly
a�ected by the quality of the information con-
tained in the feature costs (i.e. how accurate is the
assumption that long edges are preferable over
short edges in the particular instance).

8.3. Guided local search and 2-Opt

In this section, we look into the combination of
GLS with the simple 2-Opt heuristic. More spe-
ci®cally, we present results for GLS with best im-
provement 2-Opt local search (BI-2Opt) and fast
2-Opt local search (FLS-2Opt). The set of prob-
lems used in the experiments consisted of 28 small
to medium size TSPs from 48 to 318 cities all from
TSPLIB. The stopping criterion used was a limit
on the number of iterations not to be exceeded. An
iteration for GLS with BI-2Opt was considered
one local search iteration (i.e. complete search of
the neighborhood) and for GLS with FLS-2Opt, a

call to FLS as in Fig. 2. The iteration limit for
both algorithms was set to 200,000 iterations. In
both cases, we tried to provide the GLS variants
with plenty of resources in order to reach the
maximum of their performance.

The exact value of k used in the runs was
manually determined by running a number of test
runs and observing the sequence of solutions
generated by the algorithm. A well-tuned algo-
rithm generates a smooth sequence of gradually
improving solutions. A not-so-well-tuned algo-
rithm either progresses very slowly (k is lower than
it should be) or very quickly ®nds no more than a
handful of good local minima (k is higher than it
should be). The values for k determined in this way
were corresponding to values for a around 0.3. Ten
runs from di�erent random solutions were per-
formed on each instance included in the set of
problems and the various performance measures
(excess, running time to reach the best solution
etc.) were averaged. The results obtained are pre-
sented in Table 3.

Both GLS variants found solutions with cost
equal to the optimal cost in the majority of runs.
GLS with BI-2Opt failed to ®nd the optimal so-
lutions (as reported by Reinelt in Refs. [41,42]) in
only 15 out of the total 280 runs. From another
viewpoint, the algorithm was successful in ®nding
the optimal solution in 94.6% of the runs. Ten out
of the 14 failures referred to a single instance
namely d198. However, the solutions found for
d198 were of high quality and on average within
0.08% of optimality.

GLS with FLS-2Opt found the optimal solu-
tions in 3 more runs than GLS with BI-2Opt,
missing the optimal solution in only 11 out of the
280 runs (96.07% success rate). In particular, the
algorithm missed only once the optimal solution
for lin318 but still found no optimal solution for
d198 which proved to be a relatively `hard' prob-
lem for both variants. GLS using FLS was on an
average ten times faster than GLS using best im-
provement local search and that without com-
promising on solution quality. In the worst case
(att48), it was two times faster while in the best
case (kroA150) it was thirty seven times faster.
Remarkably, GLS with FLS was able in most
problems to ®nd a solution with cost equal to the

Table 2

Suggested ranges for parameter a when GLS is combined with

di�erent TSP heuristics

Heuristic Suggested range for a

2-Opt 1/8 6 a 6 1/2

3-Opt 1/10 6 a 6 1/4

LK 1/12 6 a 6 1/6

484 C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499

optimum (already known) in less than 10 s of CPU
time on the DEC Alpha 3000/600 machines used.

The results presented in this section clearly
demonstrate the ability of GLS even when com-
bined with 2-Opt the simplest of TSP heuristics to
®nd consistently the optimal solutions for small to
medium size TSPs. The use of FLS introduces
substantial savings in running times without
compromising in solution quality.

8.4. Comparison with general methods for the TSP

The above performance of GLS is remarkable
considering that GLS is not an exact method and
that in this case it only used the short-sighted 2-
Opt heuristic. Searching the related TSP literature,

we could not ®nd any other approximation
methods that use only the simple 2-Opt move and
consistently ®nd optimal solutions for problems up
to 318 cities. Only the Iterated LK algorithm and
its variants [20,21,24] share the same consistency in
reaching the optimal solutions. These algorithms
will be considered later in this section.

A meaningful comparison that can be made is
between GLS using 2-Opt and other general
methods that also use the same heuristic. For that
purpose, we implemented simulated annealing
[1,9,22,23,26,28] and a tabu search variant for the
TSP suggested by Knox [27].

8.4.1. Simulated annealing
The SA algorithm implemented for the TSP

was the one described by Johnson in Ref. [20] and

Table 3

Performance of 2-Opt based variants of GLS on small to medium size TSP instances

Problem GLS with BI-2Opt GLS with FLS-2Opt

Optimal runs

out of 10

Mean excess

(%)

Mean CPU

time (s)

Optimal runs

out of 10

Mean excess

(%)

Mean CPU

time (s)

att48 10 0.0 0.77 10 0.0 0.4

eil51 10 0.0 1.62 10 0.0 0.46

st70 10 0.0 7.68 10 0.0 1.2

eil76 10 0.0 3.83 10 0.0 0.97

pr76 10 0.0 15.1 10 0.0 3.01

gr96 10 0.0 16.48 10 0.0 2.26

kroA100 10 0.0 11.27 10 0.0 1.25

kroB100 10 0.0 16.36 10 0.0 2.46

kroC100 10 0.0 12.2 10 0.0 0.74

kroD100 10 0.0 12.94 10 0.0 1.78

kroE100 10 0.0 35.68 10 0.0 2.46

rd100 10 0.0 10.75 10 0.0 2.74

eil101 10 0.0 19.49 10 0.0 2.37

lin105 10 0.0 17.46 10 0.0 2.06

pr107 10 0.0 150.28 10 0.0 5.41

pr124 10 0.0 22.47 10 0.0 1.56

bier127 10 0.0 254.36 10 0.0 24.67

pr136 9 0.0009 416.78 10 0.0 32.16

gr137 10 0.0 66.54 10 0.0 7.82

pr144 10 0.0 52.84 10 0.0 6.95

kroA150 10 0.0 257.06 10 0.0 7.03

kroB150 10 0.0 289.02 10 0.0 44.85

u159 10 0.0 74.35 10 0.0 6.9

rat195 8 0.01 525.48 10 0.0 55.15

d198 0 0.08 1998.37 0 0.05 353.97

kroA200 10 0.0 614.6 10 0.0 50.16

kroB200 10 0.0 665.3 10 0.0 61.79

lin318 8 0.01 4484.4 9 0.005 346.44

C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499 485

uses geometric cooling schedules. The algorithm
generates random 2-Opt moves. If a move im-
proves the cost of the current solution then it is
always accepted. Moves that do not improve the
cost of the current solution are accepted with
probability

e�ÿD=eT �;

where D is the di�erence in cost due to the move
and T is the current temperature. In the ®nal runs,
we started the algorithm from a relatively high
temperature (around 50% of moves were accept-
ed). At each temperature level the algorithm was
allowed to perform a constant number of trials to
reach equilibrium. After reaching equilibrium, the
temperature was multiplied by the cooling rate a
which was set to a high value (a� 0.9). To stop the
algorithm, we used the scheme with the counter
described in Ref. [22].

8.4.2. Tabu search
The tabu search variant implemented was the

one proposed by Knox [27] using a combination of
tabu restrictions and aspiration level criteria. The
method is brie¯y described here.

Tabu search performs best improvement local
search selecting the best move in the neighborhood
but only amongst those not characterized as tabu.
Determining the tabu status of a move is very
important in tabu search and holds the key for the
development of e�cient recency-based memory.

In this tabu search variant for the TSP, a 2-Opt
move is classi®ed as tabu only if both added edges

of the exchange are on the tabu list. If one or both
of the added edges are not on the tabu list, then the
candidate move is not classi®ed as tabu. Updating
the tabu list involves placing the deleted edges of
the 2-Opt exchanges performed on the list. If the
list is full, the oldest elements of the list are re-
placed by the new deleted edge information.

In order for a 2-Opt exchange to override tabu
status, both added edges of the exchange must
pass the aspiration test. An individual edge passes
the aspiration test if the new tour resulting from
the candidate exchange is better than the aspira-
tion values associated with the edge. The aspira-
tion values of edges are the tour cost which exists
prior to making the candidate 2-Opt move. Only
edges deleted by the exchanges performed have
their values updated.

For the experiments reported here, the tabu list
size was set to 3N (where N is the number of cities
in the problem) as suggested by Knox [27]. Tabu
search was allowed to run for 200,000 iterations
which is equivalent in terms of number of moves
evaluated to the number of iterations GLS with
BI-2Opt was given on the same instances.

8.4.3. Simulated annealing and tabu search com-
pared with GLS

SA and tabu search were tested on 8 instances
from the greater set of 28 instances mentioned
above. The results were averaged as with GLS.
Table 4 illustrates the results for SA and tabu
search compared with those for GLS with FLS-
2Opt on the same instances. Results are also con-

Table 4

GLS, SA, and Tabu Search performance on TSPLIB instances

Problem

name

GLS with FLS-2Opt SA Tabu search Repeated BI-2Opt (200,000

iterations)

Mean excess

(%)

Mean CPU

time (s)

Mean excess

(%)

Mean CPU

time (s)

Mean excess

(%)

Mean CPU

time (s)

Mean excess

(%)

Mean CPU

time (s)

eil51 0.0 0.46 0.73 6.34 0.0 1.14 0.23 42.4

eil76 0.0 0.97 1.21 18.0 0.0 5.24 1.85 153.45

eil101 0.0 2.37 1.76 33.29 0.0 61.41 3.97 319.15

kroA100 0.0 1.25 0.42 37.36 0.0 21.34 0.34 706.35

kroC100 0.0 0.74 0.80 36.58 0.25 4.80 0.33 1301.98

kroA150 0.0 7.03 1.86 103.32 0.03 413.06 1.41 3290.95

kroA200 0.0 50.16 1.04 229.38 0.72 776.93 1.7 731.1

lin318 0.005 346.44 1.34 829.46 1.31 2672.80 3.11 9771.28

486 C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499

trasted with the best solution found by repeating
BI-2Opt starting from random tours until a total
of 200,000 local search iterations were completed.

As we can see in Table 4, the superiority of
GLS over the tabu search variant and SA is evi-
dent. The tabu search variant found easily the
optimal solutions for small problems and it scaled
well for larger problems. However, it was many
times slower than GLS and moreover failed to
reach the solution quality of GLS in the larger
problems. SA had a consistent behavior ®nding
good solutions for all problems but failed to reach
the optimal solutions in all but 3 runs. All three
meta-heuristics signi®cantly improved over the
performance of repeated 2-Opt.

8.5. E�cient GLS variants for the TSP

In order to study the combinations of GLS with
higher order heuristics such as 3-Opt and LK, a
library of TSP local search procedures was devel-
oped in C++. The library comprises all local
search procedures of Section 6.2 and allows com-
binations of GLS with any one of these proce-
dures. Furthermore, a number of approximations
(not used in the GLS of Section 8.3) are adopted
which further reduce the computation times of
local search and GLS as reported in Section 8.3. In
the rest of the chapter, we will examine and report
results for these e�cient variants of GLS.

The most signi®cant approximation introduced
is the use of a pre-processing stage which ®nds and
sorts by distance the 20 nearest neighbors of each
city in the instance. 2-Opt, 3-Opt and LK were
considering in exchanges only edges to these 20
nearest neighbors (see also Refs. [21,42]). Each
time the penalty was increased for an edge, the
nearest neighbor lists of the cities at the ends of the
edge were reordered though no new neighbors
were introduced.

To reduce the computation times required by 3-
Opt, 3-Opt was implemented as two locality
searches each of which looks for a ``short enough''
edge to extend further the exchange (see Ref. [3]
for details). The LK implementation was exactly
as proposed by Lin and Kernighan [32] incorpo-
rating their lookahead and backtracking sugges-

tions (i.e. backtracking at the ®rst two levels of the
sequence generation, considering at each step only
the ®ve smallest and available candidate edges that
can be added to the tour and taking into account
in the selection of the edges to be added the length
of the edges to be deleted by these additions).

The library is portable to most UNIX machines
though experiments reported here were solely
performed on DEC Alpha workstations 3000/600
(175 MHz) using a library executable generated by
the GNU C++ compiler.

The set of problems used in the evaluation of
the GLS variants included 20 problems from 48 to
1002 cities all from TSPLIB. For each variant
tested, 10 runs were performed and 5 min of CPU
time were allocated to each algorithm in each run.
To measure the success of the variants, we con-
sidered the percentage excess above the optimal
solution as in Eq. (5). The normalized lambda
parameter a was provided as input to the program
and k was determined after the ®rst local minimum
using Eq. (6). For GLS variants using 2-Opt, a
was set to a� 1/6 while the GLS variants based on
3-Opt used the slightly lower value a� 1/8 and the
LK variants the even lower value a� 1/10. The full
set of results for the various combinations of GLS
with local search can be found in Appendix A.
Next, we focus on selected results from this set.

8.5.1. Results for GLS with ®rst improvement local
search

Fig. 6 graphically illustrates the results for the
®rst improvement versions of 2-Opt, 3-Opt and
LK when combined with GLS. In this ®gure, we
see that the combination of GLS with FI-3Opt and
FI-LK signi®cantly improves over the perfor-
mance of GLS with FI-2Opt especially when ap-
plied to large problems. FI-LK combined with
GLS achieved the best performance amongst the
three methods tested.

8.5.2. Results for GLS with fast local search
Fig. 7 graphically illustrates the results ob-

tained for GLS when combined with the fast local
search variants of 2-Opt, 3-Opt and LK. GLS with
FI-LK (found to be best amongst the ®rst im-
provement versions of GLS) is also displayed in
the ®gure as a point of reference. In this ®gure, we

C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499 487

can see that the FLS variants of GLS are much
better than the best of the ®rst improvement local
search variants (i.e. GLS-FI-LK). Another far
more important observation is that for FLS the 2-
Opt variant is better than the 3-Opt variant which
in turn is better than the LK variant. This is ex-
actly the opposite order than one would have ex-
pected. One possible explanation can be derived by
considering the strength of GLS. More speci®cally,
FLS-2Opt allows GLS to perform many more
penalty cycles in the time given than its FLS-3Opt
or FLS-LK counterparts. More GLS penalty cy-
cles seem to increase e�ciency at a level which
outweighs the bene®ts from using a more sophis-
ticated local search procedure such as 3-Opt or
LK.

The remarkable e�ects of GLS on local search
are further demonstrated in Fig. 8 where GLS
with FLS-2Opt is compared against Repeated
FLS-2Opt and Repeated FI-LK. In Repeated
FLS-2Opt and Repeated FI-LK, local search is

simply restarted from a random solution after a
local minimum and the best solution found over
the many runs is returned. These two algorithms
along with other versions of repeated local search
were tested under the same settings with the GLS
variants. Appendix A includes the full set of re-
sults for repeated local search. In Fig. 8, we can
see the huge improvement in the basic 2-Opt
heuristic when this is combined with GLS. GLS is
the only technique known to us which when ap-
plied to 2-Opt can outperform the Repeated LK
algorithm (and that without requiring excessive
amounts of CPU time) as illustrated in the same
®gure.

8.6. Comparison with Specialised TSP algorithms

8.6.1. Iterated Lin±Kernighan
The Iterated LK algorithm (not to be confused

with Repeated LK) has been proposed by Johnson

Fig. 6. Performance of GLS variants using ®rst improvement local search procedures.

488 C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499

[20] and it is considered to be one of the best if not
the best heuristic algorithm for the TSP [21]. It-
erated LK uses LK to obtain a ®rst local mini-
mum. To improve this local minimum, the
algorithm examines other local minimum tours
``near'' the current local minimum. To generate
these tours, Iterated LK ®rst applies a random and
unbiased non-sequential 4-Opt exchange (see
Fig. 3) to the current local minimum and then
optimizes this 4-Opt neighbor using the LK algo-
rithm. If the tour obtained by the process (i.e.
random 4-Opt followed by LK) is better than the
current local minimum then Iterated LK makes
this tour the current local minimum and continues
from there using the same neighbor generation
process. Otherwise, the current local minimum
remains as it is and further random 4-Opt moves
are tried. The algorithm stops when a stopping
criterion based either on the number of iterations
or computation time is satis®ed. Fig. 9 contains
the original description of the algorithm as given
in Ref. [20].

The random 4-Opt exchange performed by It-
erated LK is mentioned in the literature as the
``Double-Bridge'' move and plays a diversi®cation
role for the search process, trying to propel the
algorithm to a di�erent area of the search space
preserving at the same time large parts of the
structure of the current local minimum. Martin et
al. [35] describe this action as a ``kick'' and show
that can be also used with 3-Opt in the place of
LK. The same authors also suggest the combina-
tion of the method with SA (Long Markov Chains
method). Martin and Otto [34] further demon-
strate the e�ciency of this last algorithm on the
TSP and also the Graph Partitioning problem
though they admit that SA does not signi®cantly
improve the method for TSP problems up to 783
cities. Finally, Johnson and McGeoch [21] review
Iterated LK and its variants and provide results
for both structured and random TSP instances.

Iterated LK or Iterated 3-Opt share some of the
principles of GLS in the sense that they produce a
sequence of diversi®ed local minima though this is

Fig. 7. Performance of GLS variants using fast local search procedures.

C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499 489

conducted in a random rather than a systematic
way. Furthermore, iterated local search accepts the
new solution, produced by the 4-Opt exchange and
the subsequent LK or 3-Opt optimization, only if
it improves over the current local minimum (or it
is slightly worse in the case of Large Markov
Chains Method which uses SA).

Iterated LK outperforms Repeated LK previ-
ously thought to be the ``champion'' of TSP heu-

ristics and also long SA runs [34]. More recent
experiments show that even sophisticated tabu
search variants of LK cannot improve over Iter-
ated LK [50] which rightly deserves the title of the
``champion'' of TSP meta-heuristics.

To compare Iterated LK and its other variants
such as Iterated 3-Opt with GLS, we extended
our C++ library mentioned above to allow the
iterated local search scheme to be combined with

Fig. 8. Improvements introduced by the application of GLS to the simple FLS-2Opt.

Fig. 9. Iterated Lin±Kernighan as described by Johnson in [20].

490 C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499

the local search procedures of Table 1 included
in the library. In particular, a random and un-
biased Double-Bridge (DB) move was performed
in a local minimum. The solution obtained was
optimized by either one of the procedures of
Table 1 before compared against the current lo-
cal minimum. The new solution was accepted
only if it improved over the current local mini-
mum. To combine iterated local search with FLS
procedures, we activated the sub-neighborhoods
corresponding to the cities at the ends of the
edges involved in the DB move (see also Ref. [4]).
The above extensions to the library made avail-
able a general meta-heuristic method applicable
to all the local search procedures of Table 1. We
will refer to this method as the DB meta-heu-
ristic.

We tested all the possible combinations of the
DB meta-heuristic with the local searches of Ta-
ble 1 (except for BI-2Opt) on the set of 20 prob-
lems used to test the GLS combinations. The same
time limit (5 min of CPU time on DEC Alpha
3000/600 machines) was used and ten runs were

performed on each instance in the set. The per-
centage excess was averaged in each problem for
each DB variant. The best combination proved to
be that of the DB heuristic with FLS-LK which
outperformed DB with FI-LK (this last algorithm
is similar to the original method proposed by
Johnson [20]). The results for the various combi-
nations of DB with local search are included in
Appendix A.

Table 5 presents the results obtained for DB
with FLS-LK and DB with FI-LK compared with
those for GLS with FLS-2Opt found to be the best
GLS variant. As a point of reference, we also
provide results for FI-LK when repeated from
random starting points and for the same amount
of time. As we can see in Table 5, GLS with FLS-
2Opt is better on an average than both DB with
FLS-LK and DB with FI-LK. The solution quality
improvement over these methods although small it
is very signi®cant given that these methods are
amongst the best heuristic techniques for the TSP.
Note here that GLS with FLS-2Opt is by far a
simpler method requiring only a fraction of the

Table 5

GLS with FLS-2Opt compared with variants of Iterated LK

Problem Mean excess (%) over 10 runs

GLS with FLS-2Opt DB with FLS-LK DB with FI-LK Repeated FI-LK

att48 0 0 0 0

eil76 0 0 0 0

kroA100 0 0 0 0

bier127 0 0 0 0.0301

kroA150 0 0 0 0.00226

u159 0 0 0 0

kroA200 0 0 0 0.02452

gr202 0 0 0.00921 0.14143

gr229 0.00431 0.00475 0.01412 0.0977

gil262 0.00421 0 0.01682 0.05467

lin318 0.02641 0.24079 0.25578 0.62957

gr431 0.02392 0.22239 0.3327 0.67964

pcb442 0.04431 0.08173 0.06637 0.48525

att532 0.08994 0.08163 0.22502 0.53023

u574 0.14144 0.0924 0.11435 0.73838

rat575 0.09892 0.09745 0.13731 0.80762

gr666 0.20628 0.17587 0.41888 0.83762

u724 0.16822 0.16655 0.35696 0.93367

rat783 0.16125 0.15331 0.24075 1.00045

pr1002 0.62063 0.44633 1.04742 1.5046

Average excess 0.07949 0.08816 0.16178 0.42488

C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499 491

programming e�ort required to develop the DB
variants based on LK.

To further test GLS against the DB variants of
LK, we used a set of 66 TSPLIB problems from 48
to 2392 cities but this time we performed longer
runs lasting 30 min of CPU time each. Because of
the large number of instances used and the long
time the algorithms were allowed to run, one run
was performed on each instance. The results from
the experiments are presented in Table 6.

Even in these longer runs, GLS with FLS-2Opt
still ®nds better solutions than the DB variants of
LK. This result is of great signi®cance since it
further supports our claim that the application of
GLS on FLS-2Opt successfully converted the
method to a powerful algorithm. As we can see in
Table 6, the method is able to compete and even
outperform highly specialized heuristic methods
for the TSP.

The relative gains from the GLS and also DB
meta-heuristic are further illustrated in Fig. 10. In
this ®gure, we give the absolute improvement in
average solution quality (i.e. excess above the op-
timal solution) by the GLS and DB variants over
the corresponding repeated local search variants in
the set of 20 problems from TSPLIB.

As shown in Fig. 10, the DB meta-heuristic is
more e�ective than GLS when combined with LK.
In fact, GLS when combined with FI-LK is even
worse than Repeated FI-LK. This situation dra-
matically changes for fast local search variants
where GLS is better than DB when combined with
the FLS-3Opt or FLS-2Opt local searches im-
proving the solution quality over repeated local
search up to 5.14% in the case of FLS-2Opt. The
overall ranking of all the variants developed in
terms of average excess in the set of 20 TSPLIB
problems is given in Fig. 11. GLS with FLS-2Opt
was found to be best amongst the 18 algorithms
tested.

8.6.2. Genetic local search
In an e�ort to further improve the LK heuristic,

Genetic Algorithms recently appeared which in-
ternally use LK for improving o�spring solutions
generated by crossover operations. An example of
such a technique is the Genetic Local Search al-

gorithm proposed by Freisleben and Merz [11].
This method, in addition to using LK for im-
proving o�spring solutions, uses a mutation op-
erator which performs ®rst an 4-Opt exchange on
a population solution and then runs LK to convert
this solution to a local minimum. Iterated LK
mentioned above can be seen as a special case of
this method. In Ref. [11], results are reported for
Genetic Local Search on TSPLIB instances. The
authors consider the results produced by the
technique as superior to those published for any
GA approaches known to them and comparable to
top quality non-GA heuristic techniques. Fortu-
nately, the experiments in Ref. [11] were also
conducted on a DEC Alpha workstation running
at 175 MHz. This permits a meaningful compari-
son between this GA variant and GLS. We ran
GLS-FLS-2Opt on the same instances with a� 1/6
and for an equal number of times as the GA ap-
proach. In Table 7, the results from Ref. [11] are
compared with those we obtained for GLS using
FLS-2Opt.

Except for d198 which is a hard instance for
GLS (see results in Section 8.3), GLS was better
than the GA approach ®nding solutions of better
quality for att532 and rat783 while running
faster between 1.7 and 6.9 times. Note here that
the GA is using the best heuristic for the TSP
(i.e. DB followed by LK) while GLS the worst
(i.e. 2-Opt). Another remarkable result which
emerged from these experiments was that GLS
with FLS-2Opt can consistently ®nd the optimal
solutions for problems att532 and rat783. As far
as we know, optimal solutions to such large
problems can be consistently found only by heu-
ristic methods that are using LK (e.g. Iterated
LK or its variant Large-Step Markov Chains
method).

In fact, GLS was able to ®nd the optimal so-
lution in even larger problems. For example, GLS
with FLS-3Opt found the optimal solution for a
2319-city problem from TSPLIB (u2319) in less
than 20 min while GLS with FLS-2Opt found the
optimal solution to a 1002-city problem from
TSPLIB (pr1002) in 14 h of CPU time despite
running on Sparcstation 5 workstation which is
much slower than the DEC Alpha machines used
in the rest of the experiments.

492 C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499

T
a

b
le

6

G
L

S
w

it
h

F
L

S
-2

O
p

t
co

m
p

a
re

d
w

it
h

v
a

ri
a
n

ts
o

f
It

er
a
te

d
L

K
(l

o
n

g
ru

n
s)

P
ro

b
le

m
E

x
ce

ss
(%

)
in

o
n

e
ru

n
p

er
in

st
a
n

ce
P

ro
b

le
m

E
x
ce

ss
(%

)
in

o
n

e
ru

n
p

er
in

st
a
n

ce

G
L

S
w

it
h

F
L

S
-2

O
p

t
D

B
w

it
h

F
L

S
-L

K
D

B
w

it
h

F
I-

L
K

G
L

S
w

it
h

F
L

S
-2

O
p

t
D

B
w

it
h

F
L

S
-L

K
D

B
w

it
h

F
I-

L
K

a
tt

4
8

0
0

0
p

r2
6
4

0
0

0

ei
l5

1
0

0
0

p
r2

9
9

0
0

0

st
7

0
0

0
0

li
n

3
1
8

0
0
.2

7
1
2
4

0

ei
l7

6
0

0
0

¯
4
1
7

0
.0

0
8
4
3

0
.0

0
8
4
3

0
.4

2
9
9
8

p
r7

6
0

0
0

g
r4

3
1

0
0

0
.0

1
4
5
8

g
r9

6
0

0
0

p
r4

3
9

0
.0

0
6
5
3

0
.0

4
1
0
4

0

ra
t9

9
0

0
0

p
cb

4
4
2

0
.0

1
1
8
2

0
0

k
ro

A
1
0

0
0

0
0

d
4
9
3

0
.0

2
0
.0

0
8
5
7

0
.0

9
1
4
2

k
ro

B
1

0
0

0
0

0
a
tt

5
3
2

0
.0

6
5
0
1

0
0
.0

4
6
9
6

k
ro

C
1

0
0

0
0

0
a
li

5
3
5

0
.0

2
3
2
3

0
.0

1
4
3
3

0
.0

1
4
3
3

k
ro

D
1

0
0

0
0

0
u

5
7
4

0
0
.0

8
1
2
9

0
.1

0
5
6
8

k
ro

E
1

0
0

0
0

0
ra

t5
7
5

0
.0

4
4
2
9

0
.0

8
8
5
9

0
.0

5
9
0
6

rd
1

0
0

0
0

0
p

6
5
4

2
.0

4
6
5
9

2
.2

7
1
7
4

0
.0

4
6
1
9

ei
l1

0
1

0
0

0
d

6
5
7

0
.0

1
8
4

0
.0

3
6
8

0
.1

3
2
8
9

li
n

1
0

5
0

0
0

g
r6

6
6

0
.0

0
6
1
2

0
.0

9
9
8
8

0
.2

0
3
1
5

p
r1

0
7

0
0

0
u

7
2
4

0
.0

5
7
2
7

0
.0

9
7
8
3

0
.0

4
5
3
4

p
r1

2
4

0
0

0
ra

t7
8
3

0
0
.0

6
8
1
4

0
.0

1
1
3
6

b
ie

r1
2

7
0

0
0

d
sj

1
0
0
0

0
.3

1
2
2
2

0
.4

0
2
8
9

0
.8

8
7
4
2

p
r1

3
6

0
0

0
p

r1
0
0
2

0
.1

2
3
1
5

0
.0

7
5
6
6

0
.1

1
6
5
8

g
r1

3
7

0
0

0
u

1
0
6
0

0
.0

5
1
3
2

0
.1

5
6
6
3

0
.4

3
2
8
5

p
r1

4
4

0
0

0
p

cb
1
1
7
3

0
.1

4
7
6
5

0
.0

2
4
6
1

0
.4

3
7
6
7

k
ro

A
1
5

0
0

0
0

d
1
2
9
1

0
.2

2
2
4
4

0
.6

3
5
8
1

1
.1

6
1
3
9

k
ro

B
1

5
0

0
0

0
rl

1
3
0
4

0
.2

0
2
4
1

0
0
.5

0
3
6
6

p
r1

5
2

0
.1

8
4
5

8
0

0
rl

1
3
2
3

0
.1

8
5
4
2

0
.1

4
0
2
7

0
.2

2
9
0
9

u
1

5
9

0
0

0
¯

1
4
0
0

1
.5

6
0
0
9

2
.5

8
3
5
9

3
.1

1
0
2
5

ra
t1

9
5

0
0

0
u

1
4
3
2

0
.0

5
2
9
5

0
.2

7
7
8
3

0
.3

0
4
6
4

d
1

9
8

0
0

0
d

1
6
5
5

0
.4

0
7
2
2

0
.2

7
8
4
6

1
.1

9
7
5
3

k
ro

A
2
0

0
0

0
0

v
m

1
7
4
8

0
.3

3
2
1
9

0
.3

2
3
8
7

0
.7

5
6
7
8

k
ro

B
2

0
0

0
0

0
u

1
8
1
7

0
.5

7
5
1
7

0
.3

9
1
6

1
.0

2
0
9
6

g
r2

0
2

0
0

0
rl

1
8
8
9

0
.3

7
2
7
9

0
.9

0
9
5
3

0
.5

2
4
4
3

p
r2

2
6

0
0

0
u

2
1
5
2

0
.6

1
4
7
6

0
.4

6
3
7
9

0
.7

5
3
2
7

g
r2

2
9

0
0

0
u

2
3
1
9

0
.0

0
7
2
6

0
.2

5
2
2
9

0
.2

8
7
2
9

g
il

2
6

2
0

0
0

p
r2

3
9
2

0
.3

5
2
0
9

0
.2

7
4
5
8

0
.9

0
0
1
9

M
ea

n
0
.1

2
1
3
8

0
.1

5
5
7
5

0
.2

0
9
4
7

S
ta

n
d

a
rd

d
ev

ia
ti

o
n

0
.3

3
0
4
7

0
.4

3
6
2
7

0
.4

7
2
9
6

C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499 493

9. Summary and conclusions

In this paper, we described the technique of
GLS in detail and examined its application to the
TSP. Eight combinations of GLS with commonly
used TSP heuristics were described and evaluated
on publicly available instances of the TSP. GLS
with FLS-2Opt was found to be the best GLS
variant for the TSP. The variant was compared
and found to be superior to commonly used
variants of general search methods such as SA
and tabu search. Furthermore, we demonstrated
that GLS with FLS-2Opt is highly competitive (if
not better) than some of the best specialized al-
gorithms for the TSP such as Iterated LK and
Genetic Local Search. In total 16 alternative TSP
algorithms were compared against the GLS var-
iants and many of the GLS variants were found
to outperform or perform equally well to all
these techniques. In total 24 algorithms for the
TSP considered and extensive results were pre-

sented on publicly available instances of the
problem.

Experimental results should be treated with
care. Experimentation no matter how elaborate
and extensive it may be, it can only give indica-
tions of which algorithms are better than others
and that because of the many parameters involved
in the algorithms, di�erences in implementation,
and the limited number of instances used in ex-
periments.

We can safely conclude that the evidence
provided in this paper is enough to place GLS
amongst what somebody will characterize as
e�cient and e�ective methods for the TSP.
Given the simplicity of the algorithm and the
ease of tuning (i.e. single parameter), GLS with
FLS-2Opt could be considered as an ideal
practical method for the TSP especially when
no programming e�ort can be devoted in im-
plementing one of the complex specialized TSP
algorithms.

Fig. 10. Improvements in solution quality by the GLS and DB meta-heuristics in a set of 20 TSPLIB problems.

494 C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499

More generally, GLS is applicable not only to
TSP but to a range of other problems in combi-
natorial optimization. An open research issue is
the use of incentives implemented as negative
penalties which will encourage the use of speci®c
solution features appearing in high quality solu-
tions. Other potentially interesting research direc-
tions include automated tuning of the parameter k,

de®nition of e�ective termination criteria, and
di�erent utility functions for selecting the features
penalized. GLS could also be used to distribute the
search e�ort in other techniques such as Genetic
Algorithms.

Finally, from our experience on the TSP and
other domains we found it very easy to adapt
GLS and FLS to problem in hand something

Fig. 11. Overall ranking of the algorithms in terms of solution quality when tested on a set of 20 TSPLIB problems.

Table 7

GLS with FLS-2Opt compared with Genetic Local Search on ®ve TSPLIB instances

Problem GLS with FLS-2Opt Genetic local search

Mean excess (%) Mean CPU time (s) Mean excess (%) Mean CPU time (s)

eil51 (20 runs) 0 1.2 0 6

kroA100 (20 runs) 0 1.59 0 11

d198 (20 runs) 0 435 0 253

att532 (10 runs) 0 3526 0.05 6076

rat783 (10 runs) 0 5232 0.04 14,925

C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499 495

which suggests that it may be possible to build a
generic software platform for combinatorial op-
timization based on GLS. Although local search is
problem dependent, most of the other structures
of GLS and also FLS are problem independent.
Furthermore, a step by step procedure is usually
followed when GLS is applied to a new problem
(i.e. identify features, assign costs, etc.) something
which makes easier the use of the technique by
OR practitioners and Optimization Systems en-
gineers.

Acknowledgements

We would like to thank Nader Azarmi at BT
Laboratories, without his encouragement and
support this work may have never been completed.
We would also like to thank the Department of
Computer Science at the University of Essex for
the excellent computer facilities without which it
would have been impossible to perform the com-
putational experiments reported in this paper. This
research has been partially conducted in the

framework of the GENET project funded by the
EPSRC grant (GR/H75275).

Appendix A

The set of problems used in the evaluation of
the Repeated Local Search, GLS and Iterated
Local Search (using the DB move) variants on the
TSP included 20 problems from 48 to 1002 cities
all from TSPLIB. For each variant tested, 10 runs
were performed from random solutions and 5 min
of CPU time were allocated to each algorithm in
each run on a DEC Alpha 3000/600 (175 MHz)
machine. To measure the success of the variants,
we considered the percentage excess above the
optimal solution as in Eq. (5). For GLS variants,
the normalized lambda parameter a was provided
as input and k was determined after the ®rst local
minimum using Eq. (6). For GLS variants using 2-
Opt, a was set to a� 1/6 while the GLS variants
based on 3-Opt used the slightly lower value a� 1/
8 and the LK variants the even lower value a� 1/
10. Results for GLS are shown in Table 8.

Table 8

Results for GLS on the TSP

Problem No. cities Mean excess (%) over 10 runs

GLS-FI-LK GLS-FI-3Opt GLS-FI-2Opt GLS-FI-LK GLS-FLS-3Opt GLS-FLS-2Opt

att48 48 0 0 0 0 0 0

eil76 76 0 0 0 0 0 0

kroA100 100 0 0 0 0 0 0

bier127 127 0.218207 0.116586 0.019699 0.206625 0.002198 0

kroA150 150 0.029784 0.084075 0.000754 0.001508 0.001131 0

u159 159 0 0.460551 0.225285 0 0 0

kroA200 200 0.436189 0.526083 0.257083 0.088872 0.00681 0

gr202 202 0.732321 0.406375 0.309512 0.252988 0.011703 0

gr229 229 0.392788 0.468195 0.381644 0.152969 0.015007 0.004309

gil262 262 0.328007 0.723297 0.428932 0.084104 0.046257 0.004205

lin318 318 1.00264 1.74284 1.33884 0.583407 0.129197 0.02641

gr431 431 1.69438 2.71862 2.34071 0.563665 0.134003 0.023919

pcb442 442 0.966363 0.80783 1.36634 o.38816 0.038403 0.044311

att532 532 1.04746 2.28599 2.52871 0.386116 0.224662 0.089937

u574 574 1.36892 2.81263 3.66807 0.580951 0.278824 0.141444

rat575 575 0.806142 1.77174 2.25011 0.287908 0.171268 0.098922

gr666 666 1.66056 4.38707 6.00476 0.855251 0.497863 0.206279

u724 724 1.02505 2.25101 3.03054 0.61298 0.336674 0.168218

rat783 783 0.897116 2.24052 3.36929 0.511015 0.285033 0.161254

pr1002 1002 1.97877 3.31969 5.54336 1.04229 0.945357 0.620626

Average excess 0.729235 1.356155 1.653182 0.32994 0.15622 0.079492

496 C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499

Table 9

Results for Iterated Local Search on the TSP

Problem No. cities Mean excess (%) over 10 runs

DB-FI-LK DB-FI-3Opt DB-FI-2Opt DB-FLS-LK DB-FLS-3Opt DB-FLS-2Opt

att48 48 0 0 0 0 0 0

eil76 76 0 0 0 0 0 0

kroA100 100 0 0 0 0 0 0

bier127 127 0 0 0 0 0 0

kroA150 150 0 0.001508 0.003393 0 0 0

u159 159 0 0 0 0 0 0

kroA200 200 0 0.077295 0.10113 0 0.004767 0.075252

gr202 202 0.009213 0.088396 0.457171 0 0.155129 0.257719

gr229 229 0.014116 0.157576 0.382387 0.004755 0.064115 0.124515

gil262 262 0.016821 0.20185 0.626577 0 0.075694 0.475189

lin318 318 0.255776 0.719027 1.14588 0.240786 0.279093 0.3519

gr431 431 0.332703 0.94403 2.13495 0.222386 0.394192 0.615294

pcb442 442 0.066367 0.368861 1.8961 0.081728 0.309977 0.684745

att532 532 0.225023 1.03554 2.64971 0.08163 0.270534 0.422957

u574 574 0.114348 1.20038 2.94269 0.092399 0.404823 0.553042

rat575 575 0.13731 1.15016 3.75904 0.097446 0.445888 0.649638

gr666 666 0.418878 1.25178 3.27054 0.175874 0.359528 0.816489

u724 724 0.356955 1.43617 3.94106 0.166547 0.367693 0.627535

rat783 783 0.240745 1.79764 5.00454 0.153305 0.516693 0.744947

pr1002 1002 1.04742 2.05625 5.19902 0.446332 0.872049 1.05727

Average excess 0.161784 0.624323 1.675709 0.088159 0.226009 0.372825

Table 10

Results for Repeated Local Search on the TSP

Problem No. cities Mean excess (%) over 10 runs

REP-FI-LK REP-FI-3Opt REP-FI-2Opt REP-FLS-LK REP-FLS-3Opt REP-FLS-2Opt

att48 48 0 0 0 0 0 0

eil76 76 0 0 1.35688 0 0 1.48699

kroA100 100 0 0.39564 0.222254 0 0.225543 0.215205

bier127 127 0.030098 0.403696 1.19629 0.027899 0.370386 1.29513

kroA150 150 0.002262 0.8317 2.00912 0.002262 0.8038 2.01553

u159 159 0 0.30038 1.62619 0 0.265447 2.05894

kroA200 200 0.024517 1.00688 3.30768 0.004767 0.922092 3.23583

gr202 202 0.141434 1.22958 3.58591 0.129731 1.19995 3.68352

gr229 229 0.097695 1.36774 3.40129 0.094427 1.27301 3.56443

gil262 262 0.054668 1.3709 5.12195 0.054668 1.2868 5.77796

lin318 318 0.629565 2.17992 4.37936 0.636703 2.022676 4.9128

gr431 431 0.679641 2.07801 5.33877 0.665232 2.20915 5.97495

pcb442 442 0.48525 1.77636 6.65012 0.516956 1.72417 7.19544

att532 532 0.530232 2.29033 6.28368 0.579354 2.29141 7.13899

u574 574 0.738382 2.91397 7.46674 0.703157 2.6934 8.4788

rat575 575 0.807618 2.69895 7.69231 0.887347 2.70781 8.61066

gr666 666 0.837619 3.18259 8.14712 0.847811 2.97203 9.94096

u724 724 0.933667 2.90551 7.76903 1.0241 2.87473 8.83202

rat783 783 1.00045 3.2864 8.46468 1.06518 3.39882 9.38792

pr1002 1002 1.5046 3.50511 8.62028 1.39138 3.59138 10.5847

Average excess 0.424885 1.686183 4.631983 0.431549 1.64163 5.219539

C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499 497

Iterated Local Search was using the Double
Bridge move. No SA was used which is roughly
equivalent to the Large-Markov Chains Methods
with temperature T set to 0. Results for Iterated
Local Search are shown in Table 9.

Finally, Repeated Local Search was restarting
from a random solution whenever local search was
reaching a local minimum. Results for Repeated
Local Search are shown in Table 10. The names of
the variants were formed according to the fol-
lowing convention:

< meta-heuristic > ÿ
< localsearchtype > ÿ
< neighbourhoodtype > :

References

[1] E.H.L. Aarts, J.H.M. Korst, Simulated Annealing and

Boltzmann machines, Wiley, Chichester, UK, 1989.

[2] B.D. Backer, V. Furnon, P. Prosser, P. Kilby, P. Shaw,

Solving vehicle routing problems using constraint pro-

gramming and metaheuristics (submitted to the Journal of

Heuristics special issue on Constraint Programming).

[3] J.L. Bentley, Fast algorithms for geometric traveling

salesman problems, ORSA Journal of Computing 4

(1992) 387±411.

[4] B. Codenotti, G. Manzini, L. Margara, G. Resta, Pertur-

bation: An e�cient technique for the solution of very large

instances of the Euclidean TSP, ORSA Journal of Com-

puting 8 (2) (1996) 125±133.

[5] D.T. Connoly, An improved annealing scheme for the

QAP, European Journal of Operational Research 46

(1990) 93±100.

[6] A. Croes, A method for solving traveling-salesman prob-

lems, Operations Research 5 (1958) 791±812.

[7] A. Davenport, E. Tsang, C.J. Wang, K. Zhu, GENET: A

connectionist architecture for solving constraint satisfac-

tion problems by iterative improvement, in: Proceedings of

AAAI-94, 1994, pp. 325±330.

[8] L. Davis, Handbook of Genetic Algorithms, Van No-

strand Reinhold, New York, 1991.

[9] A. Dowsland, Simulated Annealing, in: C.R. Reeves (Ed.),

Modern Heuristic Techniques for Combinatorial Prob-

lems, Blackwell Scienti®c Publications, Oxford, 1993, pp.

20±69.

[10] T.A. Feo, M.G.C. Resende, Greedy randomized adaptive

search procedures, Journal of Global Optimization 6

(1995) 109±133.

[11] B. Freisleben, P. Merz, A genetic local search algorithm

for solving the symmetric and asymmetric TSP, in:

Proceedings of IEEE International Conference on Evo-

lutionary Computation, Nagoya, Japan, 1996, pp. 616±

621.

[12] F. Glover, Future paths for integer programming and

links to arti®cial intelligence, Computers & Operations

Research 5 (1986) 533±549.

[13] F. Glover, Tabu search and adaptive memory program-

ming ± Advances, applications and challenges, in: Barr,

R.S., Helgason, R.V., Kennington, J.(Eds.), Interfaces in

Computer Science and Operations Research, Kluwer

Academic Publishers, Dordrecht, 1996.

[14] F. Glover, Tabu search fundamentals and uses, Graduate

School of Business, University of Colorado, Boulder

(1995).

[15] F. Glover, Tabu search Part I, ORSA Journal of Com-

puting 1 (1989) 190±206.

[16] F. Glover, Tabu search Part II, ORSA Journal of

Computing 2 (1990) 4±32.

[17] F. Glover, Tabu search: Improved solution alternatives for

real world problems, in: Birge, J., Murty, K.G. (Eds.), Math-

ematical Programming: State of the Art, 1994, pp. 64±92.

[18] F. Glover, M. Laguna, Tabu search, in: C.R. Reeves (Ed.),

Modern Heuristic Techniques for Combinatorial Prob-

lems, Blackwell Scienti®c Publications, Oxford, 1993, pp.

71±141.

[19] D.E. Goldberg, Genetic Algorithms in Search, Optimiza-

tion, and Machine Learning, Addison±Wesley, Reading,

MA, 1989.

[20] D. Johnson, Local optimization and the traveling sales-

man problem, in: Proceedings of the 17th Colloquium on

Automata Languages and Programming, Lecture Notes in

Computer Science, vol. 443, Springer, Berlin, 1990, pp.

446±461.

[21] D. Johnson, L. McGeoch, The traveling salesman prob-

lem: A case study in local optimization (revised version

appeared in: E.H.L. Aarts, J.K. Lenstra (Eds.), Local

Search in Optimization, Wiley, Chichester, UK, 1997, pp.

215±310), Manuscript, November 1995.

[22] D. Johnson, C. Aragon, L. McGeoch, C. Schevon,

Optimization by simulated annealing: An experimental

evaluation. Part I. Graph partitioning, Operations Re-

search 37 (1989) 865±892.

[23] D. Johnson, C. Aragon, L. McGeoch, C. Schevon,

Optimization by simulated annealing: An experimental

evaluation. Part II. Graph coloring and number partition-

ing, Operations Research 39 (1991) 378±406.

[24] D. Johnson, J. Bentley, L. McGeoch, E. Rothberg, Near-

optimal solutions to very large traveling salesman prob-

lems (for experimental results from this work see also Ref.

[21]), in preparation.

[25] P. Kilby, P. Prosser, P. Shaw, Guided local search for the

vehicle routing problem, in: Proceedings of the Second

International Conference on Metaheuristics, 1997.

[26] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by

simulated annealing, Science 220 (1983) 671±680.

[27] J. Knox, Tabu search performance on the symmetric

traveling salesman problem, Computers & Operations

Research 21 (8) (1994) 867±876.

498 C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499

[28] P.J.M.V. Laarhoven, E.H.L. Aarts, Simulated Annealing:

Theory and Applications, Kluwer Academic Publishers,

Dordrecht, 1988.

[29] G. Laporte, The traveling salesman problem: An overview

of exact and approximate algorithms, European Journal of

Operational Research 59 (1992) 231±247.

[30] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B.

Shmoys (Eds.), The Traveling Salesman Problem: A

guided tour in combinatorial optimization, Wiley, New

York, 1985.

[31] S. Lin, Computer solutions of the traveling-salesman

problem, Bell Systems Technical Journal 44 (1965) 2245±

2269.

[32] S. Lin, B.W. Kernighan, An e�ective heuristic algorithm

for the traveling salesman problem, Operations Research

21 (1973) 498±516.

[33] K. Mak, A.J. Morton, A modi®ed Lin±Kernighan trav-

eling-salesman heuristic, Operations Research Letters 13

(1993) 127±132.

[34] O. Martin, S.W. Otto, Combining simulated annealing

with local search heuristics, in: G. Laporte, I.H. Osman

(Eds.), Metaheuristics in Combinatorial Optimization,

Annals of Operations Research, vol. 63, Baltzer Science

Publishers, 1996.

[35] O. Martin, S.W. Otto, E.W. Felten, Large-step Markov

chains for the TSP incorporating local search heuristics,

Operations Research Letters 11 (1992) 219±224.

[36] P. Morris, The breakout method for escaping from local

minima, in: Proceedings of AAAI-93, 1993, pp. 40±45.

[37] I.H. Osman, An introduction to meta-heuristics, in: M.

Lawrence, C. Wilson (Eds.), Operational Research Tuto-

rial Papers, Operational Research Society Press, Birming-

ham, UK, 1995, pp. 92±122.

[38] C.R. Reeves (Ed.), Modern Heuristic Techniques for

Combinatorial Problems, Blackwell Scienti®c Publica-

tions, Oxford, 1993.

[39] C.R. Reeves, Genetic algorithms, in: C.R. Reeves (Ed.),

Modern Heuristic Techniques for Combinatorial Prob-

lems, Blackwell Scienti®c Publications, Oxford, 1993, pp.

151±196.

[40] C.R. Reeves, Modern Heuristic Techniques, in: V.J.

Rayward-Smith, I.H. Osman, C.R. Reeves, G.D. Smith

(Eds.), Modern Heuristic Search Methods, Wiley, New

York, 1996, pp. 1±25.

[41] G. Reinelt, A traveling salesman problem library, ORSA

Journal of Computing 3 (1991) 376±384.

[42] G. Reinelt, The Traveling Salesman: Computational

Solutions for TSP Applications, Lecture Notes in Com-

puter Science, vol. 840, Springer, Berlin, 1994.

[43] B. Selman, H. Kautz, Domain independent versions of

GSAT solving large structured satis®ability problems,in:

Proceedings of IJCAI-93, 1993, pp. 290±295.

[44] E. Taillard, Robust taboo search for the QAP, Parallel

Computing 17 (1991) 443±455.

[45] E. Tsang, C. Voudouris, Fast local search and guided local

search and their application to British Telecom's work-

force scheduling problem, Operations Research Letters 20

(3) (1997) 119±127.

[46] E. Tsang, Foundations of Constraint Satisfaction, Aca-

demic Press, New York, 1993.

[47] C. Voudouris, E. Tsang, Partial constraint satisfaction

problems and guided local search, in: Proceedings of

Second International Conference on Practical Application

of Constraint Technology (PACT'96), London, April

1996, pp. 337±356.

[48] C. Voudouris, Guided local search for combinatorial

optimization problems, Ph.D. Thesis, Department of Com-

puter Science, University of Essex, Colchester, UK (1997).

[49] C.J. Wang, E. Tsang, Solving constraint satisfaction

problems using neural-networks, in: Proceedings of IEE

Second International Conference on Arti®cial Neural

Networks, 1991, pp. 295±299.

[50] M. Zachariasen, M. Dam, Tabu search on the geometric

traveling salesman problem, in: I.H. Osman, J.P. Kelly

(Eds.), Meta-Heuristics: Theory and Applications, Kluwer

Academic Publishers, Boston, MA, 1996, pp. 571±587.

C. Voudouris, E. Tsang / European Journal of Operational Research 113 (1999) 469±499 499

