Master theorem

For a result in enumerative combinatorics, see

MacMahon Master theorem.

In the analysis of algorithms, the master theorem pro-
vides a solution in asymptotic terms (using Big O no-
tation) for recurrence relations of types that occur in
the analysis of many divide and conquer algorithms. It
was popularized by the canonical algorithms textbook
Introduction to Algorithms by Cormen, Leiserson, Rivest,
and Stein, in which it is both introduced and proved. Not
all recurrence relations can be solved with the use of
the master theorem; its generalizations include the Akra—
Bazzi method.

1 Introduction

Consider a problem that can be solved using a recursive
algorithm such as the following:

procedure T( n : size of problem ) defined as: if n < 1
then exit

Do work of amount f(n)

T(n/b) T(n/b) ...repeat for a total of a times... T(n/b) end
procedure

In the above algorithm we are dividing the problem into
a number of subproblems recursively, each subproblem
being of size n/b. This can be visualized as building a
call tree with each node of the tree as an instance of one
recursive call and its child nodes being instances of subse-
quent calls. In the above example, each node would have
a number of child nodes. Each node does an amount of
work that corresponds to the size of the sub problem n
passed to that instance of the recursive call and given by
f(n) . The total amount of work done by the entire tree
is the sum of the work performed by all the nodes in the
tree.

Algorithms such as above can be represented as a recur-
rence relation T(n) = a T (%) + f(n) . This recur-
sive relation can be successively substituted into itself and
expanded to obtain expression for total amount of work
done. "

The Master theorem allows us to easily calculate the run-
ning time of such a recursive algorithm in ®-notation
without doing an expansion of the recursive relation
above.

2 Generic form

The master theorem concerns recurrence relations of the
form:

T(n) = aT(%) + f(n) where a>1,0>1

In the application to the analysis of a recursive algorithm,
the constants and function take on the following signifi-
cance:

e n is the size of the problem.
e a is the number of subproblems in the recursion.

e n/b is the size of each subproblem. (Here it is as-
sumed that all subproblems are essentially the same
size.)

e f (n) is the cost of the work done outside the re-
cursive calls, which includes the cost of dividing the
problem and the cost of merging the solutions to the
subproblems.

It is possible to determine an asymptotic tight bound in
these three cases:

2.1 Casel
2.1.1 Generic form

If f(n) = O (n®) where ¢ < log, a (using Big O nota-
tion)

then:

T(n)=0 (nlogb “)

2.1.2 Example
n 2
T(n) = 8T (5) +1000n
As one can see from the formula above:

a=38,b=2, f(n)=1000n2, so
f(n) =0 (n°), where c = 2
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Next, we see if we satisfy the case 1 condition:

log,a =log,8=3>c¢

It follows from the first case of the master theorem that

T(n) =0 (n®*) =0 (n?)

(indeed, the exact solution of the recurrence relation is
T(n) = 1001n® — 1000n? , assuming 7'(1) = 1).

2.2 Case2
2.2.1 Generic form

If it is true, for some constant k > 0, that:
f(n)=06 (nc log" n) where ¢ = log, a

then:
T(n)=06 (nc logh*? n)

2.2.2 Example
T(n) =2T (%) + 10n

As we can see in the formula above the variables get the
following values:

a=2,b=2,c=1, f(n) =10n

fin)=06 (nclogk n) wherec=1,k=0
Next, we see if we satisfy the case 2 condition:

log, a = log, 2 = 1, and therefore, yes, ¢ =
log, a

So it follows from the second case of the master theorem:

3 INADMISSIBLE EQUATIONS

2.3 Case3

2.3.1 Generic form
If it is true that:

f(n) = Q(n®) where ¢ > log, a
and if it is also true that:

af (%) < kf(n) for some constant k < 1 and
sufficiently large n (often called the regularity
condition)

then:

2.3.2 Example

T(n) = 2T (g) +n?

As we can see in the formula above the variables get the
following values:

a=2,b=2 f(n)=n?
f(n) =Q(n°), where ¢ = 2

Next, we see if we satisfy the case 3 condition:

log, a = log, 2 = 1, and therefore, yes, ¢ >
log, a

The regularity condition also holds:
2 (”72) < kn?, choosing k = 1/2

So it follows from the third case of the master theorem:

T(n)=06(f(n)=06 (nz) .
Thus the given recurrence relation 7'(n) was in @(n?), that
complies with the f (n) of the original formula.

(This result is confirmed by the exact solution of the re-
currence relation, which is 7'(n) = 2n? — n , assuming

T(n)=0 (nl"gb“ log’€+1 n) =0 (nl log1 n) =0 (nlogha)1) =1.)

Thus the given recurrence relation 7'(n) was in ©(n log
n).

(This result is confirmed by the exact solution of the re-
currence relation, which is T'(n) = n + 10nlog, n , as-
suming 7'(1) = 1)

3 Inadmissible equations

The following equations cannot be solved using the mas-
ter theorem:?!



e T(n)=2"T (%) +n"

a is not a constant; the number of sub-
problems should be fixed

o T(n) = 2T (2) + 2

logn

nlog X

e T(n)=0.5T (%) +n

a<1 cannot have less than one sub prob-
lem

*<math>T(n) = 64T\left (\frac{n}{8}\right )-n"2\log
n</math>

° f(n) which is the combination time is not
positive

e T(n) =T (%) +n(2—cosn)

case 3 but regularity violation.

In the second inadmissible example above, the difference
between f(n) and n'°% ¢ can be expressed with the ratio

f(n) _ lo‘giln n 1 1 <

aPE T = n1o33Z = miogn = fogn - 1U18 clear that £

n* for any constant € > 0 . Therefore, the difference is
not polynomial and the Master Theorem does not apply.

4 See also

e Akra—-Bazzi method

S Application to common algo-
rithms

6 Notes

[1] Duke University, “Big-Oh for Recursive Functions: Re-
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Theorem: Practice Problems and Solutions”, http://www.
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