

XXXday May XX, 2014

XX.XX am/pm – XX.XX am/pm
(Duration: X hour XX minutes)

DEGREES OF MSci, MEng, BEng, BSc, MA and MA (Social Sciences)

Algorithms and Data Structures 2

(Answer all questions.)

This examination paper is worth a total of 50 marks

You must not leave the examination room within the first hour or the last half-
hour of the examination. (for exams of 2 hours duration)

or

You must not leave the examination room within the first half hour or the last
fifteen minutes of the examination. (for exams of less than 2 hours duration)

Summer Diet Continued Overleaf/
1

1. A binary search tree is a binary tree T such that each node of T stores an item e. Items

stored in the left subtree rooted at a node v are less than the item in node v, and items

stored in the right subtree rooted at a node v are greater than the item in node v.

Below is java code for the BNode class, and below that code for the BSTree class.

(a) Write java code for the method insert(int e,BNode nd) in class BSTree,

where the method inserts the integer e into the tree if and only if e is not already

present in the tree. [5]

(b) Write java code for the method isPresent(int e,Bnode nd), where the

method delivers true if and only if e is in the tree. [5]

(c) Assume that the following items are inserted into an empty BSTree in the

following order: 30, 40, 24, 58, 48, 26, 11, 13, 36.

 Draw the tree.

 What is the height of the tree?

 Write out the preorder, inorder and postorder traversals of the tree. [5]

(d) Draw the tree after the node with item 30 has been deleted and outline the

algorithm you used for the deletion (you do not need to write Java code). [3]

Summer Diet Continued Overleaf/
2

2. An organisation has a data set of 1 million customers. The information the

organisation holds on customers includes their name and height in centimetres (cm).

The data set has been sorted into order using name as the primary key. The

organisation now wants to sort that data using height as a key, where height is an

integer in the range 100cm to 220cm. This might be done using a pigeonhole sort or

a radix sort.

(a) What is a pigeonhole sort? What is its complexity? Why might it be suitable

for this task? Assuming Java was being used, what data structures might you

use? [8]

(b) What is radix sort? What is its complexity? Why might it be suitable for this

task? [6]

(c) A sorting algorithm is stable if it preserves the original order of records with

equal keys. Is your proposed implementation of pigeonhole sort stable?

Explain your answer. [2]

3. Given a list of people and an individual person x we might want to produce a new list

of people that x knows, i.e. a list of friends of x. Below are three code snippets that

perform such a function, where x.knows(y) delivers true if x is a friend of y, false

otherwise.

(a) What is the complexity of filter1 and filter2? Explain your answer. [4]

(b) We might expect filter3 to run faster than filter2. Why is that? [2]

Summer Diet Continued Overleaf/
3

4. Suppose we are hashing integers into a 7-bucket hash table using the hash function

int hash(int i){return i % 7;}

The call put(i) will put the integer i into the hash table, get(i) delivers true if the

integer i is in the hash table (false otherwise) and remove(i) removes the integer i if

it is in the hash table. The functions put, get and remove use the above hash

function.

(a) Show the resulting open hash table, using linear probing, if the sequence of

calls put(1), put(8), put(27), put(64), put(125), put(216) are made on

an initially empty hash table. [3]

(b) Show what steps would be performed, and the resultant hash table, due to a

call to remove(8) followed by a call to get(64) and then get(15) [4]

(c) Show the resulting hash table, using separate chaining, if the sequence of calls
put(10), put(21), put(17), put(19), put(8), put(5), put(22),

put(11) are made on an initially empty hash table [3]

Summer Diet End/
4

