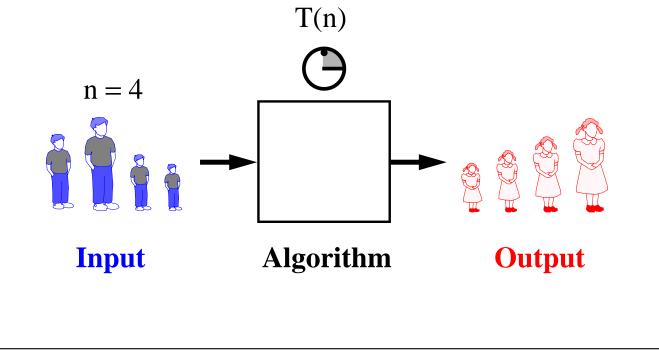
ANALYSIS OF ALGORITHMS

- Quick Mathematical Review
- Running Time
- Pseudo-Code
- Analysis of Algorithms
- Asymptotic Notation
- Asymptotic Analysis



A Quick Math Review

- Logarithms and Exponents
 - properties of logarithms:

$$log_{b}(xy) = log_{b}x + log_{b}y$$
$$log_{b}(x/y) = log_{b}x - log_{b}y$$
$$log_{b}x^{\alpha} = \alpha log_{b}x$$
$$log_{b}a = \frac{log_{a}x}{log_{a}b}$$

- properties of exponentials: $a^{(b+c)} = a^{b}a^{c}$ $a^{bc} = (a^{b})^{c}$ $a^{b}/a^{c} = a^{(b-c)}$ $b = a^{\log_{a}b}$ $b^{c} = a^{c*\log_{a}b}$

Analysis of Algorithms

A Quick Math Review (cont.)

• Floor

 $\lfloor x \rfloor$ = the largest integer $\leq x$

• Ceiling

 $\begin{bmatrix} x \end{bmatrix}$ = the smallest integer x

- Summations
 - general definition:

$$\sum_{i=s}^{t} f(i) = f(s) + f(s+1) + f(s+2) + \dots + f(t)$$

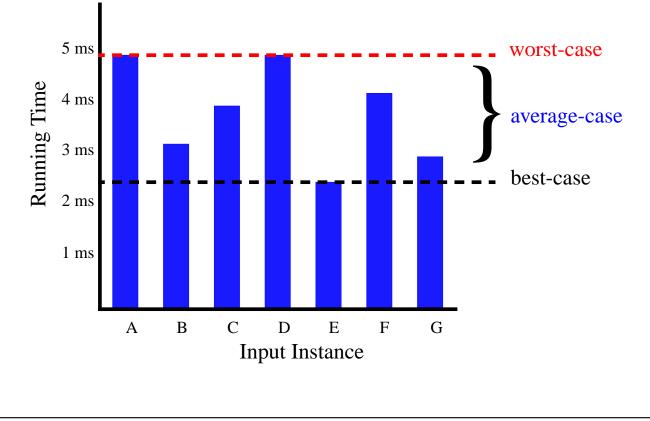
- where *f* is a function, *s* is the start index, and *t* is the end index
- Geometric progression: $f(i) = a^i$
 - given an integer *n* 0 and a real number $0 < a \neq 1$

$$\sum_{i=0}^{n} a^{i} = 1 + a + a^{2} + \dots + a^{n} = \frac{1 - a^{n+1}}{1 - a}$$

- geometric progressions exhibit exponential growth

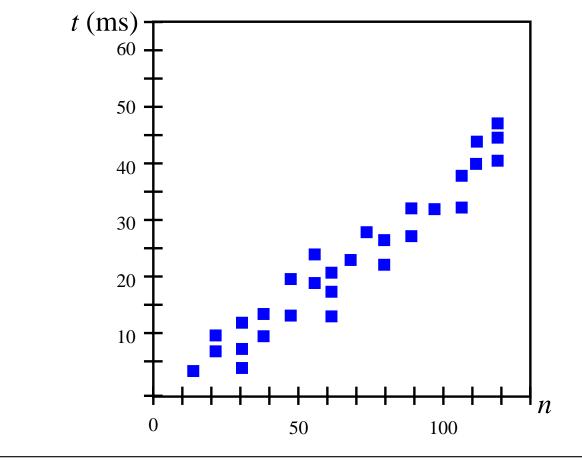
Average Case vs. Worst Case Running Time of an Algorithm

- An algorithm may run faster on certain data sets than on others,
- Finding the average case can be very difficult, so typically algorithms are measured by the worst-case time complexity.
- Also, in certain application domains (e.g., air traffic control, surgery) knowing the worst-case time complexity is of crucial importance.



Measuring the Running Time

- How should we measure the running time of an algorithm?
- Experimental Study
 - Write a program that implements the algorithm
 - Run the program with data sets of varying size and composition.
 - Use a method like System.currentTimeMillis() to get an accurate measure of the actual running time.
 - The resulting data set should look something like:



Beyond Experimental Studies

- Experimental studies have several limitations:
 - It is necessary to implement and test the algorithm in order to determine its running time.
 - Experiments can be done only on a limited set of inputs, and may not be indicative of the running time on other inputs not included in the experiment.
 - In order to compare two algorithms, the same hardware and software environments should be used.
- We will now develop a general methodology for analyzing the running time of algorithms that
 - Uses a high-level description of the algorithm instead of testing one of its implementations.
 - Takes into account all possible inputs.
 - Allows one to evaluate the efficiency of any algorithm in a way that is independent from the hardware and software environment.

Pseudo-Code

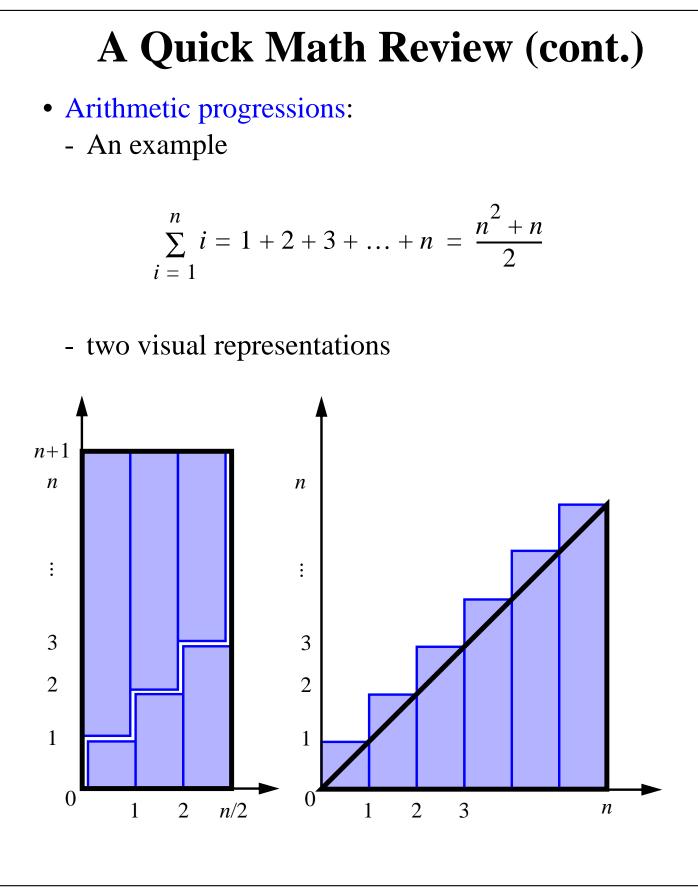
- Pseudo-code is a description of an algorithm that is more structured than usual prose but less formal than a programming language.
- Example: finding the maximum element of an array.

Algorithm arrayMax(A, n): Input: An array A storing n integers. Output: The maximum element in A. currentMax \leftarrow A[0] for $i \leftarrow 1$ to n - 1 do if currentMax < A[i] then currentMax \leftarrow A[i] return currentMax

- Pseudo-code is our preferred notation for describing algorithms.
- However, pseudo-code hides program design issues.

What is Pseudo-Code?

- A mixture of natural language and high-level programming concepts that describes the main ideas behind a generic implementation of a data structure or algorithm.
 - Expressions: use standard mathematical symbols to describe numeric and boolean expressions
 - use \leftarrow for assignment ("=" in Java)
 - use = for the equality relationship ("==" in Java)
 - Method Declarations:
 - Algorithm name(*param1*, *param2*)
 - Programming Constructs:
 - decision structures: if ... then ... [else ...]
 while-loops: while ... do
 repeat-loops: repeat ... until ...
 for-loop: for ... do
 array indexing: A[i]
 Methods:
 - calls: object method(args)
 returns: return value



Analysis of Algorithms

- Primitive Operations: Low-level computations that are largely independent from the programming language and can be identified in pseudocode, e.g:
 - calling a method and returning from a method
 - performing an arithmetic operation (e.g. addition)
 - comparing two numbers, etc.
- By inspecting the pseudo-code, we can count the number of primitive operations executed by an algorithm.
- Example:

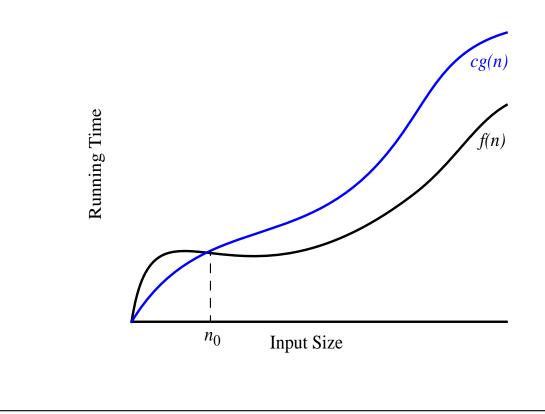
```
Algorithm arrayMax(A, n):Input: An array A storing n integers.Output: The maximum element in A.currentMax \leftarrow A[0]for i \leftarrow 1 to n - 1 doif currentMax < A[i] thencurrentMax \leftarrow A[i]return currentMax
```

Asymptotic Notation

- Goal: To simplify analysis by getting rid of unneeded information
 - Like "rounding": 1,000,001 \ddagger ,000,000 - $3n^2 \approx n^2$

• The "Big-Oh" Notation

- given functions f(n) and g(n), we say that f(n) is O(g(n)) if and only if $f(n) \le c g(n)$ for $n n_0$
- c and n_0 are constants, f(n) and g(n) are functions over non-negative integers



Analysis of Algorithms

Asymptotic Notation (cont.)

- Note: Even though 7n 3 is $O(n^5)$, it is expected that such an approximation be of as small an order as possible.
- Simple Rule: Drop lower order terms and constant factors.
 - 7n 3 is O(n)
 - $8n^2\log n + 5n^2 + n$ is $O(n^2\log n)$
- Special classes of algorithms:
 - logarithmic: $O(\log n)$
 - linear O(n)
 - quadratic $O(n^2)$
 - polynomial $O(n^k)$, k 1
 - exponential $O(a^n), n > 1$
- "Relatives" of the Big-Oh
 - $-\Omega(f(n))$: Big Omega
 - $-\Theta(f(n))$: Big Theta

Asymptotic Analysis of The Running Time

- Use the Big-Oh notation to express the number of primitive operations executed as a function of the input size.
- For example, we say that the arrayMax algorithm runs in *O*(n) time.
- Comparing the asymptotic running time
 - an algorithm that runs in O(n) time is better than one that runs in $O(n^2)$ time
 - similarly, $O(\log n)$ is better than O(n)
 - hierarchy of functions:
 - $\log n \ll n \ll n^2 \ll n^3 \ll 2^n$

• Caution!

- Beware of very large constant factors. An algorithm running in time 1,000,000 *n* is still O(n) but might be less efficient on your data set than one running in time $2n^2$, which is $O(n^2)$

Example of Asymptotic Analysis

• An algorithm for computing prefix averages

Algorithm prefix Averages 1(X): Input: An *n*-element array X of numbers. Output: An *n*-element array A of numbers such that A[i] is the average of elements X[0], ..., X[i]. Let A be an array of *n* numbers. for $i \leftarrow 0$ to n - 1 do $a \leftarrow 0$ for $j \leftarrow 0$ to *i* do $a \leftarrow a + X[j]$ $A[i] \leftarrow a/(i + 1)$ return array A

• Analysis ...

Example of Asymptotic Analysis

• A better algorithm for computing prefix averages:

Algorithm prefixAverages2(X): Input: An *n*-element array X of numbers. Output: An *n*-element array A of numbers such that A[i] is the average of elements X[0], ..., X[i]. Let A be an array of *n* numbers. $s \leftarrow 0$ for $i \leftarrow 0$ to n - 1 do $s \leftarrow s + X[i]$ $A[i] \leftarrow s/(i + 1)$ return array A

• Analysis ...

Advanced Topics: Simple Justification Techniques

- By Example
 - Find an example
 - Find a counter example
- The "Contra" Attack
 - Find a contradiction in the negative statement
 - Contrapositive
- Induction and Loop-Invariants
 - Induction
 - 1) Prove the base case
 - 2) Prove that any case *n* implies the next case (n + 1) is also true
 - Loop invariants
 - Prove initial claim S_0
 - Show that S_{i-1} implies S_i will be true after iteration *i*

Advanced Topics: Other Justification Techniques

- Proof by Excessive Waving of Hands
- Proof by Incomprehensible Diagram
- Proof by Very Large Bribes
 - see instructor after class
- Proof by Violent Metaphor
 - Don't argue with anyone who always assumes a sequence consists of hand grenades
- The Emperor's New Clothes Method
 - "This proof is so obvious only an idiot wouldn't be able to understand it."