Section 1.6 Functions

Definition: Let A and B be sets. A function (mapping, map) f from A to B, denoted f:A = B, is a subset of $A \times B$ such that

 $x[x \ A \ y[y \ B < x, y > f]]$ and $[< x, y_1 > f \ < x, y_2 > f] \ y_1 = y_2$

Note: f associates with each x in A one and only one y in B.

A is called the *domain* and

B is called the *codomain*.

If f(x) = y

- y is called the *image* of x under f
- x is called a *preimage* of y

(note there may be more than one preimage of y but there is only one image of x).

The *range* of f is the set of all images of points in A under f. We denote it by f(A).

If S is a subset of A then

$$\mathbf{f}(\mathbf{S}) = \{\mathbf{f}(\mathbf{s}) \mid \mathbf{s} \text{ in } \mathbf{S}\}.$$

Example:

- f(a) = Z
- the image of d is Z
- the domain of f is $A = \{a, b, c, d\}$
- the codomain is $B = \{X, Y, Z\}$
- $f(A) = \{Y, Z\}$
- the preimage of Y is b
- the preimages of Z are a, c and d
- $f({c,d}) = {Z}$

Injections, Surjections and Bijections

Let f be a function from A to B.

Definition: f is *one-to-one* (denoted 1-1) or *injective* if preimages are unique.

Note: this means that if a b then f(a) = f(b).

Definition: f is *onto* or *surjective* if every y in B has a preimage.

Note: this means that for every y in B there must be an x in A such that f(x) = y.

Definition: f is *bijective* if it is surjective and injective (one-to-one and onto).

Examples:

The previous Example function is neither an injection nor a surjection. Hence it is not a bijection.

Surjection but not an injection

Injection but not a surjection

Surjection and an injection, hence a bijection

Note: Whenever there is a bijection from A to B, the two sets must have the same number of elements or

the same *cardinality*.

That will become our *definition*, especially for infinite sets.

Examples:

Let A = B = R, the reals. Determine which are injections, surjections, bijections:

•
$$f(x) = x$$
,
• $f(x) = x^2$,

•
$$f(x) = x^3$$
,

•
$$f(x) = x + \sin(x)$$
,

•
$$f(x) = |x|$$

Let E be the set of even integers $\{0, 2, 4, 6, \ldots\}$.

Then there is a bijection f from N to E, the even nonnegative integers, defined by

$$\mathbf{f}(\mathbf{x})=2\mathbf{x}.$$

Hence, the set of even integers has the <u>same</u> cardinality as the set of natural numbers.

OH, NO! IT CAN'T BE....E IS ONLY HALF AS BIG!!!

Sorry! It gets worse before it gets better.

Inverse Functions

Definition: Let f be a bijection from A to B. Then the *inverse* of f, denoted f^{-1} , is the function from B to A defined as

$$f^{-1}(y) = x \text{ iff } f(x) = y$$

Example:

Let f be defined by the diagram:

Note: No inverse exists unless f is a bijection.

Discrete Mathematics and Its Applications 4/E **Definition:** Let S be a subset of B. Then

 $f^{-1}(S) = \{x \mid f(x) \quad S\}$

Note: f need not be a bijection for this definition to hold.

Example:

Let f be the following function:

Composition

Definition: Let f: B C, g: A B. The *composition of* f with g, denoted $f \circ g$, is the function from A to C defined by

 $f \circ g(x) = f(g(x))$

Examples:

If $f(x) = x^2$ and g(x) = 2x + 1, then $f(g(x)) = (2x+1)^2$ and $g(f(x)) = 2x^2 + 1$

Discrete Mathematics and Its Applications 4/E

Definition: The

floor function,

denoted f(x) = x or f(x) = floor(x), is the largest integer less than or equal to x.

The

ceiling function,

denoted f(x) = x or f(x) = ceiling(x), is the smallest integer greater than or equal to x.

Examples: 3.5 = 3, 3.5 = 4.

Note: the floor function is equivalent to truncation for positive numbers.

Example:

Suppose f: B C, g: A B and $f \circ g$ is injective.

What can we say about f and g?

• We know that if a b then f(g(a)) = f(g(b)) since the composition is injective.

Discrete Mathematics and Its Applications 4/E • Since f is a function, it cannot be the case that g(a) = g(b) since then f would have two different images for the same point.

• Hence, g(a) = g(b)

It follows that g must be an injection.

However, f need not be an injection (you show).