Section 1.6
Functions

Definition: Let A and B be sets. A function (mapping,
map) f from A to B, denoted f:A® B, isasubset of A" B
such that
"X[xT A® $y[yl BU<x,y>l f]]
and

[<x,y > fU<x,y, > fl® y, =y,

Note: f associates with each x in A one and only oney in
B.

A is called the domain and
B is called the codomain.
If f(X) =y
o y is called the image of x under f
» X iscalled apreimageof y

(note there may be more than one preimage of y but there
Is only one image of x).

The range of f isthe set of all images of pointsin A under
f. We denote it by f(A).
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If Sisasubset of A then
f(S) ={f(s) |sin S}.

Example:
A B
a o X
b o o
C
d o ©
f(a) =Z

e theimageof disZ

* thedomainof fisA ={a, b, c, d}
e thecodomainisB ={X, Y, Z}
« f(A) ={Y, Z}

e thepreimageof Y isb

* the preimages of Z area, cand d

- f({cd}) ={Z}
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| njections, Surjections and Bijections
Let f beafunction from A to B.

Definition: f is one-to-one (denoted 1-1) or injective if
preimages are unique.

Note: thismeansthat if a* bthenf(a) * f(b).

Definition: fisonto or surjectiveif every y in B hasa
preimage.

Note: this means that for every y in B there must be an x
in A such that f(x) =Y.

Definition: f is bijectiveif it issurjective and injective
(one-to-one and onto).

Examples:

The previous Example function is neither an injection nor
asurjection. Hence it is not a bijection.

A B
a o 0 X

bo\o Y

C
d2>oz

Surjection but not an injection
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Injection but not a surjection

A B
a oV
@) OW
d © X
oY

Surjection and an injection, hence a bijection

Note: Whenever there is a bijection from A to B, the two

sets must have the same number of e ements or

the same cardinality.

That will become our definition, especially for infinite

Sets.
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Examples:

Let A =B =R, thereals. Determine which are injections,
surjections, bijections:

o f(X) = X,

e f(X) = X2,

° f(X) = X31

o f(X) = X + sin(x),
« f(x) = x|

Let E be the set of even integers {0, 2,4, 6, ... .}.

Then thereis abijection f from N to E , the even
nonnegative integers, defined by

f(x) = 2x.

Hence, the set of even integers has the same cardinality as
the set of natural numbers.

OH, NO! IT CAN'T BE....EISONLY HALF ASBIG!!!
Sorry! It gets worse before it gets better.
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| nver se Functions

Definition: Let f be abijection from A to B. Then the

inverse of f, denoted f-1, is the function from B to A

defined as
f-1(y) = xiff f(x) =y

Example:
Let f be defined by the diagram:

A — f— B
a O v
b

O
. W
d © X
Ov

A e f —B
b O= O w
C O=
do O X

Ovy

Note: No inverse exists unlessf is a bijection.
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Definition: Let S be asubset of B. Then
f-1(S) ={x |[f(X) 1 S}

Note: f need not be a bijection for this definition to hold.

Example:

Let f be the following function:

2({Z}) ={c, d}
F{X,Y}) ={a b}
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Composition

Definition: Letf: B® C, g: A® B. The composition of
f with g, denoted fog, is the function from A to C defined

by
fog(x) = f(g(x))

Examples:

o o T 9
>§(<
O

-

A foq C
a O h
b

i
C
d O

If f(X) = x2and g(x) = 2x + 1, then f(g(x)) = (2x+1)2 and
g(f(x)) =2x2+1
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Definition: The
floor function,

denoted f(x) = exg or f(x) = floor(x), isthe largest integer
less than or equal to x.

The
ceiling function,

denoted f(x) = exg or f(x) = ceiling(x), is the smallest
Integer greater than or equal to x.

Examples. &3.5¢ = 3, 8.5¢ = 4.

Note: the floor function is equivalent to truncation for
positive numbers.

Example:
Supposef: B® C, g: A® B and fog isinjective.
What can we say about f and g?

 Weknow that if at bthenf(g(a)) * f(g(b)) since
the composition isinjective.
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» Sincef isafunction, it cannot be the case that g(a)
= g(b) since then f would have two different images for the
same point.

* Hence, g(a) * g(b)
It follows that g must be an injection.

However, f need not be an injection (you show).
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