Algorithmic Foundations 2

Exercises for drop-in tutorial in week 8

Mathematical Induction and Recursive Definitions

Note: questions marked with a * are additional questions and might not be covered in the tutorial

1. Use the Principle of Mathematical Induction to prove that

$$1.1! + 2.2! + 3.3! + ... + n.n! = (n + 1)! - 1$$

for all $n \ge 1$.

- 2. Use the Principle of Mathematical Induction to prove that $3^n < n!$ for all n > 6.
- 3. Use the Principle of Mathematical Induction to prove that $n^3 > n^2 + 3$ for all $n \ge 2$.
- 4. Let $a_1 = 2$, $a_2 = 9$, and $a_n = 2a_{n-1} + 3a_{n-2}$ for $n \ge 3$. Use the Second Principle of Mathematical Induction to prove that $a_n \le 3^n$ for all positive integers n.
- 5. Use the Principle of Mathematical Induction to prove that a function f defined by specifying f(0) and a rule for obtaining f(n+1) from f(n) (for each $n \ge 0$) is well-defined.
- 6. Find f(1), f(2), f(3), f(4) if f(n) is defined recursively by f(0)=3 and for each $n \ge 0$,
 - (a) f(n+1) = -2f(n)(b) f(n+1) = 3f(n)+7(c) $f(n+1) = {f(n)}^2-2f(n)-2$ (d) $f(n+1) = 3^{f(n)/3}$
- 9. Give a recursive definition of the function f with initial condition, for each of the following non-recursive definitions:
 - (a) $f(n) = 4.7^n$, for each $n \ge 0$ (b) f(n) = 3n + 5, for each $n \ge 0$
 - (c) f(n) = n!, for each $n \ge 1$
 - (d) $f(n) = n^2$, for each $n \ge 0$

- Give recursive definitions of the functions max and min, so that max(a₁,a₂,...,a_n) and min(a₁,a₂,...,a_n) are the maximum and minimum of the n real numbers a₁,a₂,...,a_n respectively.
- 11. Give a recursive definition of
 - (a) the set of odd positive integers
 - (b) the set of positive integer powers of 3
 - (c) the set of polynomials with integer coefficients.
- 12* Show that the set S defined by

 $\begin{array}{l} 5 \! \in \! S; \\ s \! \in \! S \text{ and } t \! \in \! S \rightarrow s \! + \! t \! \in \! S \end{array}$

is the set of positive integers divisible by 5.