Heuristics
with
Mad queens
and
example from jssp

Heuristics in choco
Variable ordering
Value ordering

Concrete examples of these interfaces are respectively DomOverDeg, IncreasingDomain, MinVal. The defor real variables.

```

\subsection*{4.3.1 Define your own variable selection}
```

You may extend this small library of branching schemes and heuristics by defining your own concrete classes of AbstractIntVarSelector. We give here an example of an IntVarSelector with the implementation of a static variable ordering :

```
```

public class StaticVarDrder extends AbstractIntVarSelector {

```
public class StaticVarDrder extends AbstractIntVarSelector {
```

public class StaticVarDrder extends AbstractIntVarSelector {
// the sequence of variables that need be instantiated
// the sequence of variables that need be instantiated
// the sequence of variables that need be instantiated
protected IntDomainVar[] vars;
protected IntDomainVar[] vars;
protected IntDomainVar[] vars;
public StaticVar0rder(IntDomainVar[] vars) {
public StaticVar0rder(IntDomainVar[] vars) {
public StaticVar0rder(IntDomainVar[] vars) {
this.vars = vars;
this.vars = vars;
this.vars = vars;
}
}
}
public IntDomainVar selectIntVar() {
public IntDomainVar selectIntVar() {
public IntDomainVar selectIntVar() {
for (int i = 0; i < vars.length; i++)
for (int i = 0; i < vars.length; i++)
for (int i = 0; i < vars.length; i++)
if (!vars[i].isInstantiated())
if (!vars[i].isInstantiated())
if (!vars[i].isInstantiated())
return vars[i];
return vars[i];
return vars[i];
return null;
return null;
return null;
}
}
}
}

```
}
```

}

``` fault branchings currently supported by Choco are available in packages src.choco.cpsolver.search.integer for integer variables, src.choco.cpsolver. search.set for set variables, src.choco.cpsolver.search.real

Notice on this example that you only need to implement method selectIntVar() which belongs to the contract of IntVarSelector. This method should return a non instantiated variable or null. Once the branching is finished, the next branching (if one exists) is taken by the search algorithm to continue the search, otherwise, the search stops as all variable are instantiated. To avoid the loop over the variables

\(\square\)
｜import choco．kernel．solver．search．integer．AbstractIntVarselector； import choco．kernel．solver．variables．integer．IntDomainvar；
／／
／／A static variable ordering heuristic
／／May be used to select only some of the variables，
／／i．e．the＂decision＂variables（as in jssp）
／／
public class VarOrder extends AbstractIntVarSelector \｛
protected IntDomainVar［］vars；
public VarOrder（IntDomainVar［］vars）\｛
this．vars \(=\) vars；
\}
public IntDomainvar selectIntVar（）\｛
for（int \(i=0 ; i<v a r s . l e n g t h ; i++)\)
if（！vars［i］．isInstantiated（））return（IntDomainVar）vars［i］； return null：
    \}
\}
\(\square\)

\section*{Example: Mad Queens}

Given a \(8 \times 8\) chessboard put 4 non attacking Queens on the board and leave the remaining Queens off the board.

Just to show a simple static variable ordering heuristic

\section*{File Edit Options Buffers Tools Java Help}
import static choco. Choco. *;
import choco.cp.model.CPModel;
import choco.cp.solver. CPSolver;
import choco.kernel.model.Model;
import choco.cp.solver.search.integer.varselector. StaticVarorder;
import choco.kernel.solver. Solver;
import choco.kernel.model.variables.integer.Integervariable;
import choco.kernel.solver.variables.integer. IntDomainvar;
public class MadQueens
public static void main(String[] args) \{
int \(n=8\);
Model \(m=\) new CPModel ();
Integervariable [] q = makeIntVarArray ("q", \(n, 0, n-1) ; / /\) new Integervariable[n];
m. addConstraint (allDifferent (q));
for (int \(i=0 ; i<n-1 ; i++\) )
        for (int \(j=i+1 ; j<n ; j++\) )
            m.addConstraint (neq(Math. abs(i-j), abs(minus(q[i], q[j]))));
Solver \(s=\) new CPSolver (i);
s. read (m);
IntDomainvar[] madQueen \(=\) new IntDomainVar [4];
for (int \(i=0 ; i<4 ; i++)\) madQueen[i] \(=s\).getVar (q[i]);
s.setVarIntSelector (new StaticVarorder (madQueen));
System. out. print \(\ln (s\). solve (false));
for (int \(i=0 ; i<n ; i++\) )
    System. out. println(s.getVar (q[i]));
s.printRuntimeSatistics();
\}
\}

\author{
Redyale Eis
}

Tr emacs@BIAK
```

File Edit Options Buffers Tools Java Help
import choco.kernel.solver.search.integer. AbstractIntVarSelector;
import choco.kernel.solver.variables.integer.IntDomainvar;
//
// A static variable ordering heuristic
// May be used to select only some of the variables,
// i.e. the "decision" variables (as in jssp)
//
public class MyVarOrder extends AbstractIntVarSelector {
protected IntDomainVar[] vars;
public MyVarOrder(IntDomainVar[] vars){
this.vars = vars;
}
public IntDomainVar selectIntVar(){
for (int i=0;i<vars.length;i++)
if (!vars[i].isInstantiated()) return (IntDomainVar)vars[i];
return null;
}

```
\}
Tremacs@BIAK
File Edit Options Buffers Tools Java Help
import static choco.Choco.*;
import choco.cp.model.CPModel;
import choco.cp.solver.CPSolver;
import choco.kernel.model. Model;
import choco.cp.solver.search.integer.varselector. Staticvarorder;
import choco.kernel.solver. Solver;
import choco.kernel.model.variables.integer. Integervariable;
import choco.kernel.solver.variables.integer. IntDomainvar;
MadQueens using MyVarOrder
public class MadQueens \{
public static void main(String[] args) \{
int \(n=8\);
Model m = new CPModel ();
IntegerVariable [] \(q=\) makeIntVardrray ("q", \(n, 0, n-1) ; / /\) new Integervariable[n];
m. addConstraint (allDifferent (ci));
for (int \(i=0 ; i<n-1 ; i++\) )
        for (int \(j=i+1 ; j<n ; j++\) )
            m. addConstraint (neq(Math. abs (i-j), abs (minus(q[i], q[j]))));
Solver \(s=\) new CPSolver (i);
s. read (m);
IntDomainVar[] madQueen \(=\) new IntDomainVar [4];
for (int \(i=0 ; i<4 ; i++)\) madQueen[i] \(=s\) getvar (q[i]);
s.setVarIntSelector (new MyVarorder (madQueen));
System. out. print \(\ln (s . s o l v e(f a l s e)) ;\)
for (int \(i=0 ; i<n ; i++)\)
    System. out. print \(\ln (s . g e t V a r(a[i])) ;\)
s.printRuntimeSatistics ();
\}
;



sourceforge
Summary \(\mid\) Files \(\mid\) Support \(\mid\) Develop \(\mid\) Hosted Apps \(\mid\) Tracker \(\mid\) Mailing Lists Forums Code

Help Monitor

Enter Keyword \(\square\) Help
\(\checkmark\) Search

sourceforga
FIND AND DEVELOP OPEN SOURCE SOFTWARE

\title{
SourceForge.net > Projects > choco > Forums > Help > Bug in Variable Ordering Heuristic
}
choco
Summary \(\mid\) Files \(\mid\) Support \(\mid\) Develop \(\mid\) Hosted Apps \(\mid\) Tracker \(\mid\) Mailing Lists Forums Code

Bug in Variable Ordering Heuristic Monitor
Enter Keyword

Help


Add A Reply >

I am coding my own (slack-based) variable ordering heuristic (for jssp). I have started with the heuristic in the manual (4.3.1 Define your own variable selection, page 37). When I run this static variable ordering heuristic I get the following error:
"Exception in thread "main" choco.kernel.solver.SolverException: Bug in solution :one or more decisions variables is not instantiated"
Just before the crash I have printed out all the decision variables passed to my variable ordering heuristic and all the variables are instantiated!!

I have also used the same variable ordering heuristic with the nqueens without a problem, but in that case all variables are decision variables.

I am using choco-2.1.0 (because our teaching machines all use a java version below 1.7.0)


Actually, I can replicate the bug using the \(n-4\) queens, with \(n=8\) : place 4 queens on an \(8 \times 8\) chessboard without caring about the remaining 4 positions. The variable ordering heuristic selects the first 4 variables, and the search then crashes with the above error :(
3.
cprudhom
2010-10-05 07:17:12 UTC

Hi Pat,
Did you declare the remaining variables as "no decision" ones?
To prevent users from declaring incomplete search, we have include a checker on decision variables (by default every variables) that throws an alert when one or more of these variables is not instantiated.
If a variable is instantiated by side effect (like in a dual modeling queen problems), it must be tagged "no decision" using the following code:
```

IntegerVariable i = Choco.makeIntVar("i", 0, 10, Options.V_NO_DECISION);

```
otherwise it should appear in a search strategy.
Hope it helps,
CP
4.

2010-10-0.5 10-22-53 UTC
- \(\underbrace{+100 \%}\)

Actually, I can replicate the bug using the \(n-4\) queens, with \(n=8\) : place 4 queens on an \(8 \times 8\) chessboard without caring about the remaining 4 positions. The variable ordering heuristic selects the first 4 variables, and the search then crashes with the above error :(
3.

\section*{cprudhom}

Hi Pat,
Did you declare the remaining variables as "no decision" ones?
To prevent users from declaring incomplete search, we have include a checker on decision variables (by default every variables) that throws an alert when one or more of these variables is not instantiated.
If a variable is instantiated by side effect (like in a dual modeling queen problems), it must be tagged "no decision" using the following code:
```

IntegerVariable i = Choco.makeIntVar("i", 0, 10, Options.V_NO_DECISION);

```
otherwise it should appear in a search strategy.
Hope it helps,
CP
4.
nnrosser
2010-10-0.5 10-22-5.3 IITC.

Google
CP, thanks! I get a compile error when I use Options.V_NO_DECISION :( Any idea why?
But the good news, once I tracked down all non-decision variables and marked them "cp:no_decision" it works a treat
So, thanks (and who is CP? Is it "Constraint Programmer"?)
2010-10-05 10:22:53 UTC
cprudhom 2010-10-05 16:23:16 UTC

Sorry, it was due to the version you use: 2.1.0, Options only appears in March 2010. But, you find it, using "cp:no_decision" is the same. And I didn't checked CHOCO with java 1.7 , I think java was retro-compatible...

Hope it helps,
Charles Prud'homme
6.
pprosser
2010-10-05 16:28:53 UTC

Charles, you have been a great help. You will get a mention in my lectures :)
\begin{tabular}{l} 
<Previnus \(11 \mid\) Next > \\
Done \\
\hline dy start
\end{tabular}

Google

CP, thanks! I get a compile error when I use Options.V_NO_DECISION :( Any idea why?
But the good news, once I tracked down all non-decision variables and marked them "cp:no_decision" it works a treat
So, thanks (and who is CP? Is it "Constraint Programmer"?)
5.
cprudhom


Sorry, it was due to the version you use: 2.1.0, Options only appears in March 2010. But, you find it, using "cp:no_decision" is the same. And I didn't checked CHOCO with java 1.7, I think java was retro-compatible..

Hope it helps,
Charles Prud'homme
6.
pprosser
2010-10-05 16:28:53 UTC

Charles, you have been a great help. You will get a mention in my lectures :)
\begin{tabular}{l} 
<Previnus \(11 \mid\) Next > \\
Done \\
\hline dy start
\end{tabular}

Google
4.
pprosser

CP, thanks! I get a compile error when I use Options.V_NO_DECISION :( Any idea why?
But the good news, once I tracked down all non-decision variables and marked them "cp:no_decision" it works a treat
So, thanks (and who is CP? Is it "Constraint Programmer"?)
5.
cprudhom


Sorry, it was due to the version you use: 2.1.0, Options only appears in March 2010. But, you find it, using "cp:no_decision" is the same. And I didn't checked CHOCO with java 1.7 , I think java was retro-compatible...

Hope it helps,
Charles Prud'homme

Charles, you have been a great help. You will get a mention in my lectures :)

Tremacs@BIAK
File Edit Options Buffers Tools Java Help
import static choco.Choco.*;
import choco.cp.model.CPModel;
import choco.cp.solver.CPSolver;
import choco.kernel.model. Model;
import choco.cp.solver.search.integer.varselector.StaticVarOrder;
import choco.kernel.solver.Solver;
import choco.kernel.model.variables.integer. Integervariable;
import choco.kernel.solver.variables.integer. IntDomainVar;
public class MadQueens \{
    public static void main(String[] args) \{
int \(\mathrm{n}=8\);
Model m = new CPModel();
//IntegerVariable [] \(q\) = makeIntVarArray("q", n, \(0, n-1\), "cp:no_decision"); //new IntegerVariable[n];
```

IntegerVariable [] q = new IntegerVariable[n];
for (int i=0;i<4;i++) q[i] = makeIntVar("q["+ i +"]",0,n-1);
for (int i=4;i<n;i++) q[i] = makeIntVar("q["+ i +"]",0,n-1,"cp:no_decision");

```
m.addConstraint (allDifferent (c)) ;
for (int \(i=0 ; i<n-1 ; i++\) )
        for (int \(j=i+1 ; j<n ; j++\) )
            m.addConstraint(neq(Math.abs(i-j), abs(minus(q[i], q[j]))));
Solver \(s=\) new CPSolver ();
s. read \((\mathrm{m})\);
IntDomainVar [] madQueen \(=\) new IntDomainVar [4];
for (int \(i=0 ; i<4 ; i++)\) madQueen[i] = s.getVar(c[i]);
s.setVarIntSelector (new MyVarOrder (madQueen));
System. out.println(s.solve(false));
for (int \(i=0 ; i<n ; i++\) )
        System. out.println(s.getVar (q[i]));
s.printRuntimeSatistics();
)
\}


Slack-based heuristics for jssp
jssp refresh

We have
- a set of resources
- a set of jobs
- a job is a sequence of operations/activities
- sequence the activities on the resources

An example: \(3 \times 4\)
job1

job2


Op2.3
Op2.4
job3

- a job is a sequence of operations (precedence constraints)
- each operation is executed on a resource (resource constraints)
- each resource can do one operation at a time
- the duration of an operation is the length of its box
- we have a due date, giving time windows for operations (time constraints)

An example: \(3 \times 4\)

Op2.1 Op2.2
Op3.1 Op3.2 Op3.3 Op3.4


\section*{The problem}

Assign a start time to each operation such that (a) no two operations are in process on the same machine at the same time and
(b) time constraints are respected

The problem is NP complete

\section*{An example: \(3 \times 4\)}


On the "green" resource, put a direction on the arrows

An example: \(3 \times 4\)

\section*{We do not bind operations to start times}


On the "green" resource, put a direction on the arrows
```

File Edit Options Buffers Tools Java Help
this.model = model;
start = makeIntVar (id,0, latestStart);
resource.add(this);
}
public Operation(String id, String resId, int duration, int latestStart,Model model){
this.id = id;
this.resId = resId;
this.duration = duration;
this.model = model;
start = makeIntVar (id,0,latestStart);
}
public String toString(){
return "{" + id + " " + resId + " " + duration + " [" + start.getLowB() + "," + start.getUppB() + "]}";
}
public IntegerVariable getStart(){return start;}

```
    public int getDuration()\{return duration; \}
    public Constraint before(Operation op2)\{
    return geq(op2.start, plus (start, duration));
op1.before(op2)

\section*{Picture of an operation}

earliest start
latest end


earliest start latest start


Constrained integer variable represents start time

op1

op2
\[
\text { op1.before(op2) } \longrightarrow \text { op1.start() + op1.duration() } \leq \text { op2.start() }
\]


\section*{propagate}
\[
\text { op1.before(op2) } \longrightarrow \text { op1.start() + op1.duration() } \leq \text { op2.start() }
\]

op1 and op2 cannot be in process at same time \(\longrightarrow \quad\) op1.before(op2) OR op2.before(op1)

Not easy to propagate until decision made (disjunction broken)

op1
 op2

Use a \(0 / 1\) decision variable \(d[i][j]\) as follows
\[
\begin{aligned}
& d[i][j]=0 \rightarrow \text { op[i]1.before(op[j]) } \\
& d[i][j]=1 \rightarrow \text { op[j]1.before(op[i]) }
\end{aligned}
\]

\section*{heuristics}

\section*{JUST ONE EXAMPLE}



\section*{Stephen F. Smith}

\section*{Research Professor, Robotics}

Director, Intelligent Coordination and Logistics Laboratory
The Robotics Institute
Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213
Email: sfs@cs.cmu.edu, Phone: (412) 268-8811,Fax: (412) 268-5569
Office: \(1502 E\) Newell \& Simon Hall



HOME


INTELLIGENT COORDINATION \& LOGISTICS
Stephen F. Smith, Director


Problems of large-scale coordination and logistics are ubiquitous, and better solutions are becoming increasingly critical in many domains. In manufacturing, trends toward industrial globalization and constrained market focus on high value-adding products, together with new coordination concepts such as electronic marketplaces, require organizations to become more agile. Military command and control infra-structure is faced with shrinking budgets and personnel, even though current geopolitical realities demand improved capability for rapid crisis-action mission planning and deployment. The rising cost of health care places a premium on more efficient methods for administration and delivery.

\title{
Slack-Based Heuristics For Constraint Satisfaction Scheduling *
}

\author{
Stephen F. Smith \\ The Robotics Institute Carnegie Mellon University \\ Pittsburgh, PA 15213 \\ sfs@isl1.ri.cmu.edu
}

\author{
Cheng-Chung Cheng \\ The Robotics Institute Carnegie Mcllon University \\ Pittsburgh, PA 15213 \\ ccen@isl1.ri.cmu.edu
}

\begin{abstract}
In this paper, we define and empirically evaluate new heuristics for solving the job shop scheduling problem with non-relaxable time windows. The hypothesis underlying our approach is that by approaching the problem as one of establishing sequencing constraints between pairs of operations requiring the same resource (as opposed to a problem of assigning start times to each operation) and by exploiting previously developed analysis techniques for limiting search through the space of possible sequencing decisions, simple, localized look-ahead techuiques can yield problem solving performance comparable to currently dominating techniques that rely on more sophisticated analysis of resource contention. We define a series of attention focusing heuristies based on simple analysis of the temporal flexibility associated with different sequencing decisions, and a similarly moti-
\end{abstract}
exclusive use of a designated machine for the duration of its processing (i.e. machines have unit processing capacity). Each job has an associated ready time and a deadline, and its production must be accomplished within this interval. The problem can be extended in various ways - to include selection among designated resource alternatives for each operation, to associate multiple resource requirements (e.g. machine, operator) with operations, etc. In any case, the objective is to determine a schedule for production that satisfies all temporal and resource capacity constraints.

The job shop scheduling with non-relaxable time windows problem is known to be NP-Complete (Garey \& Johnson 1979). Accordingly, the development of effective heuristic procedures for solving this constraint satisfaction problem (CSP) has been the subject of considerable previous research. This work, with fcw exceptions, has sought to exploit the special structure of the problem, in particular the structure of resource
straints. The solutions generated in this way typically represent a set of feasible schedules (i.e., the sets of operation start times that remain consistent with posted sequencing constraints), as opposed to a single assignment of operation start times. In (Erschler et al. 1976, 1980) the structure of resource capacity constraints is exploited to define dominance conditions for pruning the set of feasible sequencing alternatives at each stage of the search. More recently, (Muscettola 1993) has demonstrated the utility of global resource capacity analysis techniques (similar in spirit to the approach in (Sadeh 1991)) as a focusing mechanism within this alternative search space; in this case sequencing constraints are repeatedly posted between sets of conflicting operations until resource capacity analysis indicates no further possibility of resource contention.

Like (Muscettola 1993), we believe that the inherent flexibility gained by providing sets of feasible solutions offers considerable pragmatic value over typically overconstrained fixed times solutions. The principal claim of this paper, however, is that this second formulation of the problem also provides a more convenient search space in which to operate. When the problem is cast as a search for orderings between pairs of operations vying for the same resource, we argue that it is possible to obtain the look-ahead benefits of global resource capacity analysis through the use of simpler, local analysis of the sequencing possibilities associated with unordered operation pairs. We define a series of variable ordering heuristics based on measures of temporal slack which, when integrated with the search space pruning techniques developed in (Erschler et al. 1976), are shown to yield comparable problem solving performance to contention-based heuristics at a fraction of the compu-
- resource capacity constraints - for any two operations \(i\) and \(j\) requiring the same resource, \(s t_{i}+p_{i}\) \(\leq s t_{j} \vee s t_{j}+p_{j} \leq s t_{i}\)
- ready times and deadlines - for each operation \(i\) of job \(\mathcal{J}, r_{\mathcal{J}} \leq s t_{i}\) and \(s t_{i}+p_{i} \leq d_{\mathcal{J}}\), where \(r_{\mathcal{J}}\) and \(d_{\mathcal{J}}\) are the ready time and deadline respectively associated with job \(\mathcal{J}\).
While this problem representation provides a direct basis for problem solving search (and in fact has been taken as the starting point of most previous research), the problem can be alternatively formulated as one of establishing sequencing constraints between pairs of operations contending for the same resource over time. In this case, we define a decision variable ordering \(i_{i, j}\) for each pair of operations \(i\) and \(j\) that require the same resource, which can take on either of two values: \(i \rightarrow j\) (implying the constraint \(s t_{i}+p_{i} \leq s t_{j}\) ) and \(j \rightarrow i\) (implying \(s t_{j}+p_{j} \leq s t_{i}\) ). A solution then is a consistent assignment of values to all ordering variables. There are several potential advantages to this formulation. The advantage emphasized in this paper is that the simpler structure of the search space enables more straightforward accounting of resource capacity constraints and the use of simpler, localized analysis of current solution structure as a basis for variable and value ordering.

Our problem solving framework assumes a backtrack search procedure in which the solution is incrementally extended through the repeated selection and binding of an as yet unconstrained ordering \({ }_{i, j}\) variable (referred to as the posting of a new precedence relation). Whenever a new precedence relation is posted, constraint propagation is performed to ensure continued tempo-
straints. The solutions generated in this way typically represent a set of feasible schedules (i.e., the sets of operation start times that remain consistent with posted sequencing constraints), as opposed to a single assignment of operation start times. In (Erschler et al. 1976, 1980) the structure of resource capacity constraints is exploited to define dominance conditions for pruning the set of feasible sequencing alternatives at each stage of the search. More recently, (Muscettola 1993) has demonstrated the utility of global resource capacity analysis techniques (similar in spirit to the approach in (Sadeh 1991)) as a focusing mechanism within this alternative search space; in this case sequencing constraints are repeatedly posted between sets of conflicting operations until resource capacity analysis indicates no further possibility of resource contention.

Like (Muscettola 1993), we believe that the inherent flexibility gained by providing sets of feasible solutions oflers considerable pragmatic value over typically overconstrained fixed times solutions. The principal claim of this paper, however, is that this second formulation of the problem also provides a more convenient search space in which to operate. When the problem is cast as a search for orderings between pairs of operations vying for the same resource, we argue that it is possible to obtain the look-ahead benefits of global resource capacity analysis through the use of simpler, local analysis of the sequencing possibilities associated with unordered operation pairs. We define a series of variable ordering heuristics based on measures of temporal slack which, when integrated with the search space pruning techniques developed in (Erschler et al. 1976), are shown to yield comparable problem solving performance to contention-based heuristics at a fraction of the compu-
- resource capacity constraints - for any two operations \(i\) and \(j\) requiring the same resource, \(s t_{i}+p_{i}\) \(\leq s t_{j} \vee s t_{j}+p_{j} \leq s t_{i}\)
- ready times and deadlines - for each operation \(i\) of job \(\mathcal{J}, r_{\mathcal{J}} \leq s t_{i}\) and \(s t_{i}+p_{i} \leq d_{\mathcal{J}}\), where \(r_{\mathcal{J}}\) and \(d_{\mathcal{J}}\) are the ready time and deadline respectively associated with job \(\mathcal{J}\).
While this problem representation provides a direct basis for problem solving search (and in fact has been taken as the starting point of most previous research), the problem can be alternatively formulated as one of establishing sequencing constraints between pairs of operatione contending for the come recounce-oventime In this case, we define a decision variable ordering \({ }_{i, j}\) for each pair of operations \(i\) and \(j\) that require the same resource, which can take on either of two values: \(i \rightarrow j\) (implying the constraint \(s t_{i}+p_{i} \leq s t_{j}\) ) and \(j \rightarrow i\) (implying \(s t_{j}+p_{j} \leq s t_{i}\) ). A solution then is a consistent assignment of values to all ordering variables. There are several potential advantages to this formulation. The advantage emphasized in this paper is that the simpler structurc of the search space enables more straightforward accounting of resource capacity constraints and the use of simpler, localized analysis of current solution structure as a basis for variable and value ordering.

Our problem solving framework assumes a backtrack search procedure in which the solution is incrementally extended through the repeated selection and binding of an as yet unconstrained ordering \(i, j\) variable (referred to as the posting of a new precedence relation). Whenever a new precedence relation is posted, constraint propagation is performed to ensure continued tempo-
space in which to operate. When the problem is cast as a search for orderings between pairs of operations vying for the same resource, we argue that it is possible to obtain the look-ahead benefits of global resource capacity analysis through the use of simpler, local analysis of the sequencing possibilities associated with unordered operation pairs. We define a series of variable ordering heuristics based on measures of temporal slack which, when integrated with the search space pruning techniques developed in (Erschler et al. 1976), are shown to yield comparable problem solving performance to contention-based heuristics at a fraction of the computational cost.

The remainder of the paper is organized as follows. In Section 2, we specify the problem as a CSP search for operation pair orderings, and review dominance conditions that enable search space pruning relative to this model. In Sections 3 through 5, we propose a series of variable ordering heuristics and present comparative results on a previously studied suite of 60 test problems. Finally, in Section 6, we outline current work in applying the approach to schedule optimization.

Problem Representation and Search Framework

In more precise terms, a solution to the basic job shop scheduling CSP requires a consistent assignment of values to start time variables \(s t_{i}\) for each operation \(i\), under the following constraints:
- sequencing restrictions - for every precedence relation \(i \rightarrow j\) specified between operations \(i\) and \(j\) in the process plan of a given job \(\mathcal{J}, s t_{i}+p_{i} \leq s t_{j}\), where \(p_{i}\) is the processing time required by operation \(i\) of job \(\mathcal{J}\).
is that the simpler structure of the search space enables more straightforward accounting of resource capacity constraints and the use of simpler, localized analysis of current solution structure as a basis for variable and value ordering.

Our problem solving framework assumes a backtrack search procedure in which the solution is incrementally extended through the repeated selection and binding of an as yet unconstrained ordering \(g_{i, j}\) variable (referred to as the posting of a new precedence relation). Whenever a new precedence relation is posted, constraint propagation is performed to ensure continued temporal consistency and maintain current bounds on the earliest start time and latest finish time of each operation. \({ }^{1}\) If the decision \(i \rightarrow j\) is taken, for example, then est \(j_{j}\) (the earliest start time of \(j\) ) and \(l f t_{i}\) (the latest finish time of \(i\) ) are updated by
\[
\begin{gather*}
e s t_{j}=\max \left\{e s t_{j}, e s t_{i}+p_{i}\right\}, \text { and }  \tag{1}\\
l f t_{i}=\min \left\{l f t_{i}, l f t_{j}-p_{j}\right\} \tag{2}
\end{gather*}
\]
and these new values are then propagated forward or backward respectively through all pre-specified and posted temporal precedence relations. If during this process, \(e s t_{k}+p_{k}\) becomes greater than lft \(t_{k}\) for any operation \(k\) then an inconsistent set of assignments has been detected.

As indicated at the outset, our approach todivocting the search integrates a procedure previously developed by Erschler et al, referred to as Constraint-based Analysis (CBA), which exploits dominance conditions to prune the space of possible ordering assignments. To summarize their basic idea, assume that est \(t_{i}\) and \(l f_{i}\)
\({ }^{1}\) Since we are assuming in this paper that operation processing times are fixed, we could equivalently reason in terms of earliest and latest start times.


\section*{different cases:}
1. If \(l f t_{i}-e s t_{j}<p_{i}+p_{j} \leq l f t_{j}-e s t_{i}\) then \(i\) must be scheduled before \(j\) in any feasible extension of the current ordering decisions. (case 1)
2. If \(l f t_{j}-e s t_{i}<p_{i}+p_{j} \leq l f t_{i}-e s t_{j}\) then \(j\) must be scheduled before \(i\) in any feasible extension of the current ordering decisions. (case 2)
3. If \(n_{i}+n_{j}>l f t_{j}-e s t_{j}\) and \(n_{i}+n_{j}>l f t_{i}-e s t_{j}\) then there is no feasible schedule. (case 3)
4. If \(p_{i}+p_{j} \leq l f t_{j}-e s t_{i}\) and \(p_{i}+p_{j} \leq l f t_{i}-e s t_{j}\) then either sequencing decision is still possible. (case 4)
necessary conditions for determining a set of feasible schedules, and thus interleaved application of CBA and temporal constraint propagation yields an underspecified search procedure. What is needed to generate solutions are heuristics for resolving the undecided states specified in case 4. In this regard, previous use of CBA has emphasized fuzzy integration of sets of different scheduling rules. In (Bensana \& Dubois 1988), a voting procedure based on fuzzy set theory and approximate reasoning was developed and used in conjunction with a set of fuzzy scheduling rules. In (Kerr \& Walker 1989), fuzzy arithmetic together with fuzzy scheduling rules was utilized instead. Our goal, alternatively, is to investigate the effectiveness of CBA in conjunction with simple look-ahead analysis of current ordering flexibility. This leads to the search procedure that is graphically depicted in Figure 1, which we will refer to as precedence constraint posting (PCP). In the following sections, we define and evaluate a specific set of variable and value ordering heuristics.

\section*{Exploiting Estimates of Sequencing Flexibility}


Figure 1: PCP Search Procedure
we define two measures, corresponding to the two possible decisions that might be taken. For a given pair of currently unordered operations \((i, j)\) contending for the same resource, we define the "temporal slack remaining after sequencing \(i\) before \(j^{\prime \prime}\) as
\[
\begin{equation*}
\operatorname{slack}(i \rightarrow j)=l f t_{j}-e s t_{i}-\left(p_{i}+p_{j}\right) \tag{3}
\end{equation*}
\]
and similarly the "temporal slack remaining after sequencing \(j\) before \(i\) " as
\[
\begin{equation*}
\operatorname{slack}(j \rightarrow i)=l f t_{i}-e s t_{j}-\left(p_{i}+p_{j}\right) \tag{4}
\end{equation*}
\]

Figure 2 provides a graphic illustration of \(\operatorname{slack}(i \rightarrow\) \(j)\) and \(\operatorname{slack}(j \rightarrow i)\). Note that in either case the remaining slack is shared by both \(i\) and \(j\). Thus, the larger the temporal slack, the greater the chance that subsequent ordering decisions involving \(i\) and \(j\) can be feasibly imposed.

Given these measures of temporal slack, we now have a basis for identifying the most constrained or "most critical" decision and for specifying an initial variable ordering heuristic. We define the ordering decision
1. If \(l f t_{i}-e s t_{j}<p_{i}+p_{j} \leq l f t_{j}-e s t_{i}\) then \(i\) must be scheduled before \(j\) in any feasible extension of the current ordering decisions. (case 1)
2. If \(l f t_{j}-e s t_{i}<p_{i}+p_{j} \leq l f t_{i}-e s t_{j}\) then \(j\) must be scheduled before \(i\) in any feasible extension of the current ordering decisions. (case 2)
3. If \(p_{i}+p_{j}>l f t_{j}-e s t_{i}\) and \(p_{i}+p_{j}>l f t_{i}-e s t_{j}\) then there is no feasible schedule. (case 3)
4. If \(p_{i}+p_{j} \leq l f t_{j}-e s t_{i}\) and \(p_{i}+p_{j} \leq l f t_{i}-e s t_{j}\) then either sequencing decision is still possible. (case 4)
These dominance conditions of course provide only necessary conditions for determining a set of feasible schedules, and thus interleaved application of CBA and temporal constraint propagation yields an underspecified search procedure. What is needed to generate solutions are heuristics for resolving the undecided states specified in case 4. In this regard, previous use of CBA has emphasized fuzzy integration of sets of different scheduling rules. In (Bensana \& Dubois 1988), a voting procedure based on fuzzy set theory and approximate reasoning was developed and used in conjunction with a set of fuzzy scheduling rules. In (Kerr \& Walker 1989), fuzzy arithmetic together with fuzzy scheduling rules was utilized instead. Our goal, alternatively, is to investigate the effectiveness of CBA in conjunction with simple look-ahead analysis of current ordering flexibility. This leads to the search procedure that is graphically depicted in Figure 1, which we will refer to as precedence constraint posting (PCP). In the following sections, we define and evaluate a specific set of variable and value ordering heuristics.

\section*{Exploiting Estimates of Sequencing Flexibility}


Figure 1: PCP Search Procedure
we define two measures, corresponding to the two possible decisions that might be taken. For a given pair of currently unordered operations \((i, j)\) contending for the same resource, we define the "temporal slack remaining after sequencing \(i\) before \(j^{\prime \prime}\) as
\[
\begin{equation*}
\operatorname{slack}(i \rightarrow j)=l f t_{j}-e s t_{i}-\left(p_{i}+p_{j}\right) \tag{3}
\end{equation*}
\]
and similarly the "temporal slack remaining after sequencing \(j\) before \(i\) " as
\[
\begin{equation*}
\operatorname{slack}(j \rightarrow i)=l f t_{i}-e s t_{j}-\left(p_{i}+p_{j}\right) . \tag{4}
\end{equation*}
\]

Figure 2 provides a graphic illustration of \(\operatorname{slack}(i \rightarrow\) \(j)\) and \(\operatorname{slack}(j \rightarrow i)\). Note that in either case the remaining slack is shared by both \(i\) and \(j\). Thus, the larger the temporal slack, the greater the chance that subsequent ordering decisions involving \(i\) and \(j\) can be feasibly imposed.

Given these measures of temporal slack, we now have a basis for identifying the most constrained or "most critical" decision and for specifying an initial variable ordering heuristic. We define the ordering decision

scheduling rules was utilized instead. Our goal, alternatively, is to investigate the effectiveness of CBA in conjunction with simple look-ahead analysis of current ordering flexibility. This leads to the search procedure that is graphically depicted in Figure 1, which we will refer to as precedence constraint posting (PCP). In the following sections, we define and evaluate a specific set of variable and value ordering heuristics.

\section*{Exploiting Estimates of Sequencing Flexibility}

Intuitively, in situations where CBA leaves the search in a state with several unresolved ordering assignments (i.c., for each unordered operation pair, both ordering decisions are still feasible), we would like to focus attention on the ordering decision that is currently most constrained. Since the posting of any sequence constraint is likely to further constrain other ordering decisions that remain to be made, delaying the currently most constrained decision increases the chances of arriving at an infeasible problem solving state.

Implementation of such a variable ordering strategy requires a means of estimating the current flexibility associated with a given unresolved ordering decision. One simple indicator of flexibility is the amount of temporal slack that is retained by a given operation pair if a decision to sequence them is taken. To this end,
quencing \(J\) Derore \(?\) as
\[
\begin{equation*}
\operatorname{slack}(j \rightarrow i)=l f t_{i}-e s t_{j}-\left(p_{i}+p_{j}\right) . \tag{4}
\end{equation*}
\]

Figure 2 provides a graphic illustration of \(\operatorname{slack}(i \rightarrow\) \(j)\) and \(\operatorname{slack}(j \rightarrow i)\). Note that in either case the remaining slack is shared by both \(i\) and \(j\). Thus, the larger the temporal slack, the greater the chance that subsequent ordering decisions involving \(i\) and \(j\) can be feasibly imposed.

Given these measures of temporal slack, we now have a basis for identifying the most constrained or "most critical" decision and for specifying an initial variable ordering heuristic. We define the ordering decision with the overall minimum slack, to be the decision ordering \({ }_{i, j}\) for which
\[
\begin{gathered}
\min \{\operatorname{slack}(i \rightarrow j), \operatorname{slack}(j \rightarrow i)\}= \\
\min _{(u, v)}\{\min \{\operatorname{slack}(u \rightarrow v), \operatorname{slack}(v \rightarrow u)\}\}
\end{gathered}
\]
for all unassigned ordcring \({ }_{u, v}\). Using this notion of criticality, we define a variable ordering heuristic that selects this decision at each unresolved state of the search.

With respect to the decision of which sequencing constraint to post (i.e., value assignment), we intuitively prefer the decision that leaves the search with the most degrees of freedom. Thus we post the sequencing constraint that retains the largest amount of temporal slack.

Microsoft Pow..



Figure 2: \(\operatorname{Slack}(\mathrm{i} \rightarrow \mathrm{j})\) and \(\operatorname{Slack}(\mathrm{j} \rightarrow \mathrm{i})\)

Summarizing then, our initial configuration of variable and value ordering heuristics is defined as follows:
I. Min-Slack variable ordering: Select the sequencing decision with the overall minimum temporal slack. Suppose this decision is ordering \({ }_{i, j}\).
II. Max-Slack value ordering: choose the sequencing constraint \(i \rightarrow j\) if \(\operatorname{slack}(i \rightarrow j)>\operatorname{slack}(j \rightarrow i)\); otherwise choose \(j \rightarrow i\).

\section*{A Computational Study}

In this section we evaluate the performance of the above heuristics in conjunction with the PCP search
tion). Both ORR/FSS and CPS have reported very strong results on the set of scheduling problems used in this study.

As an additional point of comparison, we also include results obtained with three priority dispatch rules from the field of Operations Research: EDD, COVERT, and ATC (Vepsalainen \& Morton 1987). These heuristics are frequently used and have been determined to work very well in job shop scheduling circumstances where expected job tardiness is low (as would likely be the case if a feasible solution exists).

The set of problems used in this study come from the dissertation of Sadeh (Sadeh 1991). The problem set consists of 60 randomly generated scheduling problems. Each problem contains 10 jobs and 5 resources. Each job has 5 operations. In all problems, deadlines were generated randomly within a specified range. A controlling parameter was used to generate problems in three different deadline ranges: wide (w), median (m), and tight (t). A second parameter was used to generate problems with both 1 and 2 "bottleneck" resources. Combining these two parameters, 6 different categories of scheduling problems were defined, and 10 problems were generated for each category. The problem categories were carefully defined to cover a variety of manufacturing scheduling circumstances. While each problem has at least one feasible solution, they range in difficulty from easy to hard.

The results obtained on these problems, along with those previously reported, are given in Table 1 (where problem difficulty increases from top to bottom). The number of problems solved by each approach by problem category are indicated. In the case of ORR/FSS
2
\(-2\)

\section*{Incorporating Additional Search Bias}

While Min-Slack performed quite well over the tested problem set, it does not in fact utilize all of the information provided by the temporal slack data. In particular, it relies exclusively on the smaller slack value in determining the criticality of a ordering decision ordering \(_{i, j}\), and ignores any information that might be provided by the larger one.
The most common problem created by disregarding i.his additional value appears in a form of tie-breaking Consider the following example. Suppose that we have two unsequenced operation pairs, one with associated temporal slack values of \((20,3)\), and the other with values of \((4,3)\). Min-Slack does not distinguish between the criticality of these two ordering decisions, since the minimum value in both cases is 3 . In the event that the overall minimum slack over all candidate decisions is also 3, then Min-Slack will choose randomly. But, in this case sequencing the second operation pair is certainly more critical since the flexibility that will be left after the decision is made will be considerably less than the flexibility that will remain if the first unsequenced operation pair is instead chosen and sequenced.

Given this insight, we define a second variable ordering heuristic, which operates exactly as Min-Slack except in situations where more than one pending decision ordering \(g_{i, j}\) is identified as a decision with overall minimum temporal slack. In these situations, ties are broken by selecting the decision with the minimum larger temporal slack value. Applying the PCP procedure with this extended heuristic to the same suite of 60 problems yielded 57 solved problems. Although this

\footnotetext{
\({ }^{2}\) All computation times were obtained on a Decstation 5000. Both ORR/FSS and CPS are Lisp-based systems; our procedure is implemented in C.
}
ues increases and decrease criticality as the slack values become more dissimilar might provide more effective search guidance.

Let us define a measure of similarity in the range [ 0 , 1] such that for slack value pairs with identical values, the similarity value is 1 and as the distance between large and small slack values increases, the similarity value approaches 0 . More precisely, we estimate the similarity between two slack values by the following ratio expression:
\[
\begin{equation*}
S=\frac{\min \{\operatorname{slack}(i \rightarrow j), \operatorname{slack}(j \rightarrow i)\}}{\max \{\operatorname{slack}(i \rightarrow j), \operatorname{slack}(j \rightarrow i)\}} \tag{5}
\end{equation*}
\]

Given the definition of \(S\) and the direction of bias desired, we now define a new criticality metric, referred to as biased temporal slack, as follows:
\[
\begin{equation*}
B \operatorname{slack}(i \rightarrow j)=\frac{\operatorname{slack}(i \rightarrow j)}{f(S)} \tag{6}
\end{equation*}
\]
where \(f\) is a monotonically increasing function.
With little intuition as to the appropriate level of bias to exert on the criticality calculation, but assuming that the level of bias should not be too great, we use \(\sqrt[n]{S}, n \geq 2\), to define a set of alternatives, yielding
\[
\begin{equation*}
\operatorname{Bslack}(i \rightarrow j)=\frac{\operatorname{slack}(i \rightarrow j)}{\sqrt[n]{S}} \tag{7}
\end{equation*}
\]

By empirical reasoning, we also define a composite form of the metric with two different parameters, \(n_{1}\) and \(n_{2}\), as
\[
\begin{equation*}
\text { Bslack }(i \rightarrow j)=\frac{\operatorname{slack}(i \rightarrow j)}{\sqrt[n]{S}}+\frac{\operatorname{slack}(i \rightarrow j)}{\sqrt[n]{S}} \tag{8}
\end{equation*}
\]

Table 2 presents results obtained using overall minimum Bslack as a variable ordering criterion for different values of \(n\) in Eqn. (7) and \(n_{1}\) and \(n_{2}\) in Eqn. (8)

\section*{8) emacs@AMAK \\ File Edit Options Buffers Tools Java Help \\ }
```

|\square

```
```

import static choco.Choco.*;
import choco.kernel.model.variables.integer.Integervariable;
import choco.kernel.model.constraints.Constraint;
public class Operation {
private String id;
private String resId;
private int duration;
private IntegerVariable start;
public Operation(String id,String resId, int duration,int latestStart){
this.id = id;
this.resId = resId;
this.duration = duration;
start
= makeIntVar(id,0,latestStart,"cp:no_decision");
}
public String toString() {
return "{" + id + " " + resId + " " + duration + " [" + start.getLowB() + "," + start.getUppB() + "]}";
}
public IntegerVariable getStart() {return start;}
public int getDuration() {return duration;}
public Constraint before(Operation op2) {
return geq(op2.start,plus(start,duration));
}
}

```

\section*{}
```

import java.util.ArrayList;
import static choco.Choco.*;
import choco.cp.model.CPModel;
import choco.kernel.model.Model;
import choco.kernel.model.variables.integer.IntegerVariable;
import choco.kernel.model.constraints.Constraint;
public class Resource {
private ArrayList<Operation> operations;
private Model model;
private ArrayList<Decision> decisions;
private String id;
public Resource(Model model,String id) {
operations = new ArrayList<Operation>();
decisions = new ArrayList<Decision>()
this.model = model;
this.id = id
}
public void add(Operation op) {operations.add(op);}
public Operation getOperation(int i) {return (Operation) operations.get(i);}
public ArrayList<Decision> getDecisions() {return decisions;}
public String getId() {return id;}
public String toString() {
return "Res: " + id + " NoOps: " + operations.size() + " NoDecVars: " + decisions.size();
}

```

```

public String toString(){ A
return "Res: " + id + " NoOps: " + operations.size() + " NoDecVars: " + decisions.size();
}
public void constrain() {
int n = operations.size();
for (int i=0;i<n-1;i++){
Operation op_i = getOperation(i);
for (int j=i+1;j<n;j++){
Operation op_j = getOperation(j);
IntegerVariable decision = makeIntVar("dec_"+ id +"[" + i + "," + j + "]",0,1);
decisions.add(new Decision(decision,op_i,op_j));
Constraint c1 = op_i.before(op_j);
Constraint c2 = op_j.before(op_i);
Constraint c3 = eq(decision,0);
Constraint c4 = eq(decision,1);
Constraint c5 = implies(c3,c1);
Constraint c6 = implies(c4,c2);
model.addConstraint(c5);
model.addConstraint(c6);
}
}
}
\}

import choco.kernel.model.variables.integer.IntegerVariable;
public class Decision \{
private IntegerVariable d;
private Operation op_i;
private Operation op_j;
public Decision(IntegerVariable d,Operation op_i,Operation op_j) \{
this.d $=d$;
this.op_i $=$ op_i;
this.op_j $=$ op_j;
\}

```
    public String toString(){return "{" + d + " " + op_i + " " + op_j + "}";}
```

 public IntegerVariable getD() \{return d;\}
 public Operation getOp_i() \{return op_i;\}
 public Operation getop_j() \{return op_j;\}
 \}
//
// A Decision is a triple where 0/1 variable d
// decides the ordering between two operations
// on a resource
//

```
File Edit Options Buffers Tools Java Help
```


import java.util.ArrayList;
import choco.kernel.model.Model;
public class Job \{
String id;
private ArrayList<Operation> operations;
private Model model;
public Job(String id,Model model) \{
this.id $=i d$;
operations $=$ new ArrayList<Operation>();
this.model $=$ model;
\}
public void add(Operation op) \{
operations.add (op) ;
$\}$
public Operation get (int i) \{
return operations.get(i);
\}
public void constrain() \{
int $n=$ operations.size();
for (int $i=0 ; i<n-1 ; i++$) $\{$
Operation op1 $=$ get (i);
Operation op2 = get(i+1);
model.addConstraint (op1.before (op2)) ;
$\}$
\}
//
$/ /$ post(p,op2.start $>=$ op1.start + op1.duration)]
Job. java

File Edit Options Buffers Tools Java Help


```
public class JSSP {
    private ArrayList<Job> jobs;
    private ArrayList<Resource> resources;
    private int dueDate;
    private Operation endOp;
    private Model model;
    private int n;
    private int m;
    public JSSP(Model model,int dueDate,String fname) throws IOException {
        Scanner sc = new Scanner(new File(fname));
        jobs = new ArrayList<Job>();
        resources = new ArrayList<Resource>();
        this.dueDate = dueDate;
        this.model = model;
        n = sc.nextInt(); // number of jobs
        m = sc.nextInt(); // number of resources
        endOp = new Operation("endOp","noRes",0,dueDate);
    for (int i=0;i<m;i++) resources.add(new Resource(model,"r_"+i));
    for (int i=0;i<n;i++){
        Job job_i = new Job("job_"+i,model);
        for (int j=0;j<m;j++) {
            Resource res = resources.get(sc.nextInt());
            Operation op = new Operation("op_"+i+"_"+j,res.getId(),sc.nextInt(),dueDate);
            res.add(op);
                job_i.add(op);
            }
            job i.add(endOp);
            jobs.add(job_i);
            job_i.constrain();
        }
        sc.close();
```

--\--- JSSP.java
(Java/1 Abbrev)

```
File Edit Options Buffers Tools Java Help
```



```
public JSSP(Model model,int dueDate,String fname) throws IOException {
    Scanner sc = new Scanner(new File(fname));
    jobs
    resources
    this.dueDate
    this.model
    n
    m = sc.nextInt(); // number of resources
    endOp = new Operation("endOp","noRes",0,dueDate);
    for (int i=0;i<m;i++) resources.add(new Resource(model,"r_"+i));
    for (int i=0;i<n;i++) {
        Job job_i = new Job("job_"+i,model);
        for (int j=0;j<m;j++) {
            Resource res = resources.get(sc.nextInt());
            Operation op = new Operation("op_"+i+"_"+j,res.getId(),sc.nextInt(), dueDate);
            res.add(op);
            job_i.add(op);
        }
        job_i.add(endOp);
        jobs.add(job_i);
        job_i.constrain();
    }
    sc.close();
    for (int j=0;j<m;j++) {
        Resource r_j = resources.get(j);
        r_j.constrain();
    }
}
```


emacs@AMAK

File Edit Options Buffers Tools Java Help


```
    public Decision[] getDecisions() {
        Decision[] decisions = new Decision[((n * (n-1))/2) * m];
        int k=0;
        for (int i=0;i<m;i++)
            for (Decision d : resources.get(i).getDecisions()) {
            decisions[k] = d;
            k++;
            }
    return decisions;
    }
```

$\stackrel{3}{\square}$

We have an engineering problem. Search solver uses IntDomainVar and model used IntegerVariable. To work out slack on a decision variable we need to get access to information on Operations, in particular duration and start time. How do we do that?
sourceforga
Summary | Files \mid Support \mid Develop \mid Hosted Apps \mid Tracker \mid Mailing Lists Forums Code

Help Monitor

Enter Keyword \vee Search

ChOCO
Summary \mid Files \mid Support \mid Develop \mid Hosted Apps \mid Tracker \mid Mailing Lists Forums Code

Adding information to an IntDomainVar Monitor
Enter Keyword \quad Help \quad Search Add Reply $>$

C SourceForge. net: choco: Topic: Adding information to an IntDomainVar - Windows Internet Explorer

Hi ,

There are no hook in IntDomainVar, but if you can use IntDomainVarlmpl instead and if you require a int filed, you can define an Extension object. An AbstractVar object (and then more specific one like IntDomainVarlmpl) declare a set of extensions, used for example in Dom/Wdeg branching. An extension is defined as followed:

```
public final class Extension {
    protected int nb = 0;
    public final void set(int val) {
        nb = val;
    }
    public final int get(){
        return nb;
    }
    public final void add(int val){
        nb +=val;
    }
        @Override
        public String toString() {
                return String.valueOf(nb);
            }
}
```

So, you need to define a name for your extension and use the method AbstractVar\#getAbstractVarExtensionNumber(String nam) to compute an extension number -- extidx- (in order to place it into the set of extensions). Then, you can add it the set, using AbstractVar\#addExtension(int extidx) and get it using AbstractVar\#getExtension(int extidx).

Examole:

So, you need to define a name for your extension and use the method AbstractVar\#getAbstractVarExtensionNumber(String nam) to compute an extension number -- extidx-- (in order to place it into the set of extensions). Then, you can add it the set, using AbstractVar\#addExtension(int extidx) and get it using AbstractVar\#getExtension(int extidx).

Example:

```
IntDomainVar var = solver.createEnumIntVar("", 1, 10);
AbstractVar avar = (AbstractVar)var;
int extidx = AbstractVar.getAbstractVarExtensionNumber("my.extension");
avar.addExtension(extidx);
Extension ext = avar.getExtension(extidx);
ext.set(10);
ext.add(1);
int ext_value = ext.get();
```

If you need more generic object, there are nothing existent for the moment.
Hope it helps,
CP

Done						© Internet		F- $\mathrm{C}_{\text {(}} 100 \%$		
Iy start	\vdots (13) क ज	G) jsspwithH...	27 jobshopHe...	E sourcefor...	V choco.pdf	Ts emacs@BIAK	局 simeulue.d...	(c) 11:32		


```
public class Schedule {
```

```
public static void main(String[] args) throws FileNotFoundExgeption, IOException \{
    Model modl \(=\) new CPModel ();
    JSSP jssp \(=\) new JSSP(modl,9999, args[0]);
    int timeLimit \(=\) Integer.parseInt(args[1]);
    modl.setDefaultExpressionDecomposition(true); // YO!
```

 Solver \(s=\) new CPSolver();
 s.read (modl);
 Decision[] decision \(=\) jssp.getDecisions();
 int \(n \quad=\) decision.length;
 IntDomainVar[] decVar \(=\) new IntDomainVar[n];
 IntDomainVar makeSpan \(=\) s.getVar(jssp.getMakeSpan());
 for (int \(i=0 ; i<n ; i++)\{\)
 decVar[i] \(=\) s.getVar(decision[i].getD());
 IntDomainVar op_i = s.getVar(decision[i].getop_i().getStart());
 IntDomainVar op_j = s.getVar(decision[i].getOp_j().getStart());
 int dur_i \(=\) decision[i].getOp_i().getDuration();
 int dur_j \(=\) decision[i].getop_j().getDuration();
 AbstractVar av = (AbstractVar) decVar[i];
 av.setExtension(0, new Tuple(op_i,op_j,dur_i,dur_j));
 \}
 // s.setVarIntSelector(new StaticVarOrder(decVar));
 //s.setVarIntSelector(new VarOrder(decVar));
 s.setVarIntSelector(new MinSlackHeuristic(decVar));
 s.setValIntSelector(new MaxSlack());
 s.setTimeLimit(timeLimit);
 s.minimize (makeSpan, true);
 System.out.println(makeSpan + " ["+ makeSpan.getInf() +","+ makeSpan.getSup() +"]");
 s.printRuntimeSatistics();
 \}
\}

public class Schedule \{
public static void main(String[] args) throws FileNotFoundException, IOException \{

$$
\text { Model modl }=\text { new CPModel (); }
$$

JSSP jssp $=$ new JSSP(modl, 9999, args[0]);
int timeLimit $=$ Integer.parseInt(args[1]);
modl.setDefaultExpressionDecomposition(true); // YO!
Solver $s=$ new CPSolver();
s.read (modl) ;

Decision[] decision $=$ jssp.getDecisions();
int $n \quad=$ decision.length;
IntDomainVar[] decVar $=$ new IntDomainVar[n];
IntDomainVar makeSpan $=$ s.getVar(jssp.getMakeSpan());

```
for (int i=0;i<n;i++){
```

 decVar[i] \(=\) s.getVar(decision[i].getD());
 IntDomainVar op_i = s.getVar(decision[i].getOp_i().getStart());
 IntDomainVar op_j = s.getVar(decision[i].getop_j().getStart());
 int dur_i \(=\) decision[i].getOp_i().getDuration();
 int dur_j \(=\) decision[i].getOp_j().getDuration();
 AbstractVar av \(=\) (AbstractVar) decVar[i];
 av.setExtension(0, new Tuple(op_i,op_j,dur_i,dur_j));
 \}
 // s.setVarIntSelector(new StaticVarOrder(decVar));
 //s.setVarIntSelector(new VarOrder(decVar));
 s.setVarIntSelector (new MinSlackHeuristic(decVar));
 s.setValIntSelector(new MaxSlack());
 s.setTimeLimit (timeLimit);
 s.minimize (makeSpan, true);
 System.out.println(makeSpan + " ["+ makeSpan.getInf() +","+ makeSpan.getSup() +"]");
 s.printRuntimeSatistics();
 \}

public class Schedule \{
public static void main(String[] args) throws FileNotFoundException, IOException $\{$
Model modl $=$ new CPModel ();
JSSP jssp $=$ new JSSP(modl,9999,args[0]);
int timeLimit $=$ Integer.parseInt(args[1]);
modl.setDefaultExpressionDecomposition(true); // YO!
Solver $s=$ new CPSolver();
s.read (modl);

Decision[] decision $=$ jssp.getDecisions();
int $n \quad=$ decision.length;
IntDomainVar[] decVar $=$ new IntDomainVar[n];
IntDomainVar makeSpan $=$ s.getVar(jssp.getMakeSpan());
for (int $i=0 ; i<n ; i++$) $\{$
decVar[i] $=$ s.getVar(decision[i].getD());
IntDomainVar op_i = s.getVar(decision[i].getop_i().getStart());
IntDomainVar op_j = s.getVar(decision[i].getOp_j().getStart());
int dur_i $=$ decision[i].getOp_i().getDuration();
int dur_j $\quad=$ decision[i].getop_j().getDuration();
AbstractVar av $=$ (AbstractVar) decVar[i];
av.setExtension(0, new Tuple(op_i,op_j,dur_i,dur_j));
\}
// s.setVarIntSelector(new StaticVarOrder(decVar));
//s.setVarIntSelector(new VarOrder(decVar));
s.setVarIntSelector (new MinSlackHeuristic(decVar));
s.setValIntSelector(new MaxSlack());
s.setTimeLimit (timeLimit);
s.minimize (makeSpan, true);

System.out.println(makeSpan + " ["+ makeSpan.getInf() +","+ makeSpan.getSup() +"]");
s.printRuntimeSatistics();
\}


```
public class Schedule {
```

 public static void main(String[] args) throws FileNotFoundException, IOException \(\{\)
 Model modl \(=\) new CPModel();
 JSSP jssp \(=\) new JSSP(modl, 9999, args[0]);
 int timeLimit \(=\) Integer.parseInt(args[1]);
 modl.setDefaultExpressionDecomposition(true); // YO!
 Solver \(s=\) new CPSolver();
 s.read (modl) ;
 Decision[] decision \(=\) jssp.getDecisions();
 int \(n \quad=\) decision.length;
 IntDomainVar[] decVar \(=\) new IntDomainVar[n];
 IntDomainVar makeSpan \(=\) s.getVar(jssp.getMakeSpan());
 for (int \(i=0 ; i<n ; i++)\{\)
 decVar[i] \(=\) s.getVar(decision[i].getD());
 IntDomainVar op_i = s.getVar(decision[i].getop_i().getStart ());
 IntDomainVar op_j = s.getVar(decision[i].getop_j().getStart());
 int dur_i \(\quad=\) decision[i].getOp_i().getDuration();
 int dur_j \(\quad=\) decision[i].getOp_j().getDuration();
 AbstractVar av = (AbstractVar)decVar[i];
 av.setExtension(0, new Tuple(op_i,op_j,dur_i,dur_j));
 \}
 // s.setVarIntSelector(new StaticVarOrder(decVar));
 //s.setVarIntSelector(new VarOrder(decVar));
 s.setVarIntSelector(new MinSlackHeuristic(decVar));
 s.setValIntSelector(new MaxSlack());
 s.setTimeLimit (timeLimit);
 s.minimize (makeSpan, true);
 System.out.println(makeSpan + " ["+ makeSpan.getInf() +","+ makeSpan.getSup() +"]");
 s.printRuntimeSatistics();
 \}

	-	回

File Edit Options Buffers Tools Java Help


```
public class Schedule {
```

```
public static void main(String[] args) throws FileNotFoundException, IOException {
    Model modl = new CPModel();
    JSSP jssp = new JSSP(modl,9999,args[0]);
    int timeLimit = Integer.parseInt(args[1]);
    modl.setDefaultExpressionDecomposition(true); // YO!
```

 Solver \(s=\) new CPSolver();
 s.read (modl) ;
 Decision[] decision \(=j s s p . g e t D e c i s i o n s() ;\)
 int \(n \quad=\) decision.length;
 IntDomainVar[] decVar \(=\) new IntDomainVar[n];
 IntDomainVar makeSpan \(=\) s.getVar(jssp.getMakeSpan());
 for (int \(i=0 ; i<n ; i++)\{\)
 decVar[i] \(=\) s.getVar(decision[i].getD());
 IntDomainVar op_i = s.getVar(decision[i].getOp_i().getStart());
 IntDomainVar op_j \(=\) s.getVar(decision[i].getop_j().getStart());
 int dur_i \(=\) decision[i].getOp_i().getDuration();
 int dur_j \(\quad=\) decision[i].getop_j().getDuration();
 AbstractVar av \(=\) (AbstractVar) decVar[i];
 av.setExtension(0, new Tuple(op_i,op_j,dur_i,dur_j));
 \}

```
// s.setVarIntSelector(new StaticVarOrder(decVar));
//s.setVarIntSelector(new VarOrder(decVar));
s.setVarIntSelector(new MinSlackHeuristic(decVar));
s.setValIntSelector(new MaxSlack());
s.setTimeLimit (timeLimit);
s.minimize(makeSpan,true);
System.out.println(makeSpan + " ["+ makeSpan.getInf() +","+ makeSpan.getSup() +"]");
s.printRuntimeSatistics();
```

```
emacs@AMAK
File Edit Options Buffers Tools Java Help
```



```
import choco.kernel.solver.search.integer.AbstractIntVarSelector;
import choco.kernel.solver.variables.integer.IntDomainVar;
import choco.kernel.solver.variables.AbstractVar;
public class MinSlackHeuristic extends AbstractIntVarSelector {
protected IntDomainVar[] vars; // 0/1 decision variables
int n; // number of decision variables
public MinSlackHeuristic(IntDomainVar[] vars) {
    this.vars = vars; n = vars.length;
}
public IntDomainVar selectIntVar(){
    int minSlack = Integer.MAX_VALUE;
    int slack = 0;
    IntDomainVar minSlackVar = null;
    for (int i=0;i<vars.length;i++)
        if (!vars[i].isInstantiated()) {
            slack = slack(vars[i]);
            if (slack < minslack) {minslackVar = vars[i];minSlack = slack;}
        }
    return minSlackVar;
}
//
// select the uninstantiated variable with minimum slack
//
```

```
private int slack(IntDomainVar op_i,int d_i,IntDomainVar op_j,int d_j){
        return op_j.getSup() - Math.max(op_i.getInf() + d_i,op_j.getInf());
}
//
// slack if op_i before op_j
//
private int slack(IntDomainVar v) {
        AbstractVar av = (AbstractVar)v;
        Tuple t = (Tuple)av.getExtension(0);
        IntDomainVar op_i = t.getOp_i();
        IntDomainVar op_j = t.getOp_j();
        int d_i = t.getD_i();
        int d_j = t.getD_j();
        return Math.max(slack(op_i,d_i,op_j,d_j),slack(op_j,d_j,op_i,d_i));
}
//
// get slack of ith decision variable
//
    private int slack(IntDomainVar op_i,int d_i,IntDomainVar op_j,int d_j){
        return op_j.getSup() - Math.max (op_i.getInf() + d_i,op_j.getInf());
}
//
// slack if op_i before op_j
//
```

File Edit Options Buffers Tools Java Help


```
import choco.kernel.solver.search.AbstractSearchHeuristic;
import choco.kernel.solver.variables.integer.IntDomainVar;
import choco.kernel.solver.search.integer.ValSelector;
import choco.kernel.solver.variables.AbstractVar;
public class MaxSlack extends AbstractSearchHeuristic implements ValSelector {
private int slack(IntDomainVar op_i,int d_i,IntDomainVar op_j,int d_j){
        return op_j.getSup() - Math.max(op_i.getInf() + d_i,op_j.getInf());
    }
public int getBestVal(IntDomainVar v) {
        if (v.getDomainSize() == 1) return v.getInf();
        AbstractVar av = (AbstractVar)v;
        Tuple t = (Tuple)av.getExtension(0);
        IntDomainVar op_i = t.getOp_i();
        IntDomainVar op_j = t.getOp_j();
        int d_i = t.getD_i();
        int d_j = t.getD_j();
        if (slack(op_i,d_i,op_j,d_j) >= slack(op_j,d_j,op_i,d_i))
            return v.getInf();
        else
            return v.getSup();
    }
```

Anyway, will the variable ordering heuristic make a difference on it's own? Admittedly the heuristic is rather expensive to run so will it reduce search effort to the point that it reduces run time (the bottom line)

Table I. Lawrence jobshop scheduling instances, la01 to la15. Minimum makespan (2nd column) is posted as a const raint resulting in a decision problem. Tabulated is number of decisions (nodes), discrepancies taken, and run time in seconds. Slack-based dynamic variable and value ordering heuristics were used. Results are reported for chronological backtracking (BT). The best results between ILDS-early and ILDS-late are in bold.

		ILDS-early			ILDS-late			BT	
Instance	makespan	nodes	disc	time	nodes	disc	time	nodes	time
la01	666	42	0	0.05	42	0	0.05	42	0.04
la02	655	$\mathbf{2 6 4 8}$	3	0.43	5248	3	0.60	35132	1.7
la03	597	53552	6	4.1	$\mathbf{4 2 3 4 5}$	6	3.3	6103	0.67
la04	590	$\mathbf{1 7 9 8}$	3	0.38	2431	3	0.44	310	0.21
la05	593	91	0	0.06	91	0	0.06	91	0.05
la06	926	958	1	0.36	$\mathbf{3 0 6}$	1	0.17	-	-
la07	890	$\mathbf{3 6 6 0}$	2	1.1	8024	2	2.5	1044950	41
la08	863	5794	1	1.6	$\mathbf{2 4 0 9}$	1	0.71	517990	20
la09	951	$\mathbf{7 6 0}$	1	0.32	6616	1	1.6	-	-
la10	958	1045	1	0.34	$\mathbf{4 8 5}$	1	0.20	39201106	1294
la11	1222	2090	1	2.0	$\mathbf{7 5 7}$	1	0.79	-	-
la12	1039	36987	2	32	$\mathbf{2 2 0 9 6}$	2	19	-	-
la13	1150	$\mathbf{4 1 1 7}$	1	3.4	14669	1	9.4	-	-
la14	1292	$\mathbf{1 3 5 2}$	1	1.1	11142	1	6.2	399	0.13
la15	1207	111067002	4	6743	$\mathbf{7 1 9 4 1 8 9}$	3	431	-	-

Theorem 1. The order of instantiation of variables can influence the number of probes required to find a solution.

Proof. We use an existence proof. Assume we have a problem with three con-

Tabk III. Noeman Sude's job shop scheduling satiofaction peoblems. Cobumes E-*-* are ILDSearly, Cobmes L-*-* are ILDSHate. Cobumes "-1-* we stack-tased value cedering Columns "-0-" uxe the static vallox cedering select 0 then select 1 . Columns " - " 1 use the shuk-based variable cedering Cobumas "-*-0 sebet variables in index oeder, A table entry of - signifies a trivial instance solved with mero disarepancies (see Table II),

Instarce	E-1-1	L.-1-1	E-1-0	L.-1-0	E-1-1	L.-1-1	E-1/-1	L.-1-1]
e0ddrl-1	-	-	788	1722	201	98	448	200
e0ddrl-2	-	-	-	-	267	150	3968	1427
e0didrl-3	222	1282	4190	64855	606229	1563201	358049	438228
e0dirl-4	-	-	222	2664	207	93	3015	2140
e0idirl-5	-	-	-	-	-	-	743	445
e0ddr1-f	-	-	-	-	-	-	1824	2612
e0ddrl-7	-	-	231	1157	-	-	239	114
e0ddr1-8	220	801	-	-	-	-	697	158
e00drl-9	-	-	254	1383	-	-	698	123
e0ddrl-10	297	148	-	-	123	125	190	616
e0ddr2-1	-	-	8782	7359	1326	8997	456864	100969
e00dr2-2	1175	1231	176616	567904	94	256	-	-
e00der2-3	-	-	-	-	96	96	-	-
e0dir2-4	-	-	281	1246	-	-	174	306
e0ddr2-5	-	-	-	-	-	-	-	-
e0ddr2-6	-	-	243	3752	-	-	2386	2164
e0ddr2-7	-	-	6415	23015	-	-	1214	166
e0ddr2-8	197	224	-	-	120	76	-	-
e0ddr2-9	-	-	312	2004	5911	4226	56991	10976
e0ddr2-10	-	-	-	-	-	-	-	-
endirl-1	-	-	-	-	-	-	9581	31245
endidl-2	-	-	-	-	-	-	234	752
enddrl-3	-	-	-	-	1007	534	685	1458
endirl-4	-	-	281	1694	-	-	39468	124717
enddrl-5	-	-	-	-	-	-	-	-
endirl-6	-	-	-	-	-	-	1625	1143
enddrl-7	-	-	-	-	-	-	3179	2182
endirl-8	161	445	308	2254	929	491	3488	8128
endirl-9	-	-	-	-	-	-	351	212
enddrl-10	-	-	-	-	239	772	2521	13478
ewddr2-1	-	-	-	-	-	-	600	1162
ewddr2-2	-	-	247	4971	-	-	12025	3879
ewdir2-3	-	-	-	-	118	131	613	957
ewddr2-4	-	-	-	-	-	-	-	-
ewddr2-5	-	-	-	-	-	-	1946	254
ewddr2-6	-	-	655	4658	-	-	1097	211
ewddr2-7	-	-	227	4776	-	-	2882	2776
ewddr2-8	-	-	-	-	93	112	8800	2258
ewddr $2-9$	-	-	-	-	-	-	61419	569337
ewddr2-10	-	-	-	-	123	161	1397	661

```
} Favorites
```

- The CLP Procedure
\# Overview: CLP Procedure
\# Introductory Examples: CLP
Procedure
\#t Syntax: CLP Procedure
\square Details: CLP Procedure
 - Modes of Operation
 - Constraint Data Set
 - Solution Data Set
 - Activity Data Set
 - Schedule Data Set
 - Edge Finding
 - Macro Variable ORCLP
\#] Examples: CLP Procedure
 - References

Edge Finding

Edge-finding (EF) techniques are effective propagation techniques for resource capacity constraints that reason about the processing order of a set of activities requiring a given resource or set of resources. Some of the typical ordering relationships that EF techniques can determine are whether an activity can, cannot, or must execute before (or after) a set of activities requiring the same resource or set of resources. This in turn determines new time bounds on the start and finish times. Carlier and Pinson (1989) were responsible for some of the earliest work in this area that resulted in solving MT10, a 10×10 job shop problem that had remained unsolved for over 20 years (Muth and Thompson; 1963). Since then, there have been several variations and extensions of this work (Carlier and Pinson; 1990; Applegate and Cook; 1991; Nuijten; 1994; Baptiste and Le Pape; 1996).

The edge-finding consistency routines are invoked by specifying the EDGEFINDER= or EDGE= option in the SCHEDULE statement. Specifying EDGEFINDER=FIRST computes an upper bound on the activity finish time by detecting whether a given activity must be processed first from a set of activities requiring the same resource or set of resources. Specifying EDGEFINDER=LAST computes a lower bound on the activity start time by detecting whether a given activity must be processed last from a set of activities requiring the same resource or set of resources. Specifying EDGEFINDER=BOTH is equivalent to specifying both EDGEFINDER=FIRST and EDGEFINDER=LAST.

An extension of the edge-finding consistency routines is in determining whether an activity cannot be the first to be processed or whether an activity cannot be the last to be processed from a given set of activities requiring the same resource (set of resources). The NOTFIRST = or NF= option in the SCHEDULE statement determines whether an activity is "not first." In similar fashion, the NOTLAST = or NL= option in the SCHEDULE statement determines whether an activity is "not last."

Note: This procedure is experimental.

