
Heuristics

with

Mad queens

and

 example from jssp

Heuristics in choco

Variable ordering

Value ordering

Example: Mad Queens

Given a 8x8 chessboard put 4 non attacking
Queens on the board and leave the remaining
Queens off the board.

Just to show a simple static variable ordering heuristic

Mad Queens with off the shelf static variable ordering heuristic

MyVarOrder

MadQueens using MyVarOrder

Slack-based heuristics for jssp

jssp refresh

We have

• a set of resources
• a set of jobs

• a job is a sequence of operations/activities

• sequence the activities on the resources

An example: 3 x 4

• We have 4 resources: green, yellow, red and blue
• a job is a sequence of operations (precedence constraints)
• each operation is executed on a resource (resource constraints)
• each resource can do one operation at a time
• the duration of an operation is the length of its box
• we have a due date, giving time windows for operations (time constraints)

Op1.1 Op1.2 Op1.3 Op1.4 Op1.1

Op2.1 Op2.2 Op2.3 Op2.4

Op3.1 Op3.2 Op3.3 Op3.4

job1

job2

job3

Op1.1 Op1.2 Op1.3 Op1.4 Op1.1

Op2.1 Op2.2 Op2.3 Op2.4

Op3.1 Op3.2 Op3.3 Op3.4

An example: 3 x 4

Op1.1
Op2.3
Op3.1

Op1.4
Op2.4
Op3.2

Op1.2
Op2.1
Op3.4

Op1.3
Op2.2
Op3.3

The problem

Assign a start time to each operation such that
(a) no two operations are in process on the same
 machine at the same time and
(b) time constraints are respected

The problem is NP complete

Op1.1 Op1.2 Op1.3 Op1.4 Op1.1

Op2.1 Op2.2 Op2.3 Op2.4

Op3.1 Op3.2 Op3.3 Op3.4

An example: 3 x 4

Op1.1
Op2.3

Op3.1

On the “green” resource, put a direction on the arrows

A disjunctive graph

Op1.1 Op1.2 Op1.3 Op1.4 Op1.1

Op2.1 Op2.2 Op2.3 Op2.4

Op3.1 Op3.2 Op3.3 Op3.4

An example: 3 x 4

Op1.1
Op2.3

Op3.1

On the “green” resource, put a direction on the arrows

A disjunctive graph

We do not bind operations to start times

We take a least commitment approach

Consequently we get a set of solutions!

op1.before(op2)

op1.before(op2)

earliest start latest end

duration

Picture of an operation

op1.before(op2)

earliest start latest start

duration

Picture of an operation

Constrained integer variable represents start time

op1.before(op2) Picture of an operation

op1

op2

op1.before(op2) op1.start() + op1.duration() ≤ op2.start()

op1.before(op2) Picture of an operation

op1

op2

op1.before(op2) op1.start() + op1.duration() ≤ op2.start()

propagate

op1.before(op2) Picture of an operation

op1

op2

op1.before(op2) OR op2.before(op1)

op1 and op2 cannot be in process at same time

Not easy to propagate until
decision made (disjunction broken)

op1.before(op2) Picture of an operation

op1

op2

d[i][j] = 0  op[i]1.before(op[j])

Use a 0/1 decision variable d[i][j] as follows

d[i][j] = 1  op[j]1.before(op[i])

heuristics

JUST ONE EXAMPLE

We have an engineering problem. Search solver uses IntDomainVar and
model used IntegerVariable. To work out slack on a decision variable
we need to get access to information on Operations, in particular
duration and start time. How do we do that?

Anyway, will the variable ordering heuristic make a difference
on it’s own? Admittedly the heuristic is rather expensive to

run so will it reduce search effort to the point that it reduces
run time (the bottom line)

Do some experiments

