Slack-based Heuristics for JSSP

Heuristics in choco
Variable ordering

Value ordering

jssp refresh

We have

- a set of resources
- a set of jobs
* a job is a sequence of operations/activities

» sequence the activities on the resources

An example: 3 x 4

jobt [mOBEEN - Optz | —-[opiSH CEE

job3' [Op31| . pupGEEEEE —NOBSSIN— Op3.4

- We have 4 resources: green, yellow, red and blue

- a job is a sequence of operations (precedence constraints)

- each operation is executed on a resource (resource constraints)

- each resource can do one operation at a time

* the duration of an operation is the length of its box

- we have a due date, giving time windows for operations (time constraints)

An example: 3 x 4 ORI COpl2— (Ophs IO

The problem

Assign a start time to each operation such that

(a) no two operations are in process on the same
machine at the same time and

(b) time constraints are respected

The problem is NP complete

An example: 3 x 4 ORI COpl2— (Ophs IO

On the "green” resource, put a direction on the arrows

A disjunctive graph

An example: 3 x 4 ORI COpl2— (Ophs IO

[Op21 [Op2i2] OpZ3 INORZE

We do not bind operations to start times
-——_—h Op3.4

We take a least commitment approach |

Consequently we get a set of solutions!

On the "green” resource, put a direction on the arrows

A disjunctive graph

Constraint before(Operation op2){
return model.arithm{op2.start, ">=",s5tart, '+ ,duration);
¥

opl.before(op2)

Picture of an operation opl.before(op?2)

_ duration
L]

/ N\

earliest start latest end

Picture of an operation opl.before(op?2)

duration
/

/ N\

earliest start latest start

Constrained integer variable represents start time

Picture of an operation opl.before(op?2)

opl.before(op2) — opl.start() + opl.duration() < op2.start()

Picture of an operation opl.before(op?2)

1
- P propagate
I op2

opl.before(op2) — opl.start() + opl.duration() < op2.start()

Picture of an operation opl.before(op?2)

[] opl

L] op2

opl and op2 cannot be in process at same time
— opl.before(op2) OR op2.before(opl)

Not easy to propagate until
decision made (disjunction broken)

Picture of an operation opl.before(op?2)

Use a 0/1 decision variable d[i][j] as follows

d[il[j]= O — op[i]l.before(op[j])
dlil[j1=1— op[j]l.before(op[il)

heuristics

JUST ONE EXAMPLE

{= Stephen F. Smith - Windows Internet Explorer

6@.’ - | s,g hikbpe v, s, o, edufeesPsf

COINE SN

o dhr 2 B oeh v |k Page ~ O Tools -~ @~ @ B

stephen smith cru

Stephen F. Smith

Research Professor, Robotics
Director, Intelligent Coordination and Logistics Laboratory

The Robotics Institute
Carnegie Mellon University
J000 Forbas Avenue, Pittsburgh, PA 15213

Email: sfs@cs.cmu.edu, Phone: (412) 268-8811, Fax: (412) 268-3569
Office: 1302E Newell & Simon Hall

7} sl‘én‘ CEC T - ELND W papers

>

[£

/= stephenF. 5... smith-cheng-sl...

/2 ICLL Home - Windows Internet Explorer

@ L & L !& http:ffwww,ozone.ri.cru. eduf

V' {'?: X ‘stephen smith cru

w o - b v :bPage v (FTooks - @~ B B

’ INTELLIGENT COORDINATION & LOGISTICS
L' A B @ R A T Q@ R Y

Stephen F. Smith, Director

PLANNING AND _SEWFBNITNE,

Problems of large-scale coordination and logistics are ubiquitous, and better solutions are becoming
increasingly critical in many domains. In manufacturing, trends toward industrial globalization and constrained
market focus on high value-adding products, together with new coordination concepts such as electronic
marketplaces, require organizations to become more agile. Military command and control infra-structure is
faced with shrinking budgets and personnel, even though current geopolitical realities demand improved
capability for rapid crisis-action mission planning and deplovment. The rising cost of health care places a
premium on more efficient methods for administration and delivery.

‘4 Start LEC T - w®RELUNS @ papers B Microsoft Pow... /= ICLL Home - ...

7 smith-cheng-sl...

K@ “a 15:30

1> 2

" CP4: Papers - Windows Internet Explorer

smith-cheng-slack-aaai93. pdf (SECLURED) - Adobe Reader

View Document Tools Window Help

B89 S el een[H@lE_ T

From: AAAI-S3 Proceedings. Copyright @ 1993, AAAL (www_aaai.org). All rights reserved.

Slack-Based Heuristics For Constraint Satisfaction
Scheduling *

Stephen F. Smith
The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213
sfs@isll.ri.cmu.edu

Abstract

In this paper, we define and empirically evaluate
new heuristics for solving the job shop scheduling
problem with non-relaxable time windows. The
hypothesis underlying our approach is that by ap-
proaching the problem as one of establishing se-
quencing constraints between pairs of operations
requiring the same resource (as opposed to a prob-
lem of assigning start times to each operation)
and hy exploiting previously developed analysis
techniques for limiting search through the space
of possible sequencing decisions, simple, localized
look-ahead technigues can yield problem solving
performance camparahle to currently dominating
techniques that rely on more sophisticated anal-
ysis of resource contention, We define a series of
attention focusing heuristics based on simple anal-
ysis of the temporal flexibility associated with dif-
ferent sequencing decisions, and a similarly moti-
N

PP e [PR T o -y e

Cheng-Chung Cheng
The Robotics Institute
Carnegie Mcllon University
Pittsburgh, PA 15213

cecen@isll.ri.crmi.edu

exclusive use of a designated machine for the duration
of its processing (i.e. machines have unit processing
capacity). Each job has an associated ready time and
a deadline, and ite production must be accomplished
within this interval. The problem can be extended in
various ways - to include selection among designated
resource alternatives for each operation, to associate
multiple resouree requirements (e.g. machine, opera
tor) with operations, ete. In any case, the objective
is to determine a schedule for production that satisfies
all temporal and resource capacity constraints.

The job shop scheduling with non-relaxable time
windows problem is known to be NP Complete {Garey
& Johnson 1979). Accordingly, the development of ef-
fective heuristic procedures for solving this constraint
satisfaction problem {CSF) has been the subject of
considerable previous research. This work, with fow
exceptions, has soughl to exploit the special structure
of the problem, in particular the structure of resource

el coneteninbe beosebrose senenbenasendnnen

[

- E o O @ papers

/- CP4: P

e smith-cheng-slack-aaai93. pdf (SECURED) - Adohe Reader

File Edit Wiew Document Tools Window Help

=X MR A5

‘s Start

LB C T« b EU MO | 85papes

straints. The solutions generated in this way typically
represent a set of feasible schedules (i.e., the sets of op-
eration start times that remain consistent with posted
sequencing constraints), as opposed to a single assign-
ment of operation start times. In (Erschler et al. 1976,
1980) the structure of resource capacity constraints is
exploited to define dominance conditions for pruning
the set of feasible sequencing alternatives at each stage
of the search. More recently, (Muscettola 1993) has
demonstrated the utility of global resource capacity
analysis techniques (similar in spirit to the approach
in (Sadeh 1991)) as a focusing mechanism within this
alternative search space; in this case sequencing con-
straints are repeatedly posted between sets of conflict-
ing operations until resource capacity analysis indi-
cates no further possibility of resource contention.

Like (Muscettola 1993), we believe that the inherent
flexibility gained by providing sets of feasible solutions
ollers considerable pragmatic value over typically over-
constrained fixed times solutions. The principal claim
of this paper, however, is that this second formulation
of the problem also provides a more convenient search
space in which to operate. When the problem is cast as
a search for orderings between pairs of operations vy-
ing for the same resource, we argue that it is possible to
obtain the look-ahead benefits of global resource capac-
ity analysis through the use of simpler, local analysis of
the sequencing possibilities associated with unordered
operation pairs. We define a series of variable ordering
heuristics based on measures of temporal slack which,
when integrated with the search space pruning tech-
niques developed in (Erschler et al. 1976), are shown
to yield comparable problem solving performance to
contention-based heuristics at a fraction of the compu-

® resource capacity constraints - for any two op-
erations i and j requiring the same resource, st; + p;
< stj V st + p;j < si;

e ready times and deadlines - for each operation
i of job 7, ry < st; and st; + p; < d7, where r7

and dg are the ready time and deadline respectively

associated with job 7.

While this problem renresentation nrovides a direct

basis for problem solving search (and in fact has been
taken as the starting point of most previous research),
the problem can be alternatively formulated as one
of establishing sequencing constraints between pairs of
operations contending for the same resource over time.
In this case, we define a decision variable ordering; ;
for each pair of operations ¢ and j that require the
same resource, which can take on either of two values:
i — j (implying the constraint st; + p; < st;) and
Jj = i (implying st; 4+ p; < st;). A solution then is
a consistent assignment of values to all ordering vari-
ables. There are several potential advantages to this
formulation. The advantage emphasized in this paper
is that the simpler structure of the acarch space enables
more straightforward accounting of resource capacity
constraints and the use of simpler, localized analysis of
current selution structure as a basis for variable and
value ordering.

Our problem solving framework assumes a backtrack
search procedure in which the solution is inerementally
extended through the repeated selection and binding of
an as yet uneonstrained nrderingu variable (rcferred
to as the posting of a new precedence relation). When-
ever a new precedence relation is posted, constraint
propagation is performed to ensure continued tempo-

|

"B Microsoft Pow... | /7 CP4: Papers - ... g smith-cheng-sl. . '(_'JE:'”':.: K@ "3 1523

e smith-cheng-slack-aaai93. pdf (SECURED) - Adohe Reader

File Edit Wiew Document Tools Window Help

=X MR A5

‘s Start

LB C T« b EU MO | 85papes

straints. The solutions generated in this way typically
represent a set of feasible schedules (i.e., the sets of op-
eration start times that remain consistent with posted
sequencing constraints), as opposed to a single assign-
ment of operation start times. In (Erschler et al. 1976,
1980) the structure of resource capacity constraints is
exploited to define dominance conditions for pruning
the set of feasible sequencing alternatives at each stage
of the search. More recently, (Muscettola 1993) has
demonstrated the utility of global resource capacity
analysis techniques (similar in spirit to the approach
in (Sadeh 1991)) as a focusing mechanism within this
alternative search space; in this case sequencing con-
straints are repeatedly posted between sets of conflict-
ing operations until resource capacity analysis indi-
cates no further possibility of resource contention.

Like (Muscettola 1993), we believe that the inherent
flexibility gained by providing sets of feasible solutions
ollers considerable pragmatic value over typically over-
constrained fixed times solutions. The principal claim
of this paper, however, is that this second formulation
of the problem also provides a more convenient search
space in which to operate. When the problem is cast as
a search for orderings between pairs of operations vy-
ing for the same resource, we argue that it is possible to
obtain the look-ahead benefits of global resource capac-
ity analysis through the use of simpler, local analysis of
the sequencing possibilities associated with unordered
operation pairs. We define a series of variable ordering
heuristics based on measures of temporal slack which,
when integrated with the search space pruning tech-
niques developed in (Erschler et al. 1976), are shown
to yield comparable problem solving performance to
contention-based heuristics at a fraction of the compu-

® resource capacity constraints - for any two op-
erations i and j requiring the same resource, st; + p;
< stj V st + p;j < si;

e ready times and deadlines - for each operation
i of job 7, ry < st; and st; + p; < d7, where r7

and dg are the ready time and deadline respectively

associated with job 7.

While this problem representation provides a direct
basis for problem solving search (and in fact has been
taken as the starting point of most previous research),
the problem can be alternatively formulated as one
of establishing sequencing constraints between pairs of

In this case, we define a decision variable ordering; ;
for each pair of operations ¢ and j that require the
same resource, which can take on either of two values:
i — j (implying the constraint st; + p; < st;) and
Jj = i (implying st; 4+ p; < st;). A solution then is
a consistent assignment of values to all ordering vari-
ables. There are several potential advantages to this
formulation. The advantage emphasized in this paper
is that the simpler structure of the acarch space enables
more straightforward accounting of resource capacity
constraints and the use of simpler, localized analysis of
current solution structure as a basis for variable and
value ordering.

Our problem solving framework assumes a backtrack
search procedure in which the solution is inerementally
extended through the repeated selection and binding of
an as yet unconstrained ordering; ; variable (referred
to as the posting of a new precedence relation). When-
ever a new precedence relation is posted, constraint
propagation is performed to ensure continued tempo-

. BB Microsaft Pow... . ™ CP4: Papers - ... g smith-cheng-sl. .. [JE:'J]':: s L] “a 1523
- ’

|

e smith-cheng-slack-aaai93. pdf (SECURED) - Adohe Reader
File Edit Wiew Document Tools Window Help

=

‘s Start

LTS PO dalSO ProvIOes 3 0] (] o
gpace in which to operate. When the problem is cast as
a search for orderings between pairs of operations vy-
ing for the same resource, we argue that it is possible to
obtain the look-ahead benefits of global resource capac-
ity analysis through the use of simpler, local analysis of
the sequencing possibilities associated with unordered
operation pairs. We define a series of variable ordering
heuristics based on measures of temporal slack which,
when integrated with the search space pruning tech-
niques developed in (Erschler et al. 1976), are shown
to yield comparable problem solving performance to
contention=based heuristics at a fraction of the compu-
tational cost.

The remainder of the paper is organized as follows.
In Section 2, we specify the problem as a CSP search
for operation pair orderings, and review dominance
conditions that enable search space pruning relative to
this model. In Sections 3 through 5, we propose a series
of variable ordering heuristics and present comparative
results on a previously studied suite of 60 test prob-
lems. Finally, in Section 6, we outline current work in
applying the approach to schedule optimization.

Problem Representation and Search
Framework

In more precise terms, a solution to the basic job shop
scheduling CSP requires a consistent assignment of val-
ues to start time variables st; for each operation i, un-
der the following constraints:

¢ sequencing restrictions - for every precedence re-
lation i — j specified between operations i and j
in the process plan of a given job 7, st; + p; < stj,
where p; is the processing time required by operation

i of job 7.

A8 CT o EU w9 | 05papes

L £l L]V O - L} - l [ol fJ

is that the simpler structure of the search space enables
more straightforward accounting of resource capacity
constraints and the use of simpler, localized analysis of
current solution structure as a basis for variable and

value ordering

B Micr

Our problem solving framework assumes a backtrack
search procedure in which the solution is incrementally
extended through the repeated selection and binding of
an as yet unconstrained ordering; ; variable (referred
to as the posting of a new precedence relation). When-
ever a new precedence relation is posted, constraint
propagation is performed to ensure continued tempo-
ral consistency and maintain current bounds on the
earliest start time and latest finish time of each oper-
ation. 1 If the decision i — j is taken, for example,
then est; (the earliest start time of j) and Ift; (the
latest finish time of i) are updated by

est; = max{est;,est; + p; }, and (1)

Ift; = min{ift;, 1ft; —p;}, (2)

and these new values are then propagated forward or
backward respectively through all pre-specified and
posted temporal precedence relations, If during this
process, est; + pr becomes greater than [f1; for any
operation k then an inconsistent set of assignments has
been detected.

the search integrates a procedure previously developed
by Erschler ef al, referred to as Constraini-based Anal-
ysis (CBA), which exploits dominance conditions to
prune the space of possible ordering assignments. To
summarize their basic idea, assume that est; and 1ft;

!Since we are assuming in this paper that operation
processing times are fixed, we could equivalently reason in
terms of earliest and latest start times.

asaft Pow, ., . II(__; CP4: Papers - ...

ﬁ smith-cheng-sl. .. "(_'JE:'JJ':: ['..::, “a

|

e smith-cheng-slack-aaai93. pdf (SECURED) - Adohe Reader

‘s Start

AECT & EUDMS | 0papers

. E Microsoft Pow,, . (_.; CP4: Papers - ...

File Edit Wiew Document Tools Window Help
B © e80): ool @i]

) different cases: | L.,'_"_l_,l ~
e 1. If Ift; — est; < pi +p; < Ift; — est; then i must be e e

X scheduled before j in any feasible extension of the 10 post precedence
E current ordering decisions. (case 1) conswaint
1
2.0 Ift; — esty < p; + pj < Ift; — est; then 5 must Post precedence

be scheduled before ¢ in any feasible extension of the constraint

current ordering decisions. (case 2) Apply variabls
A o tn. = It esf. : ; = ordering heuristic Gfena'l:lle

2 L) e COARID I
there is no feasible schedule. (case 3) “:;:::ri’:ﬂmt schedules
¥
4. If p; +p; < Ift; —esty and p;+p; < [ft; —est; then T o
either sequencing decision is still possible. (case 4) *L\’:“;/
47

T - ki ¢ -3 |
necessary conditions for determining a set of feasible .
schedules, and thus interleaved application of CBA and Figure 1: PCP Search Procedure
temporal constraint propagation yields an underspeci- B
fied search procedure. What is needed to generate so- :

. . . . we define two measures, corresponding to the two pos-
lutions are heuristics for resolving the undecided states “Hle decisi h "ht be tak ¥ : :
specified in case 4. In this regard, previous use of sible geclsions et n:ilg ik be taten. Lora g]g{n pair
CBA has emphasized fuzzy integration of sets of dif- of currently unordered operations (“:, j) contending for
f . . the same resource, we define the “temporal slack re-

erent scheduling rules. In (Bensana & Dubois 1988), .. ft S I
a voting procedure based on fuzzy set theory and ap- maining atler sequencing @ belore g as
proximate reasoning was developed and used in con- slack(i — j) = ift; — est; — (pi + pj), (3)
junction with a set of fuzzy scheduling rules. In (Kerr and similarly the “temporal slack remaining after se-
& Walker 1989), fuzzy arithmetic together with fuzzy quencing j before i* as
scheduling rules was utilized instead. Our goal, alter-))
natively, is to investigate the effectiveness of CBA in slack(j — 1) = Ift; — est; — (pi + pj). (4)
conjunction Wlth simple look-ahead analysis of current Figure 2 provides a graphic illustration of slack(i —
orderlmg ﬂex;!:ultt.y. 'T]‘l‘ls leac}a tcl. the search.prncedure §) and slack(j — i). Note that in either case the
that is graphically depicted n Figure 1, which we will remaining slack is shared by both i and j. Thus, the
refer to as precedence constraint posting (PCP). In the larger the temporal slack, the greater the chance that
following sections, we define and evaluate a specific set subsequent ordering decisions involving i and j can be
— of variable and value ordering heuristics. feasibly imposed.

.. . . Given these measures of temporal slack, we now have

Exploiting Estimates of Sequencing a basis for identifying the most constrained or “most

Flexibility critic'f\l” d&r.isipn_ and for specifying an iniltiaI \rar%alhle
. ordering heuristic. We define the ordering decision w

g smith-cheng-sl. . "(_'JE:'JJ':: [L] "a 15:28

e smith-cheng-slack-aaai93. pdf (SECURED) - Adohe Reader

‘s Start

AECT & EUDMS | 0papers

File Edit Wiew Document Tools Window Help
B G el O[] g [[)
_ different cases: | L= »
1. If Ift; — est; < p; +p; < [ft; — est; then i must be ordenng beuritic
X scheduled before j in any feasible extension of the 1o post precedence
E current ordering decisions. (case 1) conswaint
2.0 Ift; — esty < p; + pj < Ift; — est; then 5 must i Post precedence
be scheduled before ¢ in any feasible extension of the constraint
current ordering decisions. (case 2) Apply variabis
3. If p; +p; > Ift; — est; and p; +p; > Ift; —est; then mle:tns :;imiuic ?;;;;:
there is no feasible schedule. (case 3) “:;:;:dmmt schedules
4. If p; +p; < Ift; — est; and p;+p; < Ift; —estj then ! N
either sequencing decision is still possible. (case 4) *L\’:f?;/
These dominance conditions of course provide only
necessary conditions for determining a set of feasible .
schedules, and thus interleaved application of CBA and Figure 1: PCP Search Procedure
temporal constraint propagation yields an underspeci- B
fied search procedure. What is needed to generate so-
lutions are heuristics for resolving the undecided states ble decisi h i7ht be tak F . -
specified in case 4. In this regard, previous use of sible geclsions Laab might be takern. Lor @ piven pair
CBA has emphasized fuzzy integration of sets of dif- of currently unordered operations (“:, j) contending for
ferent scheduling rules. In (Bensana & Dubois 1988) the_ same resource, we dc{_'ine the _’!.emporal slack re-
: & ' fter sequencing i before j” as
a voting procedure based on fuzzy set theory and ap- maining a q g J
proximate reasoning was developed and used in con- slack(i — j) = Ift; — est; — (pi + p;). (3)
junction with a set of fuzzy scheduling rules. In (Kerr and similarly the “temporal slack remaining after se-
& Walker 1989), fuzzy arithmetic together with fuzzy quencing j before i* as
scheduling rules was utilized instead. Our goal, alter-
natively, is to investigate the effectiveness of CBA in slack(j — 1) = Ift; — est; — (pi + pj). (4)
conjunction Wlth simple look-ahead analysis of current Figure 2 provides a graphic illustration of slack(i —
orderlmg ﬂex;!:ultt.y. 'T]‘l‘ls leac}a tcl. the search.prncedure §) and slack(j — i). Note that in either case the
that is graphically depicted n Figure 1, which we will remaining slack is shared by both ¢ and j. Thus, the
refer tf:' as pre_cedence constraint posting (PCP]',I“ the larger the temporal slack, the greater the chance that
following sections, we define and evaluate a specific set subsequent ordering decisions involving i and j can be
- of variable and value ordering heuristics. feasibly imposed.
v . iven these measures of temporal alack, we pow
Exploiting Estimates of Sequencing a basis for identifying the most constrained or “most
Flexibility critical” decision and for specifying an initial variable
. ordering heuristic. We define the ordering decision w

. B Microsoft Pow. .. . /- CP4: Papers- ... g smith-cheng-sl... '(_'JE:'”':.: @ 2 1528

e smith-cheng-slack-aaai93. pdf (SECURED) - Adohe Reader

File Edit Wiew Document Tools Window Help

L= MA R A5

/4 Start

scheduling rules was utilized instead. Our goal, alter-
natively, is to investigate the effectiveness of CBA in
conjunction with simple look-ahead analysis of current
ordering flexibility. This leads to the search procedure
that is graphically depicted in Figure 1, which we will
refer to as precedence constraint posting (PCP). In the
following sections, we define and evaluate a specific set
of variable and value ordering heuristics.

Exploiting Estimates of Sequencing
Flexibility

Intuitively, in situations where CBA leaves the search
in a state with several unresolved ordering assignments
(i.c., for each unordered operation pair, both ordering
decisions are still feasible), we would like to focus at-
tention on the ordering decision that is currently most
constrained. Since the posting of any sequence con-
straint is likely to further constrain other ordering de-
cisions that remain to be made, delaying the currently
most constrained decision increases the chances of ar-
riving at an infeasible problem sulving slate.
Implementation of such a variable ordering strategy
requires a means of estimating the current flexibility
associated with a given unresolved ordering decision.
One simple indicator of flexibility is the amount ol tem-
poral slack that is retained by a given operation pair
if a decision to sequence them is taken. To this end,

L E G T - U W | 05papes

QUENTINE " Derore T as
slack(j — i) = Ift; — est; — (pi + p;). (4)

Figure 2 provides a graphic illustration of slack(i —
i) and slack(j — i). Note that in either case the
remaining slack is shared by both ¢ and j. Thus, the
larger the temporal slack, the greater the chance that
subsequent ordering decisions involving ¢ and j can be

1.
Given these measures of temporal slack, we now have
a basis for identifying the most constrained or “most
critical” decision and for specifying an initial variable
ordering heuristic. We define the ordering decision
with the overall minimum slack, to be the decision
ordering; ; for which

min{slack(i — j),slack(j — i)} =
mij}{min{sfack{‘u — v), slack{v — u)}}
for all unassigned orderingy .. Using this notion of
criticality, we define a variable ordering heuristic that

selects this decision at each unresolved state of the
search.

. BB Microsaft Pow...

¥ith respect to the decision of which gequencing
constraint to post (i.e., value assignment), we intu-
itively prefer the decision that leaves the search with
the most degrees of freedom. Thus we post the se-
quencing constraint that retains the largest amount of
temporal slack.

Constraint-Based Reasoning 141

¢/~ ICLL Home - ..

g smith-cheng-sl. . "(_'JE:'JJ':: [L] *a

e smith-cheng-slack-aaai93. pdf (SECURED) - Adohe Reader

File Edit Wiew Document Tools Window Help ®

eI an e i —

[

esti'

cwmen, "]

est;’ "t
est I 1 Ift.
if 4->j]]

slack(i-=j)

Ift§

Figure 2: Slack(i — j) and Slack(j — i)

Summarizing then, our initial configuration of vari-
able and value ordering heuristics is defined as follows:

I. Min-Slack variable ordering: Select the sequencing
decision with the overall minimum temporal slack.
Suppose this decision is ordering; ;.

II. Max-5lack value ordering: choose the sequencing
constraint ¢ — j if slack(i — j) > slack(j — i);
otherwise chovse j — 1.

A CoTpPUtationar Study

In this section we evaluate the performance of the
above heuristics in conjunction with the PCP search

tion). Both ORR/FSS and CPS5 have reported very
strong results on the set of scheduling problems used
in this study.

As an additional point of comparison, we also in-
clude results obtained with three priority dispatch
rules from the field of Operations Research: EDD,
COVERT, and ATC (Vepsalainen & Morton 1987).
These heuristics are frequently used and have heen
determined to work very well in job shop scheduling
circumstances where expected job tardiness is low (as
would likely be the case if a feasible solution exists).

The set of probhlems nsed in this study come fram
the dissertation of Sadeh (Sadeh 1991). The problem
set consists of 60 randomly generated scheduling prob-
lems. Lach problem contains 10 jobs and 3 resources.
Each job has 5 operations. In all problems, deadlines
were generated randomly within a specified range. A
controlling parameter was used to generate problems
in three different deadline ranges: wide (w), median
(m), and tight (t). A second parameter was used to
generate problems with both 1 and 2 “bottleneck™ re-
sources. Combining these two parameters, 6 different
categories of scheduling problems were defined, and 10
problems were generated for each category. The prob-
lem categories were carefully defined to cover a vari-
ety of manufacturing scheduling circumstances. While
each problem has at least one feasible solution, they
range in difficulty from easy to hard.

The results obtained on these problems, along with
those previously reported, are given in Table 1 (where
problem difficulty increases from top to bottom). The
number of problems solved by each approach by prob-
lem category are indicated. In the case of ORR/FSS

/7 L Home - ..

ﬁ smith-cheng-sl. .. "(___,l'::':]':: -[# ..::‘ “a 15

e smith-cheng-slack-aaai93. pdf (SECURED) - Adohe Reader

File Edit Wiew Document Tools Window Help

=X
x

=AY R JEE

/4 Start

Incorporating Additional Search Bias

While Min-Slack performed quite well over the tested
problem set, it does not in fact utilize all of the infor-
mation provided by the temporal slack data. In par-
ticular, it relies exclusively on the smaller slack value
in determining the criticality of a ordering decision
ordering; j, and ignores any information that might
be provided by the larger one.

The most commeon problemn created by disregarding
ihis additional value appears in a form of tie-breaking.
Consider the following example. Suppose that we have
two unsequenced operation pairs, one with associated
temporal slack values of (20, 3), and the other with val-
ues of (4,3). Min-Slack does not distinguish between
the criticality of these two ordering decisions, since the
minimum value in both cases is 3. In the event that
the overall minimum slack over all candidate decisions
is also 3, then Min-Slack will choose randomly. But,
in this case sequencing the second operation pair is cer-
tainly more critical since the flexibility that will be left
after the decision 1s made will be considerably less than
the flexibility that will remain if the first unsequenced
operation pair is instead chosen and sequenced.

Given this insight, we define a second variable or-
dering heuristic, which operates exactly as Min-Slack
except in situations where more than one pending de-
cision ordering; ; is identified as a decision with over-
all minimum temporal slack. In these situations, ties
are broken by selecting the decision with the minimum
larger temporal slack value. Applying the PCP proce-
dure with this extended heuristic Lo the same suile of

60 problems yieldcd 57 solved problems. Although this

*All computation times were obtained on a Decstation
5000, Both ORIRJ/FSS and CPS are Lisp-based systemns;
our procedure is implemented in C.

. @ papers . E Microsoft Pow,,

ues increases and decrease criticality as the slack values
become more dissimilar might provide more effective
search guidance,

Let us define a measure of similarity in the range [0,
1}1 such that for slack value pairs with identical values,
the similarity value is 1 and as the distance between
large and small slack values increases, the similarity
value approaches 0. More precisely, we estimate the
similarity between two slack values by the following
ratio expression:

_ min{slack(i — j),slack(j — 1)}
~ max{slack(i — j), slack(j — i)}

(5)

Given the definition of S and the direction of bias
desired, we now define a new eriticality metric, referred
to as biased temporal slack, as follows:

slack{i — J) (6)
sy 7
where f is a monotonically increasing function.

With little intuition as te the appropriate level of
bias to exert on the criticality calculation, but assum-
ing that the level of bias should not be too great, we
use V.5, n > 2, to define a set of alternatives, vielding
slack(i — j) (7)
", S "

By empirical reasoning, we also define a composite
form of the metric with two different parameters, ny
and na, as

Bslack(i — j) =

Bslack(i — j) =

slack(i — j) slack(i — j) (8)
n{@ nefg' N
Table 2 presents resulls oblained using overall win-
immm Bslack as a variable ordering criterion for dif-
ferent values of n in Eqn. (7) and n; and ns in Eqn. (8)

Bslack(i — j) =

¢/~ ICLL Home - ..

|

ﬁ MinSlackHeuristic - Notepad

File Edit Format WView Help

[5@% MinSlackHeuristic

I

/4 Slack-Based Heuristics for Constraint Satisfaction Scheduling
/4 stephen F. sSmith and cheng-Chung Cheng

J/ Proceedings AAAI-93

£
import org.chocosolver.solver.variables. Intvar;
import org.chocosolver.solver.search. strategy.selectors.variables.variableselector;

public class MinSlackHeuristic implements VariableSelector<Intwvar> {

int nj /¢ number of decision wvariables
Intvar[] decision; // 0/1 decision variables
Intvar[] opil; /4 start time of opl

Intwvar[] op2; /4 start time of op2

int[] durationi; /4 duration of opi
int[] durationz; /4 duration of op2
public MinslackHeuristic(Decision[]
decisions. 1ength;
new Intvar[nl;
new Intvar[n
new Intvar[n
durationi new int[n];
durationz new int[n];
for (int i=0;i<n;i++){
decision[i] = decisions[i].d;
opi[i] decisions[
op2[i] decisions[

decisions){

n
decision
opl
op2

i.start;
j.start;
_i.duration;

i].op_j.duration;

durationi[i decisions
durationz[i decisions

] 1

@dverride
public Intvar getvariablelIntvar[] vi{
' int minslack = Integer.MAX VALUE;
int slack = 0;
Intvar minslackvar = null;
for (int i=0;i=<n;i++)
it {!decision[i].isInstantiated()){
slack = slack(i);
if (slack « minslack){minslackvar = decision[i]; minslack = slack;}

return minslackvar;

i
| // select the uninstantiated wvariable with minimum maximum slack
i

private int slack(Intvar op_i,int d_i,Intvar aop_j,int d_j)
return op_j.getUB() - Math.max{op_i.getLE() + d_i,op_j.getLE());

/4 slack if op_i before op_j
1 i.e. slacki{op_i -» op_]J) in 5&C AAAI-33 parlance

£

/4 NOTE: we consider earliest and latest start times whereas S&C

' consider earliest start and latest finish, but our calculations
L are exactly the same

i

private int slack{int i){
return Math.max(slack({opi[i]l,durationi[i],opz2[i].,.durationz[i]
slacki{opz[i],duration2[i],opi[i],durationi[i]

[[g
b

/¢ get slack of ith decision wariable, to be the largest slack

/¢ Tfrom either slack{opl -» op2) or slack(opz -= opil)

/¢ This differs from Smith & Cheng as they select the smaller of the two,
S/ i.e. replace Math.max with Math.min

% —

A

Optimize

M:l Dptimize - Notepad - =

File Edit Format View Help

fimport java.dio.*;

import java.util.¥*;

import org.chocosolver.solver.Model;

import org.chocosolver.solver.solver;

import org.chocosolver.solver.Solution;

import org.chocosolver.solver.variables. Intvar;

import org.chocosolver.solver.constraints. IIntConstraintFactory. *;
import org.chocosolver.solver.search.strategy. search;

import org.chocosolver.solver.search.strategy.strategy. INtStrategy;
import org.chocosolver.solver.search.strategy.selectors.values. IntDomainMax;
import org.chocosolver.solver. exception. ContradictionException;

public class optimize {

pubTlic static void main(string[] args) throws FileNotFoundException, IOException {
int timeLimit Integer.parseInt(args[1]);
J55P jssp new 155P{args[0],9999);
Model model jssp.model;
solver solver model. getsolver (J;
pecision[] decisions jssp.getDecisions(};
int n decisions. length;
Intvar makeSpan jssp. getMakespan();

solver. TimitTime(timeLimit®1000);
solver.setSearch{new IntStrategy(jssp.getDecisionIntvars(),new MinslackHeuristic(jssp.getbecisions()),new IntDomainMax(}));
I
// attach a variable & value ordering heuristic to solver
// alternative way to optimize
// solution solution = solver.findoptimalsolution(makespan,false);
S/ trace optimisation
model. setobjective(Model. MINIMIZE ,makeSpan);
while(solver.solve()) System.out.printin('makespan: ["+ makeSpan.getLB() +","+ makeSpan.getuB() +"1" +
" nodes: "+ solver.getMeasures().getNodeCount(});

system.out.printin(’nodes: "+ solver.getMeasures().getNodeCount() +
" cpu: "+ solver.getMeasures{).getTimeCount(});

Anyway, will the variable ordering heuristic make a difference
on it's own? Admittedly the heuristic is rather expensive to
run so will it reduce search effort to the point that it reduces
run time (the bottom line)

Do some experiments

“Z ldsRevisited. pdf - Foxit Reader - [ldsRevisited. pdf]
File Edit Miew Comments Forms Tools Help

] =l =1 OXC B IR -Eide - -l % £ Ine
NE@A S 2
choco Id=Revisited |

£

[] =

-

<

10 Patrick Prosser and Chris Unsworth

Table I. Lawrence jobshop scheduling instances, la0l to lald. Minimum makespan (2nd column)
is posted as a constraint resulting in a decision problem. Tabulated is number of decisions (nodes),
discrepancies taken, and run time in seconds. Slack-based dynamic variable and value ordering
heuristics were used. Results are reported for chronological backtracking (BT). The best results
between ILIDNS-early and ILDS late are in bold.

ILIDS-early ILD S late BT

Instance | makespan nodes disc | time nodes disc nodes

lall 666 42 0.05 42 42

la02 G55 2648 0.43 S248

la03 597 53552 4.1

lal4 5490 1788 0.38

lali 593 a1 0.06 a1

lali 926 958 036

lal? 80 3660 11 1044950

lald 563 o744 1.6 SLTee0

lal9 951 T60

lall 958 1045 39201106

lall 1222 2090

lal2 10ag IGAET

lal3 1150 4117

lald 1292 1352

= I e B I e I e) I =) =il] =]
(=0]) Bl =]] W I =] I ey) er] QU] Q]

lala 1207 111067002

TueoreMm 1. The order of instantiation of variables can influence the number
of probes required fo find a solution.

Proor. We use an existence proof. Assume we have a problem with three con-

[£

A 10f 14 o (@) (=) 116.79% v ER ===

Size: [B.50 * 11.00 in]

Takle [[[, Nomman Sadel's job shop schedulieg satsfaction problems, Colomes E-*-* am

D5ewl, Colomps L= are [LDSAte, Colomes *-1-" me shek-based 13
Columps *-0-* e the stalic valee odeng sdect [then sedect 1, Columps *-*-1 me 1he
shek -bawd varible coderimp, Colamps *-*-0 el vrnbles @ ipdex order, A table eniny
of - mpedfies alrndal mslance sohed wilh wro derepaccies [see T bl

Inslance E-1-1 | L-1-1 E-141 L-14 E-l-1 L--1 E-4H] L0

eliddrl -1 - - TH B 1712 iR 14R 200

elddrl-2 - - - - 150 3068 1427
ellddr]l -3 12682 1180 4855 1563 201 AGR049 1AE2 28
elddrl-d - - 212 : 3 d013 2140
ellddrl 5 - - - - - - 743 a5
elddrl - - - - - - 1624 2612
elddrl -7 - - 23l 1157 - - 238 114

elddr] -8 220 Bl - - - - HAT 5R

plddrl -4 - - 254 1383 - - (i) 123

elddrl-10 207 148 - - 123 180 16

elddrl-1 |56R64 | 100869

1 L1735 1231

elddr! a4 - -
plddr?-3 - - - - L[] - -
elddrl-| - - 281 1246 - - 174 306
wlddrd— - - - - - - - -

elddr?-f - - 243 aThE2 - - 2386 2164

elddrl-7 - - fidl5 23015 - - 1214 166

elddrl-8 187 224 - - 120 ih - -

ellddr?-A - - d12 1004 afill 1220 10876

elddrl-10 - - - - - - - -
eoddr -1 _ - - - - - 581 al24e
- - - - - - 234 752

534 fiB5 1458

= = 751 1604 _ - 30468 1MTIT

1143

- - - - - - 2182
161 145 06 1254 aza 181 B12B
- - - - - - -II-I
- - - - 238 712 13478
_ _ - - - - 11632
- - 147 1a71 - - ARTH
- - - - T1R 131 057
_ - - - - - 1845 254
- - LG58 - - 10AT
- - LTTh - - 2882

- - - - a3 112 BRO0

_ _ - - 123 161 1387

(= The CLP Procedure: Edge Finding - Windows Internet Explorer

=Y |5 as.com ||+ | X "‘l edge finding scheduling | Fouk
o Favorites - fop v B [=y v Page - Safety - Toos - @ B 3

| = The CLP Procedure : A

Overview: CLP Procedure : B

Intreductery Examples: CLP

Procedure

Syntax: CLP Procedure . .

B| Detailz: CLP Procedure Edge Fmdmg
- WModes of Operation

) Edge-finding (EF) techniques are effective propagation technigues for resource capacity constraints that reason about the
- Constraint Data Set

processing order of a set of activities requiring a given resource or set of resources. Some of the typical ordering relationships

- Solution Data Set . that EF techniques can determine are whether an activity can, cannot, or must execute before (or after) a set of activities

- Activity Data Set . requiring the same resource or set of resources. This in turn determines new time bounds on the start and finish times. Carlier
- Schedule Data Set i and Pinson (1989) were responsible for some of the earliest work in this area that resulted in solving MT10, a 10x10 job shop
- Edge Finding prablem that had remained unsolved for over 20 years (Muth and Thompson; 1963). Since then, there have been several

variations and extensions of this work (Carlier and Pinson; 1990; Applegate and Cook; 1991; Muijten; 1994; Baptiste and
Le Pape; 1996).

- Macro Variable ORCLP
Examples: CLP Procedure
- References

The edge-finding consistency routines are invoked by specifying the EDGEFINDER= or EDGE= option in the SCHEDULE
statement. Specifying EDGEFINDER=FIRST computes an upper bound on the activity finish time by detecting whether a given
activity must be processed first from a set of activities requiring the same resource or set of resources. Specifying
EDGEFINDER=LAST computes a lower bound on the activity start time by detecting whether a given activity must be processed
last from a set of activities requiring the same resource or set of resources. Specifying EDGEFINDER=BOTH is equivalent to
specifying both EDGEFINDER=FIRST and EDGEFINDER=LAST.

An extension of the edge-finding consistency routines is in determining whether an activity cannot be the first to be processed or
whether an activity cannot be the last to be processed from a given set of activities requiring the same resource (set of
resources). The NOTFIRST= or NF= option in the SCHEDULE statement determines whether an activity is "not first.” In similar
fashion, the NOTLAST= or ML= option in the SCHEDULE statement determines whether an activity is "not last.”

Mote: This procedure is experimental.

Prewvious Page | Mext Page | Top of Page

£

Done €D Internet vy v 0% -

