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Abstract

Recent research has shown the existence of a “phase transition”
for many combinatorial problems. In this paper we investigate the
existence of a phase transition in the job shop scheduling prob-
lem. We apply standard estimates for the constrainedness of con-
straint satisfaction problems to job shop problems and describe
empirical results identifying a phase transition at a constrained-
ness level of approximately 0.2. This phase transition point is
much lower than expected, both from theory and in comparison
with the phase transition point empirically found for other prob-
lems. We argue that this discrepancy is due to the weakness of the
independence assumption used in the estimation of constrained-
ness.

1 Introduction
Recently, researchers have begun investigating the phase transition characteristics
of a number of combinatorial problems including binary constraint satisfaction
problems (CSPs), graph colouring, number partitioning, traveling salesman, and
boolean satisfiability [Cheeseman et al., 1991; Gent and Walsh, 1994;
Prosser, 1994 Smith and Dyer, 1994]. It has been observed that it is often easy to
show that an over-constrained problem has no solution and also to find a solution to
an under-constrained problem. Between these extremes, a problem may be criti-
cally constrained: it is difficult to either find a solution or show that none exists.
The “phase transition” is an area in the problem space with a high density of criti-
cally constrained problems. The phase transition point can often be characterized
with a particular problem parameter (e.g., the ratio of clauses-to-variables for SAT
[Mitchell et al., 1992]). Recently, Gent et al. have proposed a unified problem
parameter, called constrainedness, and have shown how other parameters can be
viewed as estimates of the constrainedness [Gent et al., 1996]. The constrained-
ness,κ, ranges from 0 to  where 0 indicates an ensemble of problems that are
completely under-constrained (i.e., each problem has many solutions) and  indi-
cates an over-constrained ensemble of problems (i.e., there are no solutions to any
problem in the ensemble). A phase transition is expected to occur whenκ ≈ 1 and
this has been empirically demonstrated on many problems.
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In this paper we investigate the existence of a phase transition in job-shop schedul-
ing. Our motivation is threefold:
1. The development of an algorithm independent measure of difficulty of

scheduling problems. Such a development is a first step toward a deeper,
empirical understanding of the behaviour of scheduling algorithms. If we can
identify difficult problems and structural characteristics that correlate with this
difficulty, we can begin to understand why specific heuristics perform well or
fail to perform on various problems. With this knowledge, a further step is the
design of algorithms that specifically address the difficult structural characteris-
tics. While this is a long term research goal, an ability to first identify what are
and are not difficult problems is critical.

2. The application of the phase transition work to real world problems. From a
practical perspective, the ability to assess the difficulty of real world problems is
a tremendous asset. Not only will we be better able to address such problems, we
will also be able to better understand the similarities and differences between the
real world problems and the research benchmarks based on them. We do not
claim that job shop scheduling is a real world problem, though scheduling more
generally clearly is. The investigation of a phase transition in the well under-
stood and studied model of job shop is a first step towards more general classes
of scheduling problems.

3. The intuition that the constrainedness approach to the phase transition is
not applicable to scheduling. Previous work has associated the difficulty of
solving job-shop scheduling instances with the presence of bottleneck resources
[Sadeh, 1991] or on the interdependence between temporal and resource con-
straints [Fox, 1983]. As a single, extreme, data point for this intuition, consider
that if a scheduling problem has either no resource constraints or no precedence
constraints it is solvable in polynomial time [Garey and Johnson, 1979]. In con-
trast, estimates of constrainedness for CSPs are often made using an indepen-
dence assumption: each constraint independently rules out some portion of the
overall state-space. Our intuition, therefore, is that estimates of constrainedness for
CSPs may not be applicable for job shop scheduling.

In this paper, we show that estimates of constrainedness developed for CSPs can be
applied to job shop scheduling to reveal a phase transition. However, the phase tran-
sition point occurs atκ ≈ 0.20, much lower than the phase transition point,κ ≈ 1,
predicted by theory or reported for other problems. We believe that this discrepancy
occurs because job-shop problems violate the independence assumption to a greater
extent than previously studied problems.

2 Constrainedness and the Phase Transition
[Gent et al., 1996] characterize the constrainedness of an ensemble of combinatorial
problems and identify the phase transition with a factor,κ, defined by Equation (1).

 (1)

Where  is the expected number of solutions averaged over the ensemble and
 is the number of bits required to represent one state in the state-space1. A phase tran-

sition is expected to exist whereκ ≈ 1, that is, where the expected number of solutions
is near zero.

1. All log() functions in this paper are assumed to be log2().

κ 1 Sol〈 〉( )log
N

---------------------------–≡

Sol〈 〉
N
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For CSPs, [Gent et al., 1996] estimate the expected number of solutions for a single
problem by a simple a characterization of the tightness of each constraint. Each con-
straint,c, on variables (v1, …, va), rules out a proportion,pc, of the Cartesian prod-
uct of the domains of the variables. To estimate the expected number of solutions, it
is assumed that the states ruled out by each constraint are independent of those ruled
out by any other constraint. On that basis  is estimated as follows:

 (2)

where:
• C is the set of constraints.
• V is the set of variables.
• mv is the domain size of variablev.
• pc is the tightness of constraintc as described above.

Equation (2) can be used to estimate  for each problem in the ensemble and
the resulting values can be averaged to give an estimate ofκ, using Equation (1).

Two points are worth emphasizing:
1.  is estimated using the independence assumption: the impact of each con-

straint on the number of solutions is independent of the impact of all other con-
straints.

2. κ is well-defined for a ensemble of problems, not for individual problems.

Though [Gent et al., 1996] are unclear about the definition of an ensemble, it
appears that their operational definition is a set of problems generated by the same
instances of the problem generation parameters. For random binary CSPs, [Gent
et al., 1996] generate ensembles using the parametersn, m, p1, andp2, wheren is the
number of variables each with domain sizem, p1 is the constraint density (so that
exactlyp1n(n-1)/2 constraints are chosen) andp2 is the tightness of each constraint (so
that exactlyp2m

2 pairs of values are eliminated from the Cartesian product of the
domains). For a point in the parameter space, a set or ensemble of problems is gener-
ated. Since the parameters are constant for each problem instance in an ensemble, each
problem has exactly the same state-space size, the same expected number of solutions,
and therefore an estimate ofκ can be made without explicit averaging over the prob-
lems in the ensemble.

As described later, we generate ensembles of problems such that each problem
potentially has a different expected number of solutions and a different state-space size.
Therefore, we estimate the expected number of solutions and the state-space size of
each problem individually and use Equation (3) below to estimateκ for the ensemble.

 (3)

Where:
•  is the estimated number of solutions for problemi in the ensemble.
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•  is the size of the state-space for problemi.
• k is the number of problems in the ensemble.

3 Job-Shop Scheduling
The traditional  job-shop scheduling problem is defined bym resources
(machines) andn jobs. Each job consists ofm totally ordered activities, one on each
resource. Each activity:
• has a duration for which it must contiguously execute (i.e., no preemption).
• requires a single resource for its entire duration.
• requires a different resource than each of the other activities in the same job.
• has precedence constraints that require that it must not start until all its predeces-

sors have finished: the predecessors are defined by the total ordering on the
activities in a job.

Each resource is limited to executing one activity at a time. Each job has a release-
date, the time after which the activities in the job may be executed, and a due-date,
the time by which the last activity in the job must finish.

A schedule is an assignment of a start time to each activity. We are asked to find the
shortest possible schedule that satisfies all the precedence, resource, release-date,
and due-date constraints. In this paper, we consider the decision version of the prob-
lem: the release-date of each job is 0, the due-date of each job is given by a common
valueh, and we are asked to find a schedule that satisfies all the constraints. Job-
shop scheduling is NP-complete [Garey and Johnson, 1979].
A job-shop instance can be easily formulated as a binary CSP as follows:2

Constants:
• durA: the duration of activityA.
• h: the common due-date for all the jobs.

Variables:
• SA: the start time of activityA.
• dom(SA): the domain of possible start-times for activityA. Initially, an activity

can start at any time so .
• estA: the earliest possible start time of activityA.
• lstA: the latest possible start time of activityA.

Constraints:
• Precedence constraints (activityA must end before activityB starts):

 where activityA is ordered immediately before activityB in some
job.

• Due-date constraints (the last activity in each job must end before the global due-
dateh):  where activityA is the last activity in some job.

• Resource constraints: (activitiesA andB cannot execute at the same
time):  where activitiesA andB require the
same resource.

3.1 Constraint Propagation as a Preprocessing Step
Initially, the domain of each start time variable is the set {0, 1, …,h}. There are sev-
eral constraint propagation schemes that can be applied to reduce the domains of
these variables:

2. This is one formulation. An alternative formulation uses variables that indicate the ordering of
two activities on the same resource.

Si

n m×

dom SA( ) 0 1 … h, , ,{ }=
estA min (dom(SA) )=

lstA max (dom(SA) )=

SA durA+ SB≤

SA durA+ h≤

SA durA+ SB≤( ) SB durB+ SA≤( )∨
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• Temporal propagation enforces arc-B-consistency [Lhomme, 1993] on the pre-
cedence constraints. For example, enforcing arc-B-consistency on the constraint

 with  and  will
reduce the domain ofSA to the set {1, 2, 3, 4, 5} and the domain ofSB to the set
{6, 7, 8, 9, 10}.

• Constraint-based analysis [Erschler et al., 1976; Erschler et al., 1980] helps to
resolve the disjunction in resource constraints. If one of the disjuncts in a
resource constraint can be shown to be false then the other disjunct must be true
and it can be asserted as a new precedence constraint between activities on the
same resource.

• Edge-finding [Carlier and Pinson, 1989; Nuijten et al., 1993] is like constraint-
based analysis in that it helps to resolve the disjunction in resource constraints.
Edge-finding adds unary temporal constraints, enforcing new upper and lower
bounds on the start and end times of activities. These unary constraints are inferred
from an examination of the subsets of activities on a single resource while con-
straint-based analysis just considers pairs of activities.

We have experimented with combinations of these methods resulting in the follow-
ing sequence of increasingly powerful propagation schemes:
1. No propagation.
2. Temporal propagation.
3. Temporal propagation plus constraint-based analysis.
4. Temporal propagation plus constraint-based analysis plus edge-finding.

Applying constraint propagation as a preprocessing step reduces the domains of
variables and therefore affects the estimates ofκ. Given the intuition that the difficulty
of job shop scheduling is largely due to interactions between the constraints, our hope
is that applying a powerful constraint propagation scheme might account for some of
the interactions and thus improve the estimate ofκ.

4 Constrainedness and the Job Shop
Our approach is to estimate the constrainedness for an ensemble of job shop prob-
lems by formulating each problem as a binary CSP, using Equation (2) to estimate
the number of solutions, and using Equation (3) to estimateκ. In this section, we
describe the details of this approach related to the following. First, Equation (2)
requires knowing the tightnesspc of each constraint. We describe how we determine
the constraint tightness for each type of constraint in a job shop problem. Second,
the tightness of each constraint depends on how much constraint propagation is
done.

Intuitively, one method to calculate the tightness of a constraint is to generate the com-
patibility matrix for the constraint and then count the number of zeroes. Figure 1 shows
some examples of compatibility matrices for the constraints in a job shop problem.

In Equations (4) through (6) we present simple equations that calculate the proportion
of zeros in each constraint matrix based on the form of the constraint.

The tightness of a precedence constraint was calculated as follows:

 (4)

SA 5+ SB≤ dom SA( ) 1 2 … 10, , ,{ }= dom SB( ) 1 2 … 10, , ,{ }=

SA durA+ SB≤

p SA durA+ SB≤( ) 1
h 1+( ) durA–( ) h 1+( ) durA– 1+( )

2 h 1+( )2
------------------------------------------------------------------------------------------–=
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Note that we exclude the implicit precedence constraints that arise due to the transi-
tivity of the precedence relation. The transitive constraints clearly violate the inde-
pendence assumption: they can not be violated unless another immediate
precedence constraint is also violated.

The due-date constraints are similar to precedence constraints but have a single
value rather than a variable on the right-hand-side of the inequality. The tightness of
a due-date constraint  was calculated from the following equation:

 (5)

Equation (6) below was used to calculate the tightness of a resource constraint
:

 (6)

4.1 Estimating Constrainedness with Propagation
Constraint propagation revises the domains of the start time variables and so some of
the simplifying assumptions (e.g., the domains of all variables are {0, …,h}) that were
used to derive Equations (4) through (6) do not hold when constraint propagation is
done. We used the following equations when constraint propagation was applied.
The tightness of a precedence constraint was calculated as follows:

 (7)

Because we have performed temporal propagation and there is a precedence con-
straint between activitiesA andB, we are guaranteed thatestA ≤ estB, which is nec-
essary to ensure that we do not over-count the possible start times of activityA.

The tightness of the due-date constraints is zero because propagation removes any
start-times that do not conform to the activity ending at or before the due-dateh.
Therefore, the tightness of a due-date constraint has no effect on the estimate of the
expected number of solutions.

Precedence Constraint Resource Constraint Due-Date Constraint

Figure 1. Example Compatibility Matrices for Job Shop Constraints

SA 3+ SB≤ SA 3+ SB≤( ) SB 4+ SA≤( )∨ SA 3+ SB≤

0
1
2
3
4
5
6

0 1 2 3 4 5 6
0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0

SB

SA

0
1
2
3
4
5
6

0
1
1
1
1
0
0
0

h

SA

0
1
2
3
4
5
6

0 1 2 3 4 5 6
0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

SB

SA

SA durA+ h≤
p SA durA+ h≤( ) durA h 1+( )⁄=

SA durA+ SB≤( ) SB durB+ SA≤( )∨
p SA durA+ SB≤( ) SB durB+ SA≤( )∨( ) p SA durA+ SB≤( ) p SB durB+ SA≤( ) 1–+=

p SA durA+ SB≤( )

max 0 lf t A t–,( )
t estB=

lstB

∑
dom SA( ) dom SB( )×
---------------------------------------------------------=
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The tightness of a resource constraint was modified to be the following:

 (8)

When using constraint-based analysis, new precedence constraints are deduced in
place of some of the disjunctive resource constraints. In these cases, we included just
the derived precedence constraint and excluded the corresponding resource constraint
from the estimation of the expected number of solutions.

5 Experimental Results
We ran a series of computational experiments to empirically determine the existence
and location of a phase transition in job shop scheduling problems. This section
describes these experiments including how we generated problem ensembles, empirical
results on the location of the phase transition point with respect to estimates ofκ (with
and without constraint propagation as a preprocessing step), and the location of the
phase transition point with respect to the actual value ofκ on small problems.

5.1 Generation of Ensembles of Job Shop Instances
We generated 120 problem ensembles each containing 100 instances of the job shop
scheduling problem, as described below. Each instance in an ensemble has the same
number of jobs, the same number of resources, and the same “horizon factor”. The
horizon factorf specifies by what factor the due-date for each job exceeds a lower
bound on the schedule’s duration. That is, for a horizon factorf and lower boundb
on the schedule’s duration, the due-datef×b was used. We calculated lower bounds
following [Taillard, 1993].

We generated random job shop instances using Taillard’s job shop generator [Tail-
lard, 1993]. In this generator, the following parameters, as well as a pair of random
seeds is used to generate each instance.
• n: the number of jobs was varied between 3 to 12 as described below
• m: the number of resources was varied between 3 to 15 as described below.

We generated two sets of problems based on size. In the first set all problems were
square, that is,

n = m, andn ∈ {3, 5, 6, 8, 10, 12}

The problems in the second set were not square and consisted of instances with the
following combinations ofn andm:

5 × 10, 5× 15, 8× 12, 10× 5, 10× 15, 12× 8

For each problem size, we generated 100 problems using a different pair of random
seeds (as required by Taillard generator). The due-dates for these problems were set
using the following horizon factors:

0.9, 0.967, 1.033, 1.1, 1.167, 1.233, 1.3, 1.367, 1.433, 1.5

Note that the first two horizon factors (0.9 and 0.967) necessarily produce ensembles
such that all the problems are over-constrained.

p SA durA+ SB≤( ) SB durB+ SA≤( )∨( )

max 0 min lstA t durB 1–+,( ), max estA t durA– 1+,( ) 1+–( )
t estB=

t lstB=

∑
dom SA( ) dom SB( )×

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------=
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5.2 The Phase Transition for Estimates ofκ
We solved each problem using the NumODO scheduler [Beck et al., 1997b; Beck
et al., 1997a], that is, for each instance, NumODO was able to either find a solution or
was able to show that the instance was not satisfiable (by exhaustive search).3

The horizon factor is naturally related to constrainedness (i.e., the smaller the hori-
zon factor the more constrained the problem). In Figure 2, we plot the probability of
solubility against the horizon factor to examine the possibility of a phase transition
characterized simply by the horizon factor. The point where 50% the problems are
satisfiable occurs when the horizon factor is between 1.0 and 1.3 but there is no
strong indication of a phase transition with respect to the horizon factor.

The graphs in Figure 3 and Figure 4 show the probability of solution versus the esti-
mated constrainedness for the square problems. Figure 3 estimates the constrainedness
without any constraint propagation while Figure 4 uses temporal constraint propaga-
tion. The graphs exhibit the classical phase transition behaviour, however, the phase
transition point is quite low, atκ ≈ 0.20 when no propagation is done. Estimating con-
strainedness using temporal propagation shifted the phase transition point toκ ≈ 0.30.

Adding more powerful constraint propagation schemes, constraint-based analysis
and constraint-based analysis plus edge-finding, resulted in little change in the
phase transition point from simply using temporal propagation. Graphs of solubility
versus constrainedness for these methods are presented in Figure 5 and Figure 6,
respectively. Note that the horizontal line in the graph in Figure 6 occurs because of an
interpolation anomaly. The edge-finding propagation technique is able to show that all
the problems in the ensembles created with the smallest two horizon factors are unsatis-
fiable. Since the constrainedness is estimated after running edge-finding, theκ value for
these ensembles is infinity and the probability of having a solution is zero. The horizon-
tal line is a linear interpolation between the previous data point and the point .

3. The exponential search required to prove that a problem has no solutions prevented the use of
larger problems in our experiments.
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The results for the non-square problems were similar and are shown in Figure 7 for the
case where temporal propagation was done. The phase transition is evident but it is not
as sharp as with the square problems.

5.3 The Phase Transition for Actualκ
Our intuition is that the phase transition point is low because theestimates of κ did
not adequately take in to account the dependencies between constraints even with
constraint propagation. An alternative explanation is that the theory behind con-
strainedness does not apply to job shop scheduling. To investigate this, we calcu-
lated the actual constrainedness for the 3×3 ensembles by modifying the NumODO
scheduler to find all solutions. The actual number of solutions was then used to
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Figure 4. Phase Transition with Temporal Propagation
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compute the actual value forκ according to Equation (3). The results, shown in
Figure 8, reveal a phase transition point (where 50% of the problems are satisfiable)
when the actualκ is approximately 1.0.

Again, the horizontal line occurs because of the interpolation anomaly with a data
point at . Unfortunately, the computational time required to find all solutions
prevented us from computing the actualκ values for ensembles of larger problems.

6 Discussion
We have observed a phase transition in job shop scheduling atκ ≈ 0.20, far less than
both the theoretical phase transition point and that empirically demonstrated for
other problems [Gent et al., 1996]. We believe that this discrepancy occurs because
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the independence assumption made to estimateκ does not hold for job shop sched-
uling: the states ruled out by a constraint are not independent of those ruled out by
other constraints.

Our experimental results suggest that, for job shop scheduling, estimatingκ using
the independence assumption underestimates the actual value ofκ. In other words,
there are some interactions among the constraints that rule out more solutions than
the individual constraints acting alone. In particular, we have shown that for small
problems, where all solutions could be enumerated and, therefore, whereκ could be
precisely calculated, the phase transition occurs atκ ≈ 1.0, as predicted and
expected. These results support the conclusion that it is the estimate ofκ that is at
fault rather than some property of the job shop scheduling problem that invalidates
the theory of constrainedness.

Figure 7. Non-Square Problems with Temporal Propagation
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While our experimental results are consistent with our intuition vis-a-vis the inde-
pendence assumption, they do not confirm it. We have not yet shown that it is depen-
dencies among constraints that cause our estimates ofκ to be low.

The results of this experiment raise a number of interesting points with respect to
constrainedness in general and the constrainedness of job shop scheduling as com-
pared to that of other problem classes.
• In their paper, [Gent et al., 1996] note that, empirically, different classes of prob-

lems exhibit a phase transition at varying values ofκ. For example, the phase
transition in 3-SAT occurs atκ ≈ 0.82, in 3-coloring atκ ≈ 0.84, and in number
partitioning atκ ≈ 0.96. [Gent et al., 1996] suggest that this indicates “number
partitioning problems at the phase transition may in some sense be more con-
strained.” While it is not clear precisely what this statement means, it would seem to
imply that job shop scheduling, given our results of a phase transition point of
κ ≈ 0.20, is muchless constrained than these other problem classes. An alternative
interpretation is that independence assumption used in the estimation of con-
strainedness holds to different degrees in different problem classes. In problem
classes with significant interaction amongst the constraints, the phase transition
point would be observed at a lower value ofκ.

• The low value ofκ at the phase transition point indicates that proportionately
more solutions in job shop scheduling are ruled out by constraint interaction
than, for example, in graph colouring. This supports the notion that, as compared
to graph colouring, more of the difficulty in job shop scheduling comes from the
interactions of the constraints. This different source of difficulty suggests that
these problem classes have important differences that are obscured when they
are simply viewed from the perspective of their NP-hardness. In particular, heu-
ristic solution strategies for graph colouring may not be appropriate for adapta-
tion to job shop scheduling, and vice versa.

• In general, if the independence assumption does not hold for some problem
class, the estimate ofκ may be either an overestimate or an underestimate. That
is, we may be able to construct examples where constraints together rule out
more solutions than the sum of the individual contributions and conversely we
can construct examples where constraints overlap in the solutions that they rule
out. This leads to a prediction that for problems with redundant or overlapping con-
straints, the phase transition should be observed at aκ > 1. To our knowledge, this
has not been observed for any problem class.

The prime area for further research is to test our intuition regarding the indepen-
dence assumption: can we empirically evaluate the independence (or lack thereof)
of constraints in a job shop problem? Are there dependencies between resource and
precedence constraints? A more accurate estimate forκ must explicitly take into
account some of the interactions between the constraints. Two possibilities are the
following:
1. [Hooker and Vinay, 1995] provide a second-order estimate of the probability

that a SAT problem has a solution. This estimate takes into account interactions
between pairs of clauses in a SAT problem. It may be fruitful to apply their
methods to job shop problems.

2. As noted in our introduction, it is believed in the scheduling community that
problem structures such as bottleneck resources (i.e.,a resource that needs to
execute a large number of activities in a short period of time) contribute signifi-
cantly to problem difficulty [Sadeh, 1991]. Indeed, we can extend the notion of
bottleneck to a set of resources such that a set of tightly temporally related activities
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must execute in a short period of time on a small set of resources4. Given a graph-
based representation of a scheduling problem, it may be possible to use some graph
measurements (e.g., minimum cut-set) to improve the estimation ofκ.

7 Conclusion
This work is the first demonstration of a phase transition for the job shop scheduling
problem. We empirically found a phase transition atκ ≈ 0.20 when no constraint
propagation was done and atκ ≈ 0.30 when constraint propagation was done as a
preprocessing step. The phase transition atκ ≈ 0.30 was found to be relatively inde-
pendent of whether simple temporal propagation or more powerful propagation
(constraint-based analysis and edge-finding) was done.

The disparity between the observedκ value at the phase transition for job shop
scheduling and both the theoretically predictedκ ≈ 1 and the empirically observedκ
for other problems [Gent et al., 1996] can be accounted for by postulating signifi-
cant interaction among the constraints. This postulate is supported by the intuition
in the scheduling community that much of the difficulty in scheduling arises from
interactions between constraints.

This work highlights the intuition that the independence assumption may hold to
different degrees in different problem classes. Those classes, such as job shop
scheduling, where there is a tight interaction between constraints will exhibit a
phase transition at a lower value ofκ while those with independent or redundant
constraints will exhibit a phase transitions near or aboveκ ≈ 1. These intuitions
explain our results but remain to be more fully investigated.
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