This article was downloaded by: [130.209.247.104] On: 29 November 2017, At: 08:17
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

‘ INFORMS Journal on Computing

‘ Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Combining Constraint Programming and Local Search for
Job-Shop Scheduling

J. Christopher Beck, T. K. Feng, Jean-Paul Watson,

To cite this article:
J. Christopher Beck, T. K. Feng, Jean-Paul Watson, (2011) Combining Constraint Programming and Local Search for Job-Shop
Scheduling. INFORMS Journal on Computing 23(1):1-14. https://doi.org/10.1287/ijoc.1100.0388

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2011, INFORMS

Please scroll down for article—it is on subsequent pages

‘informs.

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

RIGHTSE LI MN iy

http://pubsonline.informs.org
https://doi.org/10.1287/ijoc.1100.0388
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org

Downloaded from informs.org by [130.209.247.104] on 29 November 2017, at 08:17 . For personal use only, all rights reserved.

INFORMS Journal on Computing

Vol. 23, No. 1, Winter 2011, pp. 1-14
1sSN 1091-9856 | 1ssN 1526-5528 | 11 {2301 | 0001

1orms})

por10.1287/ijoc.1100.0388
©2011 INFORMS

Combining Constraint Programming and Local
Search for Job-Shop Scheduling

J. Christopher Beck, T. K. Feng

Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
{jcb@mie.utoronto.ca, tkfeng@mie.utoronto.ca}

Jean-Paul Watson

Discrete Math and Complex Systems Department, Sandia National Laboratories, Albuquerque,
New Mexico 87185, jwatson@sandia.gov

ince their introduction, local search algorithms have consistently represented the state of the art in solu-

tion techniques for the classical job-shop scheduling problem. This dominance is despite the availability
of powerful search and inference techniques for scheduling problems developed by the constraint program-
ming community. In this paper, we introduce a simple hybrid algorithm for job-shop scheduling that leverages
both the fast, broad search capabilities of modern tabu search algorithms and the scheduling-specific inference
capabilities of constraint programming. The hybrid algorithm significantly improves the performance of a state-
of-the-art tabu search algorithm for the job-shop problem and represents the first instance in which a constraint
programming algorithm obtains performance competitive with the best local search algorithms. Furthermore,
the variability in solution quality obtained by the hybrid is significantly lower than that of pure local search
algorithms. Beyond performance demonstration, we perform a series of experiments that provide insights into
the roles of the two component algorithms in the overall performance of the hybrid.

Key words: scheduling; tabu search; constraint programming; hybrid algorithms
History: Accepted by David Woodruff, Area Editor for Heuristic Search and Learning; received July 2009;
revised January 2010; accepted January 2010. Published online in Articles in Advance May 19, 2010.

1. Introduction
Local search (LS) algorithms for the traditional
makespan-minimization formulation of the job-shop
scheduling problem (JSP) have dominated the state of
the art for at least the past 15 years. These include
Nowicki and Smutnicki’s landmark TSAB tabu search
algorithm (Nowicki and Smutnicki 1996), Balas and
Vazacopoulos’ guided local search algorithm (Balas
and Vazacopoulos 1998), Nowicki and Smutnicki’s
follow-up i-TSAB tabu search algorithm (Nowicki
and Smutnicki 2005), and most recently hybrid tabu
search-simulated annealing algorithm of Zhang et al.
(2008). These algorithms are all built on a foundation
of one or more powerful, problem-specific move oper-
ators, which are able to efficiently identify promising
feasible and high-quality solutions in the neighbor-
hood of a given solution. Metaheuristic search strate-
gies then leverage these move operators to perform
global search for minimal-cost solutions; the complex-
ity of these strategies ranges from simple tabu search
(in the case of TSAB) to highly intricate hybridizations
of tabu search, path relinking, and elite pool mainte-
nance schemes (in the case of i-TSAB).

Perhaps somewhat paradoxically, constraint pro-
gramming (CP) algorithms are more commonly used

RIGHTS L

than their LS counterparts to obtain solutions to
real-world scheduling problems, e.g., using ILOG’s
Scheduler software library (Scheduler 2007). This is
widely attributed to a combination of the ability to eas-
ily incorporate various idiosyncratic “side” constraints
that are pervasive in real-world scheduling problems
(such constraints can require significant redesign of
LS algorithms) and to effectively deduce, via power-
ful domain-specific constraint propagators, the impli-
cations of various scheduling decisions. However,
despite the volume of research dedicated to the devel-
opment of scheduling-specific constraint propagation
and search techniques (e.g., see Baptiste et al. 2001,
Beck and Fox 2000), the performance of CP algorithms
on the traditional JSP has significantly lagged that
of their LS counterparts. To date, the strongest CP-
based algorithm is solution-guided search (Beck 2007),
although the performance of even this algorithm lags
that of modern tabu search algorithms for the JSP
(Watson et al. 2006) in terms of both time and final
solution quality.

Hybridization of LS and CP on JSPs without side
constraints does not, therefore, immediately appear to
be a promising research direction. However, the fol-
lowing two unexplored aspects of these algorithms

Downloaded from informs.org by [130.209.247.104] on 29 November 2017, at 08:17 . For personal use only, all rights reserved.

Beck, Feng, and Watson: Combining CP and LS for Job-Shop Scheduling

INFORMS Journal on Computing 23(1), pp. 1-14, ©2011 INFORMS

motivate the line of research developed in this
paper.

¢ The strong propagation techniques in CP are
most efficient in constrained search states. That is, the
polynomial-time inference algorithms are more likely
to be able to find implied constraints, and to con-
sequently reduce the search space, in states that are
already highly constrained. When a good solution has
been found, strong “back propagation” from the upper
bound on the makespan results in such a highly con-
strained search state. Therefore, we conjecture that
although CP is unable to competitively find good solu-
tions on its own, once given a good solution, it may be
able to improve on it more quickly than an LS search
approach.

* A popular conceptualization of the power of
modern LS algorithms is that they balance intensifica-
tion with diversification (Watson et al. 2006). Intensifi-
cation, which can loosely be understood as searching
“near” an existing good solution, is often imple-
mented by repeatedly restarting search from a good
solution that has been found previously. Diversifica-
tion, in contrast, tries to distribute the search effort to
unexplored areas of the search space. It is often imple-
mented by maintaining a varied set of promising solu-
tions and combining them in a variety of ways, such
as via path relinking (Glover et al. 2003). However,
modern tabu search algorithms seem to do a relatively
poor job of intensification. Watson (2005) showed that
after a relatively small number of iterations after
restarting search from a good solution, tabu search
is at a considerable distance from the starting solu-
tion. Furthermore, a posteriori analysis of algorithmic
traces indicates that tabu search often fails to locate
high-quality solutions that are quite close to previ-
ously identified solutions. In contrast, solution-guided
constructive search performs a much more focused
search around its guiding solution (Beck 2007). There-
fore, we conjecture that improved performance may
result from using CP to strongly intensify search
around a diverse set of high-quality solutions gener-
ated by tabu search.

The remainder of this paper is organized as follows.
We begin in §2 with a brief discussion of the job-shop
scheduling problem, the benchmark instances used
in our analysis, the foundational algorithms for our
hybrid approach, and a discussion of previous work
on algorithm switching hybrids. Our simple hybrid
is described in §3. Section 4 outlines our computa-
tional experiments, which are subsequently detailed
in §§5 through 8. We compare the performance of our
best parameterization of the hybrid algorithm with
the state of the art in §9. Section 10 details some
implications of our results, followed by our conclu-
sions in §11. The basic idea of our hybrid algorithm
was previously explored by Watson and Beck (2008).

RIGHTS L

This paper represents a significant extension in terms
of experimental methodology, parameterization, and
analysis; in particular, the notion of switching and the
experiments reported in §§5 through 8 are all novel
contributions.

2. Background, Problems, and
Algorithms

In this section, we provide the context for our work:
the problem and benchmark instances, the “pure”
algorithms used as a basis for our hybrid approach,
and details of previous work on related hybrid
algorithms.

2.1. Problem Description and
Benchmark Instances

We consider the well-known n x m static, deterministic
JSP in which 7 jobs must be processed exactly once on
each of m machines (Blazewicz et al. 1996). Each job i
(1 <i < n) is routed through each of the m machines
in a predefined order m;, where ;(j) denotes the jth
machine (1 < j <m) in the routing order of job i. The
processing of job i on machine ;(j) is denoted o;; and
is called an operation. An operation o0; must be pro-
cessed on machine 7,(j) for an integral duration 7; > 0.
Once an operation is initiated, processing cannot be
preempted and concurrency on individual machines
is not allowed; i.e., the machines are unit-capacity
resources. For 2 < j <m, o; cannot begin processing
until 0;;_; has completed processing. The scheduling
objective is to minimize the makespan C_,,, i.e., the
maximal completion time of the last operation of any
job. Makespan minimization for the JSP is NP-hard for
m >2 and n > 3 (Garey et al. 1976).

An instance of the n x m JSP is uniquely defined
by the set of nm operation durations 7; and n job
routing orders ;. In nearly all benchmark instances,
the 7; are uniformly sampled from the interval [1, 99],
whereas the 7; are given by random permutations
of the integer sequence 1,...,m. Our experimental
results are generated using a subset of Taillard’s well-
known benchmark instances, specifically those labeled
tall through ta50 (Taillard 1993). This subset con-
tains 10 instances of each of the following prob-
lem sizes: 20 x 15, 20 x 20, 30 x 15, and 30 x 20.
We have selected these instances because they are
widely studied, are known to be very challenging,
and have “headroom” for improvement in best-known
makespans. For these same reasons, we ignore the eas-
ier instances in Taillard’s problem suite, in addition
to many historical instances (e.g., the ft, 1la, and orb
instances) for which modern JSP algorithms can con-
sistently locate optimal solutions.

2.2. Iterated Simple Tabu Search
Beginning with an early approach by Taillard (1989),
tabu search algorithms have consistently represented

Downloaded from informs.org by [130.209.247.104] on 29 November 2017, at 08:17 . For personal use only, all rights reserved.

Beck, Feng, and Watson: Combining CP and LS for Job-Shop Scheduling

INFORMS Journal on Computing 23(1), pp. 1-14, ©2011 INFORMS

the state of the art in obtaining high-quality solutions
to the JSP. A variety of researchers have introduced
tabu search algorithms of ever-increasing effective-
ness and complexity. Specific algorithmic advances of
note in this progression include the introduction of
(1) the highly restrictive N5 critical path-based move
operator (Nowicki and Smutnicki 1996), (2) search
intensification mechanisms in conjunction with sets
of “elite” or high-quality solutions (Nowicki and
Smutnicki 1996), and (3) search diversification mech-
anisms in the form of path relinking (Nowicki and
Smutnicki 2005). These components are simultane-
ously embodied in Nowicki and Smutnicki’s i-TSAB
algorithm, which has represented the state of the art
since 2003. With the exception noted below, the sole
competitor is a hybrid tabu search/simulated anneal-
ing algorithm introduced by Zhang et al. (2008). The
Zhang et al. algorithm uses simulated annealing to
generate an initial set of elite solutions, which are then
processed via tabu search-driven intensification. The
primary differences between the Zhang et al. algo-
rithm and i-TSAB are the lack of an explicit diversifi-
cation mechanism (path relinking is used in i-TSAB)
and the use of the N6 move operator introduced
by Balas and Vazacopoulos (1998) in the case of
Zhang et al. (2008).

Although remarkably effective, i-TSAB is an
extremely intricate and complex algorithm. Such com-
plexity is a significant drawback to researchers, as in
practice it impedes reproducibility, adoption, and sub-
sequent study. In the specific case of i-TSAB, its intri-
cacy makes it difficult to assess the contribution of the
various algorithmic components to its overall perfor-
mance. Toward this goal, we previously introduced
a simplified version of i-TSAB called iterated simple
tabu search (i-STS) (Watson et al. 2006), which con-
tains the key algorithmic ingredients of i-TSAB while
reducing the overall complexity and maintaining near-
equivalent performance. Pseudocode for i-STS is pro-
vided in Algorithm 1 (see Figure 1). A summary
description of the algorithm follows; full details are
provided in Watson et al. (2006).

A basic tabu search lies at the core of i-STS, built on
the N5 move operator. Short-term memory is used to
prevent inversion of recently swapped pairs of adja-
cent operations on a critical path. Following Taillard
(1989), the tabu tenure is periodically and randomly
sampled from a fixed interval [L, U]. Search in i-STS
proceeds in two phases. In the first phase, the basic
tabu search algorithm is executed for a small, fixed
number of iterations from each of a number of dis-
tinct random initial solutions. The best solution from
each iteration-limited run is saved, and the aggregate
forms the initial set E of elite solutions.

In the second phase of i-STS, the elite solutions
in E are iteratively processed by both intensification

RIGHTS L

3
i-STS():
1 initialize elite solution set E via tabu search applied to random initial solutions
2 while termination criteria not met do
3 p = draw random sample from the interval [0, 1]
4 if p < p, then
5 e := draw solution at random from E
6 ¢’ := apply simple tabu search to e
7 if C,, (¢”) < C, . (e) then
L replace e in E with ¢’
8 else
9 e}, e,:= draw two solutions at random from E, e, # e,
10 ¢’ := apply path relinking between ¢, and e,
11 e”: = apply simple tabu search to ¢’
12 if Cpoy(€”) < Cpney) then
L replace e, in E with e”

13 return best (E)

Figure 1 Algorithm 1 (/-STS: Iterated Simple Tabu Search)

and diversification mechanisms, each selected at any
given iteration with respective probabilities p; and p,,
where p; +p, =1. To perform search intensification, a
single elite solution e € E is selected at random and
an iteration-limited tabu search is executed from e.
Because of random tiebreaking during move selec-
tion, facilitated by the pervasiveness of plateaus of
equally fit neighboring solutions in the JSP (Watson
2003), different search trajectories are generated. If a
solution ¢’ with a lower makespan than e is located,
e’ replaces ¢ in E. To perform diversification, two
elite solutions e;, ¢, € E are selected at random. Path
relinking is then performed to generate a solution ¢’
that is approximately equidistant from both e; and
e,. Iteration-limited tabu search is then executed from
e, as is performed in the intensification process. If a
solution ¢” is identified with a lower makespan than
e,, then e” replaces e, in E. The second phase of i-STS
continues until a cumulative number of basic tabu
search iterations M have been executed, with the best
solution e € E returned upon completion.

With four exceptions, all parameters of i-STS are set
identically to that reported in Watson et al. (2006). The
exceptions are chosen based on the empirical studies
of i-STS and i-TSAB (Watson et al. 2006) and are as
follows.

* The probabilities of intensification and diversifi-
cation are both set to 0.5 (p; =p,; =0.5).

* The number of iterations of tabu search allowed
before the intensification either finds a new, better
solution or terminates is 7,000.

* Whenever the intensification phase does find an
improved solution, this limit is reset to 20,000 itera-
tions and the current tabu search continues executing.

* The elite pool size (|E|) is one of the independent
variables in the experiments reported below.

Downloaded from informs.org by [130.209.247.104] on 29 November 2017, at 08:17 . For personal use only, all rights reserved.

4

Beck, Feng, and Watson: Combining CP and LS for Job-Shop Scheduling

INFORMS Journal on Computing 23(1), pp. 1-14, ©2011 INFORMS

2.3. Solution-Guided Search
Solution-guided search (SGS) is an algorithm that
combines constructive tree search, randomized restart,
and heuristic guidance from good solutions found ear-
lier in the search (Beck 2007). The basic approach is a
CP tree search with a limit on the number of deadends
(“fails”) that are encountered before restarting. Each
tree search is guided by using an existing suboptimal
solution as a value ordering heuristic. Once a variable
to be assigned has been chosen (see §2.3.1), the value
chosen is the value of that variable in the guiding solu-
tion, provided that value is still in the domain of the
chosen variable. Otherwise, any other value ordering
heuristic may be used. As in i-STS, a small set of elite
solutions is maintained, one of which is chosen with
uniform probability to guide a given tree search. When
a tree search exhausts its fail limit, it returns the best
solution it has found (if any). That solution, if it exists,
then replaces the guiding solution in the elite pool.
Beck (2007) showed that SGS has strong, but not
state-of-the-art, performance on makespan-minimi-
zation JSPs. Although finding significantly better
solutions than chronological backtracking and ran-
domized restart (using the same propagators, heuris-
tics, and, in the latter case, fail limit sequences), SGS
was not able to perform as well as i-STS.

2.3.1. Details. A simplified version of SGS is used
in this paper. This version fixes a number of the
parameters in the full algorithm. Readers interested
in the full version are referred to Beck (2007).

Pseudocode for SGS is shown in Algorithm 2 (see
Figure 2). The algorithm initializes a set E of elite solu-
tions and then enters a while loop. In each iteration,
a chronological backtracking search is guided with a
randomly selected elite solution (line 6). If a solution
s is found during the search, it replaces the starting
elite solution r. Each individual search is limited by
a fail bound, a maximum number of fails that can
be incurred. The entire process ends when the prob-
lem is solved, proved insoluble within one of the tree

SGS():

initialize elite solution set E

while not solved and termination criteria not met do
r :=randomly chosen element of E

set upper bound on cost function

set fail bound b

s :=search (r, b)

if s is better than r then

0 N N L AW N =

|_ replace r with s in E

el

return best (E)

Figure 2 Algorithm 2 (SGS: Solution-Guided Search)

RIGHTS L

searches, or when some overall bound on the compu-
tational resources (e.g., CPU time or number of fails)
is reached.

More formally, a search tree is created by assert-
ing a series of choice points of the form: (V; =x) v
(V; # x), where V, is a variable and x is the value
assigned to V;. SGS can use any variable ordering
heuristic to choose the variable to assign. The choice
point is formed using the value assigned in the guid-
ing solution or, if the value in the guiding solution
is inconsistent, a heuristically chosen value. Let a
guiding solution r be a set of variable assignments
{(Vi=x), {Vo=x5),...,{V,=x,)}, m <n, where n is
the number of decision variables. Let dom(V;) be the
set of possible values (i.e., the domain) of variable V.
The variable ordering heuristic has complete freedom
to choose a variable V; to be assigned. If x; € dom(V;),
where (V; = x;) € r, the choice point is made with
x = x;. Otherwise, if x; & dom(V;), any value ordering
heuristic can be used to choose x € dom (V).

At line 4 in the pseudocode, an upper bound is
placed on the cost function for the subsequent search.
We use the local upper bound approach here (Beck
2007): the upper bound on the cost function is set
to one less than cost of the guiding solution (i.e.,
cost(r) — 1). Intuitively, the local upper bounding
approach is a trade-off between exploiting constraint
propagation (strongest if the upper bound were one
less than the best solution found so far) and exploiting
the heuristic guidance of high-quality but not neces-
sarily best-so-far solutions.

Given a large enough fail limit (line 5), an indi-
vidual search can exhaust the search space. There-
fore, completeness depends on the policy for setting
the fail limit. In our experiments, we use the Luby
fail limit, an evolving sequence that has been shown
to be the optimal sequence for satisfaction problems
under the condition of no knowledge about the solu-
tion distribution (Luby et al. 1993). The sequence
is as follows: 1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,
Following Wu and van Beek (2007) and our own pre-
liminary experimentation, we multiply the elements
of the sequence by a fixed constant (in our case, 200).
As the sequence increases without limit, a single
search will eventually have a fail limit that is suf-
ficient to search the entire search space, and there-
fore the overall algorithm using the Luby fail limit is
complete.

SGS is a general framework for constructive tree
search. To apply SGS to the JSP, solutions are encoded
using the well-known disjunctive graph representa-
tion. Texture-based heuristics (Beck and Fox 2000) are
used to identify a machine and time point with max-
imum contention among the operations and to then
choose a pair of unordered operations. The heuristic
is randomized by specifying that the (machine, time
point) pairis chosen with uniform probability from

Downloaded from informs.org by [130.209.247.104] on 29 November 2017, at 08:17 . For personal use only, all rights reserved.

Beck, Feng, and Watson: Combining CP and LS for Job-Shop Scheduling

INFORMS Journal on Computing 23(1), pp. 1-14, ©2011 INFORMS

the top 10% most critical pairs. The ordering found
in the guiding solution is asserted. Note that because
the decisions are binary, the pair in the solution must
be locally consistent; otherwise, the pair of operations
would already be sequenced in the opposite order.
The standard constraint propagation techniques for
scheduling (i.e., edge finding, the precedence graph,
and the timetable constraint) (Nuijten 1994, Laborie
2003, Le Pape 1994), available via the ILOG Scheduler
library (Scheduler 2007), are also used.

2.4. Algorithm Selection and Switching

The algorithm selection problem, introduced by Rice
(1976), is to identify the algorithm (or the particu-
lar parameterization of an algorithm) that has the
best performance on a given problem instance. Algo-
rithm performance on hard combinatorial problems,
including the JSP, is known to be highly variable.
Consequently, the ability to identify problem instance
features and correlate these features to algorithm
performance in an off-line learning phase can sig-
nificantly accelerate solution times when the same
features are used to select an algorithm online. Most
of the work that has addressed this problem is what
Carchrae and Beck (2005) have termed “high knowl-
edge”: learning detailed models relating problem fea-
tures and algorithm performance; e.g., see Minton
(1996), Leyton-Brown et al. (2002), Boyan and Moore
(2000), Lagoudakis and Littman (2000), and Horvitz
et al. (2001).

In contrast, Carchrae and Beck introduced a “low
knowledge,” switching-based approach where there
is no off-line learning but rather the control switches
among the algorithms during problem solving and
algorithms communicate their best-known solutions
among each other. Over the course of the run, rein-
forcement learning is used to vary the time that the
different algorithms are allocated so that the algo-
rithms that have performed better receive an increased
amount of the run-time. On a series of job-shop
scheduling problems, Carchrae and Beck show that
they are able to achieve online performance that is
equivalent to the optimal off-line predictive approach.

3. Two Very Simple Hybrid
Algorithms

Our work adopts the low-knowledge switching
approach of Carchrae and Beck (2005). However,
our motivation is not to compare low-knowledge
and high-knowledge approaches nor to directly
address the algorithm selection problem. Rather, our
motivation is to investigate whether two strong
but very different problem solving strategies can
achieve state-of-the-art performance via very simple
hybridizations. Our intuition, as noted above, is that
tabu search and SGS have different behaviors in

RIGHTS L

terms of intensification and diversification and that
this difference may give rise to stronger combined
performance.

We initially investigate two particular forms of
hybridization.

® One-switch: Given an overall run-time limit of
T seconds, the one-switch hybrid runs i-STS for
T /2 seconds and then switches to SGS for the remain-
ing T/2 seconds. As both algorithms use an elite pool,
unlike Carchrae and Beck (2005), the entire elite pool
is transferred between the algorithms. That is, the elite
pool at the end of the i-STS run is used as the initial
elite pool for SGS (line 1 of the SGS pseudocode).
The best solution found during the combined run is
reported.

* Multi-switch: Using the same overall run-time
limit T, a base iteration time b < T is defined. Within
each iteration, i-STS is run followed by SGS with the
elite pool communicated as above. The next iteration
then begins, again with i-STS but now initialized with
the elite pool from the immediately preceding SGS
run. The value of b, in addition to the relative pro-
portion of b allocated to each algorithm, can either be
static or can vary over the course of execution. We
investigate a number of parameter settings below.

Obviously, one-switch is identical to multi-switch
with b = T. We make the distinction primarily for clar-
ity of presentation. The i-STS algorithm is run first in
each interval because we observed that it performs
better than SGS at quickly improving poor solutions
such as the initial elite pool; this behavior is analyzed
further in §8.

4. Plan of Experiments and Analysis
In the following sections, we conduct four exper-
iments that examine the performance of various
parameterizations of our hybrid approach and ana-
lyze why specific hybrid parameterizations work well
and others do not. Based on the experimental results,
we additionally compare our results to the state of
the art as published in the literature. Our experiments
and hypotheses are as follows.

* Experiment 1: We conduct a fully crossed exper-
iment comparing both one-switch and multi-switch
to the underlying pure algorithms. Our hypothesis
is that the hybrid algorithm will exhibit significantly
better performance than the pure approaches. We also
expect multi-switch to outperform one-switch.

¢ Experiment 2: We compare one-switch and multi-
switch against variants of the hybrid algorithm that
do not use SGS. Instead, they use chronological
backtracking or randomized restart (Gomes et al.
2005). Our hypothesis is that the hybrid using SGS
will outperform the other variations, demonstrating
that SGS is critical for the performance observed in
the previous experiments.

Downloaded from informs.org by [130.209.247.104] on 29 November 2017, at 08:17 . For personal use only, all rights reserved.

Beck, Feng, and Watson: Combining CP and LS for Job-Shop Scheduling

INFORMS Journal on Computing 23(1), pp. 1-14, ©2011 INFORMS

¢ Experiment 3: Following Carchrae and Beck
(2005), we use reinforcement learning to vary the pro-
portion of each time interval that is dedicated to each
algorithm based on the performance of the algorithm
during prior intervals. Our hypothesis is that by allo-
cating more resources to the better performing algo-
rithm, the reinforcement learning based approach will
outperform static allocation over the interval.

¢ Experiment 4: We perform a controlled experi-
ment to quantify the ability of the pure algorithms
to improve on an initial elite pool of a given qual-
ity. Here, our objective is to determine why specific
parameterizations of our hybrid algorithm tend to
work best.

Our experiments and analyses are based on multi-
ple runs of each algorithm configuration on each of
the Taillard benchmark instances we consider. Each
problem instance is run 10 times independently for a
given parameter configuration. i-STS is implemented
in C++4+ and SGS uses ILOG Scheduler 6.5 (also in
C++). All code was compiled using the GNU gcc com-
piler. Experiments were executed on a cluster with
2 GHz Dual Core AMD Opteron 270 nodes, each with
2 GB of RAM running Red Hat Enterprise Linux 4.

5. Experiment 1: The Effects of
Hybridization

Our first experiment is a fully crossed experiment

that investigates the relative impact of all parame-

ters and parameter combinations in our hybrid algo-

rithm, with the goal of understanding the relationship

between these parameters and overall performance.

5.1. Parameters

Table 1 presents the parameters for the experiment.
Parameters a and b interact to form the different
pure and hybrid algorithms. When a = hybrid, i-STS
is executed for the first half of each iteration (i.e., b/2
seconds). On termination, i-STS returns its elite pool.
SGS is then executed for the remainder of each iter-
ation, starting with the elite pool from i-STS. At the

Table1 The Parameters for Experiment 1

Parameter Value(s) Meaning

T 3,600 Total run time for one problem

instance, in seconds.

|E| {2,4,8} The size of the elite pool for both /-STS
and SGS.

a {ists, sgs, hybrid} The pure or hybrid algorithms.

b {120, T} The base iteration time in seconds. The
first value corresponds to
multi-switch, the second to
one-switch.

g {static, double, Luby} The iteration time growth sequence.

Note. See §5 for further details.

RIGHTS L

end of each iteration, SGS returns its elite pool. In the
next iteration (if any) i-STS starts from the elite pool
returned by SGS in the previous iteration. If b =T,
there is only one iteration. The a = hybrid entries in
Figure 3 present a schematic diagram of the hybrid
algorithm when (1) b=T and (2) b =120.

When a = ists or a = sgs, the corresponding algo-
rithm is executed for the full iteration time (i.e., for
b seconds). At the end of each iteration, the algo-
rithm terminates and returns its elite pool. The next
iteration (if any) will then begin, starting with the
elite pool from the previous iteration. For example,
when a = ists, the i-STS algorithm is repeatedly run
for b seconds, restarting at the beginning of each iter-
ation with the elite pool it found in the previous itera-
tion. Figure 3 presents these variations. In all pure and
hybrid schemes, the initial elite pool is constructed by
executing i-STS for 15 seconds, achieved by severely
limiting the number of iterations allocated to the indi-
vidual tabu searches; consequently, the quality of the
resulting solutions is generally poor.

The parameter ¢ controls the growth in the itera-
tion run-times over the course of a single run. Because
of the initialization process of our hybrid algorithm,
the actual growth starts after the second iteration: iter-
ation 1 and 2 both always have length b regardless
of the growth parameter. Carchrae and Beck (2005)
showed that doubling the iteration length after every
iteration led to significantly better performance. Here,
we experiment with three growth sequences: static,
where all iterations are allocated b seconds; double,
where each iteration run-time is double the length of
the previous iteration, starting with b seconds for the
first and second iterations; and Luby, where the iter-
ation pattern follows the Luby sequence multiplied
by b. This final strategy is motivated by the recognition
that each iteration can be seen as a “restart” and there-
fore the theoretical results of Luby et al. (1993) apply.
However, our overall run-time limits prevent us from
progressing very “deep” into the Luby sequence.

Note that there are two independent uses of the
Luby sequence that should not be confused. Within
SGS, the Luby sequence (multiplied by 200) governs
the change in the allocated fail limits of each tree
search (line 5 in Algorithm 2). At the higher level, an
independent Luby sequence (multiplied by b) deter-
mines the growth in the run-time of each iteration.

5.2. Results

We performed a two-way (factorial) analysis of
variance (ANOVA) on the results. All statistical analy-
ses in this paper, with the exception of the randomized
pairwise t-tests, were performed using the R software
package (R Development Core Team 2009). The four
independent variables are the elite pool size |E|, the
algorithm a, the base iteration time b, and the itera-
tion run-time growth sequence g. The sole dependent

Downloaded from informs.org by [130.209.247.104] on 29 November 2017, at 08:17 . For personal use only, all rights reserved.

Beck, Feng, and Watson: Combining CP and LS for Job-Shop Scheduling

INFORMS Journal on Computing 23(1), pp. 1-14, ©2011 INFORMS 7
A)b=T
a=ists ‘ ists ‘
T
a = hybrid ‘ ists Sgs ‘
T
B)b=120
a=ists ‘ ists ‘ ists L3O ‘ ists ‘
T
a= hybrid ‘ ists ‘ sgs ‘ ists ‘ sgs ‘ eee ‘ ists ‘ sgs ‘
T

Figure 3 Schematic Diagrams of the Hybrid and Pure Algorithms for Various Values of the Iteration Run-Time b

variable is the relative error of the best makespans
obtained during a run. For a given problem instance
and best solution makespan M, we define the rela-
tive error as RE = (M — LB)/LB x 100, where LB is the
largest known lower bound for the instance. The mean
relative error (MRE) for a given parameterization is
then computed simply as the mean RE taken over 400
data points: the 10 runs on each of the 40 problem
instances. For our analysis, we take LB from Taillard
(2008). The runs for these experiments comprise over
1.5 years of CPU time.

An ANOVA of the results indicated significant
effects at p < 0.001 for a, b, and their interaction. All
other main and interaction effects were not statistically
significant. We subsequently used Tukey’s honestly
significant difference (HSD) method with significance
level p < 0.005 to compare the values of each variable.
These tests indicated that b =120 is significantly bet-
ter than b =T and that the hybrid algorithm achieves
significantly lower MRE than i-STS, which in turn
achieves significantly lower MRE than SGS.

Table 2 provides summary statistics for the best (not
necessarily in a statistically significant sense) param-
eter configurations. We also calculated the mean best
relative error (MBRE) and the mean worst relative

Table 2 The Top Nine Parameter Configurations Based on MRE

b |E] a g MRE MBRE MWRE
3,600 8 hybrid static 3.384 3.105 3.709
120 8 hybrid double 3.395 3.108 3.724
120 8 hybrid Luby 3.434 3.135 3.772
120 8 hybrid static 3.505 3.178 3.890
120 4 hybrid double 3.519 3.176 3.931
3,600 4 hybrid static 3.521 3.163 3.928
120 4 hybrid Luby 3.551 3.169 4.009
120 4 hybrid static 3.622 3.197 4.057
3,600 2 hybrid static 3.639 3.201 4.224

Notes. Also listed are the corresponding MBRE and MWRE. The ranking of
the configurations based on these statistics is almost identical to that using
MRE.

RIGHTS LI L)

error (MWRE). For the former, for each problem
instance we take the lowest RE found over the 10 runs
and then, over the 40 problem instances, calculate
the mean of those best relative errors. MWRE is
analogously calculated. In Figure 4, the MRE over
time is shown for the two pure algorithms, the one-
switch hybrid algorithm, and the multi-switch hybrid
algorithm.

5.3. Discussion

Our primary hypothesis was that a simple hybrid
composed by switching between a pair of “pure”
algorithms would generate results that are signifi-
cantly better than the pure algorithms in isolation.
This hypothesis is strongly supported by our results.
The best pure algorithm (b = 120, |E| =8, a = ists,
g = static) achieves an MRE of 3.705, worse than the

Comparing four different algorithms

T T T T

8.0

=== Pure SGS -
=== Pure i-STS

One-switch (SGS) |4
=== One-switch (i-STS)

7.5

7.0

6.5 '=m@=' Multi-switch (SGS) |
== Multi-switch (i-STS)
6.0 E
2 ss
g>
5.0 E
4.5 T
4.0 — 1
a5l D g T *
30 1 1 1 1 L 1 1
0 500 1,000 1,500 2,000 2,500 3,000 3,500
Time (sec)

Figure 4 MRE Performance Over Time for the Two Pure Algorithms,
the One-Switch Hybrid Algorithm, and the Multi-Switch
Hybrid Algorithm

Notes. For the hybrid algorithms, |E| = 8. For the multi-switch algorithm,

g = double.

Downloaded from informs.org by [130.209.247.104] on 29 November 2017, at 08:17 . For personal use only, all rights reserved.

Beck, Feng, and Watson: Combining CP and LS for Job-Shop Scheduling

INFORMS Journal on Computing 23(1), pp. 1-14, ©2011 INFORMS

MRE of all configurations listed in Table 2. The results
shown in Figure 4 graphically reinforce support for
this hypothesis.

Our expectations that multi-switch would out-
perform one-switch is somewhat supported by the
results. The ANOVA suggests that multi-switch (i.e.,
b =120) is better than one-switch (b =T); however, as
Table 2 indicates, three of the top nine configurations,
including the overall best, are one-switch variations. A
direct comparison of the top two configurations using
a randomized paired t-test (Cohen 1995) showed no
statistically significant differences at p < 0.005.

Our overall results contrast with Beck (2007), in
which the elite pool size was a statistically signifi-
cant factor, and with Carchrae and Beck (2005), where
the g parameter governing the growth of the itera-
tion time was statistically significant. However, these
results are consistent with Watson and Beck (2008).
The different experimental designs and algorithms
used in these works lead to the following differences.

* Beck (2007) experiments only with SGS with an
initial elite pool of random solutions. The i-STS algo-
rithm is not used and there is no switching among
the algorithms.

e Watson and Beck (2008) use i-STS and a varia-
tion of the one-switch hybrid algorithm. As such, this
experiment is closest to the design and implementa-
tion of the current experiments, and in comparison
to Beck (2007), the sole difference in the experimental
designs is the mechanism used to initialize the elite
solution set for SGS. It appears that although differ-
ent parameterizations of SGS influence the degree to
which the algorithm can improve upon random initial
solutions (as shown in Beck 2007), this sensitivity dis-
appears once solution quality is “sufficiently” good,
e.g., as is the case for i-STS solutions.

¢ Carchrae and Beck (2005) does not use i-STS nor
SGS but rather experiment with switching between
a tabu search algorithm and a pure constraint-based
tree search algorithm. There is no elite pool and the
only communication between algorithms is the best-
so-far solution, which tabu search uses as a starting
solution and tree search uses only as an upper bound
on solution cost. With richer communication (via the
elite pool) and stronger pure algorithms, it appears
that the significance of the iteration growth strategy
disappears.

6. Experiment 2: The Impact of

Solution Guidance
To evaluate the relative importance of SGS (as opposed
to an alternative tree search strategy), we replaced
SGS in our hybrid algorithm with both chronological
backtracking and randomized restart. For complete-
ness, we also experimented with running randomized
restart and chronological backtracking stand-alone as

RIGHTS L

Table 3 The Parameters for Experiment 2

Parameter Value(s) Meaning

T 3,600
|E| 8

Total run time for one instance, in seconds.
The size of the elite pool for both /-STS and
SGS.

c {sgs, rr, chron} The constructive search algorithms.
a {c, hybrid} The pure-constructive or hybrid algorithms.
b {120, T} The base iteration time in seconds.
g double The iteration time growth sequence.

Note. See §§5.1 and 6 for further details.

we did with SGS and i-STS in Experiment 1. Guided
by the results of Experiment 1, we performed a fully
crossed experiment given the independent variables
and associated values as shown in Table 3. We test a
total of six core algorithms: SGS, randomized restart
(rr), and chronological backtracking (chron), both alone
and hybridized with i-STS as defined by the parame-
ters a and c.

For both chronological backtracking and random-
ized restart, the upper bound on the makespan is
one less than the cost of the best solution found
by i-STS, and the randomized texture-based heuris-
tics and propagators described in §2.3 are employed.
The value ordering in both cases is determined by
the min-slack heuristic (Smith and Cheng 1993). For
chronological backtracking, there is no restarting of
the search (i.e., the fail limit is infinite). For random-
ized restart, we used a Luby fail limit sequence with
a multiplier of 200, as was used with SGS.

A two-way ANOVA analysis of the results with
p <0.001 shows that a and b and their interaction are
all statistically significant. Subsequent Tukey’s HSD
tests (p < 0.005) show that (1) algorithms with T =120
achieve significantly lower MRE than with T = 3,600,
(2) the hybrid algorithms are significantly better than
the pure algorithms, and (3) ¢ = sgs is significantly
better than ¢ = chron. However, no statistically signif-
icant difference is detected between c =sgs and c =rr
or between ¢ =rr and ¢ = chron. In other words, our
primary hypothesis—that SGS is important for the
performance observed in Experiment 1—is not sup-
ported by these statistical tests.

Looking at the results on individual problems,
however, shows that with a single exception, the
hybrid-sgs algorithm finds equal or better MRE val-
ues on each problem instance when compared with
the MREs found by chronological backtracking or
randomized restart algorithms. These counts are pre-
sented in Table 4. This result suggests that the lack
of significance in the Tukey’s HSD tests arises from
the inter-problem instance variance. Therefore, we
performed four randomized paired t-tests (Cohen
1995) to compare hybrid-sgs against the hybrid ver-
sions of chronological backtracking and randomized
restart for each value of b. These tests show that the

Beck, Feng, and Watson: Combining CP and LS for Job-Shop Scheduling
INFORMS Journal on Computing 23(1), pp. 1-14, ©2011 INFORMS

Table 4 SGS vs. Chronological Backtracking (chron) and Randomized
Restart (rr)

b c No. of SGS better ~ No. of equal ~ No. of SGS worse
3,600 chron 38 2 0
rr 36 3 1
120 chron 37 3 0
rr 38 2 0

Note. See §6 for details.

hybrid-sgs algorithm is significantly better than the
corresponding hybrid algorithms for both b values at
p <0.001.

As a final indication of the contribution of SGS
to hybrid algorithm performance, Table 5 shows the
mean relative error for each of the hybrid algorithms
together with the number of times that each construc-
tive algorithm found an improving solution. This lat-
ter value is the mean number of times in one run
on one problem instance that the constructive search
component (i.e., sgs, r7, or chron) was able to find a
solution that improved on the current best solution
in the elite pool. The table shows that SGS finds over
two orders of magnitude more improving solutions
than the other algorithms. The substantial differences
between b = 3,600 and b = 120 can be understood
by recalling that in the b = 3,600 condition, the tree
search is run once, with a very good starting elite pool
(i.e., the pool found by running i-STS for 1,800 CPU
seconds). In contrast, with b = 120, the tree search
is run multiple times starting with a comparatively
worse elite pool (i.e., the elite pool in the first iteration
is generated by running i-STS for only 60 seconds).
Because the elite pool is of much higher quality in the
former condition, there is significantly less opportu-
nity for finding improving solutions.

Our hypothesis was that SGS would outper-
form the hybrid algorithms using chronological
backtracking and randomized restart. This hypothe-
sis is strongly supported by our results, specifically
those that account for the variance between problem
instances. The randomized restart results are particu-
larly interesting because the only difference relative to
SGS is the guidance by an elite solution. We conclude,

Table 5 The MRE and the Mean Number of Improving Solutions Found
by Hybrid Algorithms Using Various Tree Search Strategies in
Experiment 2

Downloaded from informs.org by [130.209.247.104] on 29 November 2017, at 08:17 . For personal use only, all rights reserved.

Mean no. of

b ca MRE improving solutions
sgs 3.384 6.02
3,600 chron 3.844 0.04
r 3.828 0.02
sgs 3.395 21.30
120 chron 3.792 0.04
m 3.805 0.01

RIGHTS L

therefore, that elite solution guidance is a critical com-
ponent of the hybrid’s performance.

7. Experiment 3: Learning Run-Time

Allocations

Thus far, we have restricted i-STS and SGS to share an
equal proportion of the run-time b allocated to each
iteration of the hybrid algorithm. However, it is possi-
ble or even likely that one algorithm may perform bet-
ter in certain iteration regimes, e.g., early or late in the
overall process. For example, Carchrae and Beck (2005)
showed in the context of a switching-based hybrid that
reinforcement learning (Sutton and Barto 1998) is able
to achieve stronger performance than the basic alter-
nating hybrid approach by learning how to allocate
variable proportions of later iterations to the differ-
ent algorithms. The approach was to allocate iteration
time based on an algorithm weight and to modify that
weight based on the standard reinforcement learning
equation: w;,(a) = (1 — a) x w;(a) + a x p;(a). Here,
w;(a) indicates the weight of algorithm 4 in iteration
i, and p;(a) is the normalized performance of algo-
rithm 7 in iteration i. The weights of all algorithms in
a given iteration are normalized to sum to one and the
time in the iteration is directly proportional to the algo-
rithm weights. As in Carchrae and Beck (2005), initially
our algorithms are equally weighted and the perfor-
mance in an iteration is calculated as the decrease in
best-so-far makespan per second of run-time normal-
ized by the total decrease in best-so-far makespan per
second over the iteration. To avoid biased learning as a
result of the ease of improvement in the first iteration,
the learning starts only after the completion of the sec-
ond iteration, i.e., for i > 2.

In the context of a low-knowledge switching-based
hybrid model, Carchrae and Beck (2005) random-
ized the order of the pure algorithms. In this sec-
tion, because there are only two pure algorithms,
we experiment with both orders: ists, then sgs, and
then the other way around. The algorithm ordering
parameter is h.

To evaluate the effect of reinforcement learning, we
conducted an experiment that manipulates the learn-
ing rate, «, the iteration time growth pattern, g, and
the algorithm ordering approach, h. For the other
parameters, we use the settings for the best multi-
switch algorithm from Experiment 1. (Of course, the
one-switch hybrid (b = 3,600) can make no use of
this learning as there is only one iteration.) Table 6
presents the independent variables of our experiment.
Note that the assignment of a =0 and h = {ists — sgs}
corresponds to the non-learning algorithm as used in
Experiment 1, where each pure algorithm is allocated
half of each iteration.

An ANOVA analysis of the results indicates that
the learning rate «, the iteration time growth pattern

Downloaded from informs.org by [130.209.247.104] on 29 November 2017, at 08:17 . For personal use only, all rights reserved.

10

Beck, Feng, and Watson: Combining CP and LS for Job-Shop Scheduling

INFORMS Journal on Computing 23(1), pp. 1-14, ©2011 INFORMS

Table 6 The Parameters for Experiment 3

Parameter Value(s) Meaning

T 3,600 Total run time for one instance,

in seconds.

|E| 8 The size of the elite pool for
both /-STS and SGS.

a hybrid The algorithm.

b 120 The base iteration time in
seconds, corresponding to
multi-switch.

g {double, Luby} The iteration time growth
sequence.

! {0,0.1,...,0.9} The learning rate.

h {ists — sgs, sgs — ists} The execution order of
algorithms within one
iteration.

Note. See §§5 and 7.1 for further details.

g, and the algorithm ordering approach i have no
statistically significant effect. The best (albeit not sta-
tistically significant) MRE result, in fact, comes from
the non-learning algorithm. Unexpectedly, this result
fails to support our hypothesis that we would see
improved performance when reinforcement learning
was used to tailor the iteration time allocation. When
we examine the evolution of the weight values during
a run, we see a consistent reduction of i-STS weight
(and therefore run-time) over time. This reduction is
faster for larger a.

8. [Experiment 4: Controlling Initial
Solution Quality

To analyze why reinforcement learning of relative
algorithm run-times in each iteration fails to improve

hybrid algorithm performance, and why SGS is
favored over i-STS in the reinforcement learning
experiment, we next consider the ability of i-STS and
SGS to improve on an elite pool of a given initial qual-
ity. In Experiments 1 and 2, for each run on each prob-
lem instance we recorded the contents of the elite pool
whenever a new solution was added. For each prob-
lem instance, we extract all unique solutions from all
runs, across all parameterizations, and sort the solu-
tions from lowest to highest makespan. After ranking,
the solutions are divided into the following bins based
on the makespan percentile: 0515, 2535, 4555, 6575,
and 8595. The bin 2535, for example, contains all solu-
tions with a makespan between percentile 25 and 35;
lower percentiles indicate high-quality solutions.

For reasons of simplicity and solution difficulty, we
focus strictly on Taillard’s problem instances ta4l-
ta51. For each instance, we independently and ran-
domly generated 50 elite pools, 10 pools for each of
the five makespan percentile bins. Each pool contains
eight solutions. We then run 10 independent replica-
tions of the pure i-STS and SGS algorithms on each
starting elite pool. Each replication is executed for 100
seconds, as our experimental objective is to assess the
ability of i-STS and SGS to improve upon an initial
elite pool of fixed quality. In summary, we execute
5,000 runs (10 instances x 5 bins x 10 elite pools x 10
runs) for each of the two algorithms. We measure the
average MRE for each bin and algorithm, computed
every 10 seconds.

The results are shown in Figure 5, which reports
the average MRE versus time for both i-STS and SGS.
First, we consider the results for the poorest initial

MRE vs. time for different algorithms and starting qualities

12 T T T T

MRE

T T T T T
—v— SGS Q = 8595
-v=-i-STS Q = 8595
—&— SGS Q = 6575 _
-m-i-STS Q = 6575
SGS Q = 4555
i-STSQ=4555 | Y
—e— SGS Q =2535 .
-©-(-STSQ=2535
—A— SGS Q = 0515
-A-STSQ=0515

50 60 70 80 90 100

Time (sec)

Figure 5 The Relative Performance of /-STS and SGS Given Starting Elite Sets of Different Quality

RIGHTS L1 N Hig

Downloaded from informs.org by [130.209.247.104] on 29 November 2017, at 08:17 . For personal use only, all rights reserved.

Beck, Feng, and Watson: Combining CP and LS for Job-Shop Scheduling

INFORMS Journal on Computing 23(1), pp. 1-14, ©2011 INFORMS

11

quality, corresponding to bin 8595. Here, although
SGS outperforms i-STS in the first few seconds, i-STS
dominates subsequently. Similar, but less dramatic,
behavior is exhibited for bin 6575. However, for
higher-quality initial elite pools, we observe that SGS
dominates i-STS, such that no performance crossover
point is observed. Overall, the results conclusively
demonstrate that i-STS is able to rapidly improve the
quality of an initially poor elite pool. However, its abil-
ity to continue to do so drops as elite pool quality
improves, to the point where the benefits are minimal.
In contrast, SGS encounters difficulty—we speculate,
because of the underconstrained state—in improving
poor-quality elite pools, but starts to dominate i-STS
once a medium to high-quality elite pool is obtained.
These patterns suggest that a fixed strategy emphasiz-
ing i-STS in early iterations and SGS in later iterations
is the best switching design, and provides an expla-
nation for why the one-switch algorithm performed
well and for why reinforcement learning was both ulti-
mately unable to learn a stronger strategy and de-
emphasized i-STS over time.

9. Comparison with the
State of the Art

As is common in work of this kind, we now com-
pare our algorithm’s performance to that of the state
of the art for solving JSPs. We select two baselines
for comparison: Nowicki and Smutnicki’s i-TSAB tabu
search algorithm (Nowicki and Smutnicki 2005) and
the Zhang et al. (2008) hybrid tabu search and sim-
ulated annealing algorithm. The i-TSAB algorithm
represents the state of the art from 2003 onwards,
whereas the Zhang et al. algorithm is a recently
introduced competitor. A single “winner” is not eas-
ily determined, lacking carefully controlled experi-
ments and availability of the source code of these
two algorithms. However, it is clear from published
performance analysis that these two algorithms are
superior to all predecessors.

Table 7 compares the best configuration from Exper-
iment 1 (T = 3,600, |[E| =8, a = hybrid, g = static)
against the two competing algorithms. Table A.1 in
Appendix A provides a detailed breakdown of results
for each problem instance. We compute the MRE for
the best-known solutions recorded in Taillard (2008)
as of December 2008 (“Best known”). Unfortunately,
Nowicki and Smutnicki (2005) only report results for
a single run of i-TSAB, complicating interpretation.
Absent a rigorous alternative, we treat the correspond-
ing results as representative of mean i-TSAB perfor-
mance. The Zhang et al. (2008) statistics are taken
over 10 independent runs of their algorithm on each
problem instance. Without the actual sample popula-
tions, it is not possible to make statistical inferences

RIGHTS L

Table 7 Performance Statistics Comparing /-TSAB, Hybrid Tabu
Search/Simulated Annealing Algorithm (Zhang et al. 2008),
and Our Hybrid on Taillard’s Benchmark Instances

Zhang Hybrid

Instance Best
subset known /j-TSAB Best Mean Best Mean Worst

tall-ta20 2.29 2.81 237 292 226 242 269
ta2l-ta30 5.38 568 544 597 550 570 589
ta3l-ta40 0.46 078 055 093 049 072 098
ta4l-ta50 4.02 470 407 484 417 470 528
Overall 3.04 349 311 367 311 338 3.7

Notes. The “Best known” column is based on the best-known upper bounds
recorded by Taillard (2008). The bold entries indicate the best performance
comparing “Best” to “Best” and “Mean” to “Mean.”

regarding the relative performance of the Zhang et al.
algorithm and our hybrid algorithm. Consequently,
we proceed with a qualitative analysis.

First, we compare the performance of our hybrid
with that of i-TSAB. Overall, and on two of the four
subsets (tall-ta20 and ta31-ta40), the hybrid outper-
forms i-TSAB in terms of MRE. On the other two sub-
sets, the hybrid results are either the same (ta41-ta50)
or only slightly worse (ta2l-ta30). Although the
percentage advantage is small in absolute terms,
we observe that because of the difficulty of these
instances, apparently small differences have histor-
ically differentiated state-of-the-art algorithms from
second-tier competitors. Although we cannot rigor-
ously determine whether our hybrid performance
dominates that of i-TSAB, it is clear that the perfor-
mance is, at a minimum, indistinguishable. Again, we
are treating the individual i-TSAB samples as repre-
sentative of mean performance. If they are instead
treated as a measure of the best performance, they
are clearly worse than the hybrid best for all problem
subsets.

Next, we compare the performance of our hybrid
with that of the Zhang et al. algorithm, hereafter
referred to simply as the Zhang algorithm. In terms
of MRE, the hybrid algorithm dominates the Zhang
algorithm both overall and on each problem subset;
overall, the advantage is 0.29%. In terms of mean best
relative error, each algorithm dominates on two of the
four problem subsets, with equal overall performance.
Of particular interest is the excellent MWRE perfor-
mance of our hybrid algorithm. On two of the subsets
(tall-ta20 and ta21-ta30), the MWRE of the hybrid
is better than the mean performance of the Zhang
algorithm. Overall, the hybrid MWRE performance
is only slightly worse than the Zhang MRE perfor-
mance, with a difference of only 0.04%. Clearly, a
significant advantage of our hybrid algorithm is the
consistency of the state-of-the-art performance over
multiple runs, which is often elusive on very difficult
benchmark problems.

Downloaded from informs.org by [130.209.247.104] on 29 November 2017, at 08:17 . For personal use only, all rights reserved.

12

Beck, Feng, and Watson: Combining CP and LS for Job-Shop Scheduling

INFORMS Journal on Computing 23(1), pp. 1-14, ©2011 INFORMS

A major issue in comparative assessment of state-
of-the-art algorithms for the JSP involves quantifi-
cation of computational effort. In addition to issues
involving the use of disparate computing hardware,
software engineering decisions and coding skill make
such comparisons notoriously problematic. We do
not address these issues here. Rather, we observe
that from analyses of published performance reports
(Nowicki and Smutnicki 2005, Zhang et al. 2008), all
three test algorithms were executed on modern com-
puting hardware, and the allocated run-times on the
larger problem instances were all within a factor of
three.

9.1. Best-Known Upper Bounds

Table 8 records the number of problem instances in
each subset for which the best solution found by
our best hybrid parameterization over its 10 runs is
better than, equal to, or worse than the best-known
solutions. As can be observed, this single parame-
terization of the hybrid algorithm is able to meet or
improve upon the current best-known solutions in
26 of the 40 instances. This is an impressive result
given that the best-known solutions are aggregated
from a wide variety of algorithms rather than being
found by a single algorithm.

Under all parameterizations our hybrid yielded 10
new best-known solutions to Taillard’s benchmark
instances as shown in Table 9. Although our main
research goal is not to enter “horse race” competitions
of the type that are particularly common in operations
research (Hooker 1996), the ability of an algorithm
to establish new best-known solutions in a given
domain is a common (albeit heuristic, because it fails
to account for factors such as run-time, coding ability,
machine, and related factors) benchmark for establish-
ing the state of the art in performance. At the very
least, the ability of an algorithm to establish new best-
known solutions with reasonable computing effort
provides strong evidence of general effectiveness.

9.2. On Proving Optimality

Unlike previous state-of-the-art algorithms for JSP,
our hybrid is a complete algorithm given a suffi-
ciently large run-time limit T. It is therefore possi-
ble to both find an optimal solution and prove its

Table 8 The Number of Instances in Each Subset for Which the Best
Solution Found by the Best Hybrid Algorithm Is Better Than,
Equal to, or Worse Than the Previous Best Known

Instance subset No. of new best No. of equal No. of worse
tall-ta20 2 7 1
ta2l-ta30 2 5 3
ta3l-ta40 1 7 2
tad4l-ta50 1 1 8
Overall 6 20 14

RIGHTS L

Table 9 The Makespan of New Best-Known Solutions Identified by
the Hybrid /-STS/SGS Algorithms for Taillard’s Benchmark
Problems Over a Variety of Algorithm Parameterizations

Instance Prev. best known New best known
tall 1,359 1,357
tal9 1,335 1,332
ta2l 1,644 1,642
ta24 1,646 1,644
ta26 1,645 1,643
tad0 1,674 1,673
tadl 2,018 2,010
ta42 1,949 1,947
ta49 1,967 1,966
ta50 1,926 1,924

Note. Results include the parameterizations where the run time, T, is set to
24 hours.

Table 10 The Number of Runs (Out of 10) for Which the Two
Strongest-Performing Parameterizations of Qur Hybrid
Algorithm Found an Optimal Solution and Proved Its
Optimality

Hybrid parameters tal4 ta3l ta35 ta36 ta38 ta39

|E|=8,b=T, a= hybrid, 10 10 1 7 5 10
g = static

|E| =8, b=120, a= hybrid, 10 10 2 10 4 10
g = double

optimality directly rather than based on previously
known lower bounds.

Table 10 displays the number of runs (out of 10)
for which the two strongest-performing parameteri-
zations of our hybrid algorithm were able to prove
optimality of the best solution located. That is, in
each case, an individual tree search in SGS exhausted
the search space without reaching its fail limit. We
observe relatively consistent performance in proving
optimality across different runs of the same parame-
terization and instance.

10. Discussion

This paper has demonstrated that a comparatively
simple combination of a sophisticated tabu search
algorithm and an advanced constraint programming
constructive search is able to achieve state-of-the-
art performance on a set of standard benchmarks
for the job-shop scheduling makespan minimization
problem. The reason for the comparatively simple
hybridization is, of course, the fact that both pure
algorithms use an elite pool of high-quality solutions
to guide search. Therefore, it is easy to combine the
algorithms by communicating the elite pool.

The use of an elite pool is not novel; indeed, the
two state-of-the-art JSP algorithms from the litera-
ture discussed in §9 both use such a pool. How-
ever, there is little understanding of why elite pools

Downloaded from informs.org by [130.209.247.104] on 29 November 2017, at 08:17 . For personal use only, all rights reserved.

Beck, Feng, and Watson: Combining CP and LS for Job-Shop Scheduling

INFORMS Journal on Computing 23(1), pp. 1-14, ©2011 INFORMS

13

enable such strong performance. As noted in §1,
this work was motivated by informal ideas about
differences in the search styles of the two foun-
dational algorithms, specifically concerning intensi-
fication versus diversification. Although our results
are positive, it is important to note that this paper
does not test these ideas. The ideas need to be
examined through careful formalization and experi-
mental design. If some sort of balance between inten-
sification and diversification is posited, it is necessary
to unambiguously define the two notions as well as
the balance between them. Furthermore, experiments
that both measure and manipulate the intensifica-
tion and diversification and demonstrate correlation
and causation need to be performed. It is possible
that there are other underlying explanations of our
results, unrelated to these motivations. More rigorous
testing of these ideas will be the focus of follow-up
research.

11. Conclusions

Historically, the performance of constraint pro-
gramming approaches—despite the availability of
strong, domain-specific propagation and heuristic
search techniques—has lagged that of local search
algorithms on the classical job-shop scheduling prob-
lem. We introduced a family of simple hybrid algo-
rithms that leverage the broad search capabilities of
a high-performance tabu search algorithm for the
JSP (i-STS) with the domain-specific inference capa-
bilities of the state-of-the-art constraint programming
algorithm for the JSP (SGS). The performance of the
hybrid algorithm is at least competitive with the two
state-of-the-art algorithms for the JSP: Nowicki and
Smutnicki’s i-TSAB tabu search algorithm and the
Zhang et al. hybrid tabu search/simulated anneal-
ing algorithm. Although various factors outside our
immediate control prevent us from making a more
rigorous and precise statement regarding relative per-
formance, we additionally observe that our hybrid
algorithm was able to locate 10 new best-known
solutions to Taillard’s notoriously difficult benchmark
instances, providing additional evidence of the effec-
tiveness of our approach. Furthermore, our hybrid
algorithm is able to consistently achieve excellent per-
formance; e.g., the worst-case performance is roughly
equivalent to the mean performance of the Zhang
et al. algorithm.

Whereas this paper focuses on the introduction and
analysis of a hybrid algorithm in terms of perfor-
mance, our original motivation was to better under-
stand why constraint programming algorithms for
the JSP—in particular, SGS—generally underperform
their local search counterparts. Although it is now
clear that SGS has a niche relative to local search in

RIGHTS L

state-of-the-art algorithms for the JSP, we have only
begun preliminary investigations into understanding
this niche and how SGS exploits it. For example, we
have preliminary evidence that SGS acts primarily as
an intensification mechanism for the elite solutions
generated by i-STS and is empirically more efficient
than tabu search in that role. Overall, the present con-
tribution establishes the hybrid i-STS/SGS algorithm
as an interesting test subject; future research will ana-
lyze these and other questions raised by this perfor-
mance analysis.

Acknowledgments

This research was supported in part by the Natural Sciences
and Engineering Research Council of Canada, the Cana-
dian Foundation for Innovation, the Ontario Research Fund,
Microway Inc., and ILOG S.A. Sandia is a multipurpose lab-
oratory operated by Sandia Corporation, a Lockheed-Martin
Company, for the United States Department of Energy
under Contract DE-AC04-94AL85000.

Appendix A. Detailed Results

Table A.1 presents the best and mean makespans found
on each problem instance by the top two hybrid methods
tested in this paper.

Table A.1 The Best and Mean Makespan Found by the Best and
Second-Best Hybrid Algorithms

Best hybrid Second-best hybrid

Instance LB UB Best Mean Best Mean

tall 1,323 1,359 1,357 11,3621 1,357 1,362.7
tal2 1,351 1,367 1,367 1,369.5 1,367 1,369.4
tall 1,282 1,342 1,342 1,343.3 1,342 1,345.5
tal4 1,345 1,345 1,345* 1,345.0 1,345 1,345.0
tals 1,304 1,339 1,339 1,339.0 1,339 1,339.0
tal6 1,302 1,360 1,360 1,360.0 1,360 1,360.5
tal7 1,462 1,462 1,462 1,463.8 1,462 1,463.8
tal8 1,369 1,396 1,397 1,401.0 1,396 1,401.1
tal9 1,297 1,335 1332 1,3336 1,332 1,333.4
ta20 1,318 1,348 1,348 1,353.0 1,348 1,353.8

ta2l 1,539 1,644 1,642 16444 1,642 1,645.5
ta22 1,511 1,600 1,610 1,613 1,600 1,610.6
ta23 1,472 1,557 1,557 1,659.2 1,557 1,558.9
ta24 1,602 1,646 1,645 16476 1,645 1,646.6
ta2s 1,504 1,595 1,595 1,601.4 1,595 1,601.1
ta26 1,539 1,645 1,647 1,648.8 1,647 1,650.2
ta27 1,616 1,680 1,680 1,684.1 1,680 1,685.5
ta28 1,591 1,603 1,613 16157 1,603 1,614.3
ta29 1,514 1,625 1,625 1,626.3 1,625 1,626.4
ta30 1,473 1,584 1,584 1,588.7 1,584 1,589.7
ta3l 1,764 1,764 1,764+ 1,764.0 1,764+ 1,764.0
ta32 1,774 1,795 1,796 1,809.1 1,798 1,806.5
ta33 1,778 1,791 1,791 17963 1,791 1,798.5
ta34 1,828 1,829 1,829 1,831.0 1,829 1,831.0
ta3s 2,007 2,007 2,007+ 2,007.0 2,007 2,007.0
ta36 1,819 1,819 1,819+ 1,820.7 1,819+ 1,819.0
ta37 1,771 1,771 1,777 1,7845 1,774 1,781.2
ta38 1,673 1,673 1,673+ 1,675.1 1,673+ 1,676.1
ta39 1,795 1,795 1,795+ 1,795.0 1,795+ 1,795.0

Downloaded from informs.org by [130.209.247.104] on 29 November 2017, at 08:17 . For personal use only, all rights reserved.

14

Beck, Feng, and Watson: Combining CP and LS for Job-Shop Scheduling

INFORMS Journal on Computing 23(1), pp. 1-14, ©2011 INFORMS

Table A.1 Continued

Best hybrid Second-best hybrid

Instance LB UB Best Mean Best Mean

ta40 1,631 1,674 1,673 1,680.1 1,674 1,682.0

tadl 1,859 2,018 2,012 20239 2,018 2,025.9
ta42 1,867 1,949 1,956 1,963.0 1,957 1,962.4
ta43 1,809 1,858 1,863 1,880.3 1,863 1,878.1
tad4 1,927 1,983 1,991 1,998.0 1,992 1,995.5
ta45 1,997 2,000 2,000 2,004.6 2,000 2,005.6
ta46 1,940 2,015 2,016 2,0289 2,023 2,030.9
ta47 1,789 1,903 1,906 1,9166 1,910 1,917.2
ta48 1,912 1,949 1,951 1,965.3 1,956 1,963.6
ta49 1,915 1,967 1,969 1,9754 1,97 1,978.7
tas0 1,807 1,926 1,932 1,939.2 1,934 1,942.8

Note. Bold entries indicate new best makespans.
*Indicates that the optimal solution was found and proved without the use
of the best-known lower bound.

References

Balas, E., A. Vazacopoulos. 1998. Guided local search with
shifting bottleneck for job shop scheduling. Management
Sci. 44(2) 262-275.

Baptiste, P, C. Le Pape, W. Nuijten. 2001. Constraint-Based Schedul-
ing. Kluwer Academic Publishers, Norwell, MA.

Beck, J. C. 2007. Solution-guided multi-point constructive search for
job shop scheduling. J. Artificial Intelligence Res. 29(1) 49-77.

Beck, J. C., M. S. Fox. 2000. Dynamic problem structure analysis as
a basis for constraint-directed scheduling heuristics. Artificial
Intelligence 117(1) 31-81.

Blazewicz, J., W. Domschke, E. Pesch. 1996. The job shop schedul-
ing problem: Conventional and new solution techniques. Eur.
J. Oper. Res. 93(1) 1-33.

Boyan, J., A. W. Moore. 2000. Learning evaluation functions to
improve optimization by local search. . Machine Learn. Res.
1(September) 77-112.

Carchrae, T., J. C. Beck. 2005. Applying machine learning to low-
knowledge control of optimization algorithms. Comput. Intelli-
gence 21(4) 372-387.

Cohen, P. R. 1995. Empirical Methods for Artificial Intelligence. MIT
Press, Cambridge, MA.

Garey, M. R, D. S. Johnson, R. Sethi. 1976. The complexity of flow-
shop and jobshop scheduling. Math. Oper. Res. 1(2) 117-129.

Glover, E, M. Laguna, R. Marti. 2003. Scatter search and path relink-
ing: Advances and applications. F. Glover, G. A. Kochenberger,
eds. Handbook of Metaheuristics, Vol. 57. Kluwer Academic Pub-
lishers, Dordrecht, The Netherlands, 1-35.

Gomes, C. P, C. Fernandez, B. Selman, C. Bessiére. 2005. Statis-
tical regimes across constrainedness regions. Constraints 10(4)
317-337.

Hooker, J. N. 1996. Testing heuristics: We have it all wrong.
J. Heuristics 1 33-42.

Horvitz, E., Y. Ruan, C. P. Gomes, H. A. Kautz, B. Selman, D. M.
Chickering. 2001. A Bayesian approach to tackling hard com-
putational problems. Proc. 17th Conf. Uncertainty Artificial Intel-
ligence (UAI-2001), Morgan Kaufmann, San Francisco, 235-244.

Laborie, P. 2003. Algorithms for propagating resource constraints
in Al planning and scheduling: Existing approaches and new
results. Artificial Intelligence 143(2) 151-188.

Lagoudakis, M. G., M. L. Littman. 2000. Algorithm selection using
reinforcement learning. Proc. 17th Internat. Conf. Machine Learn-
ing, Morgan Kaufmann, San Francisco, 511-518.

RIGHTS L1 N Hig

Le Pape, C. 1994. Implementation of resource constraints in ILOG
SCHEDULE: A library for the development of constraint-based
scheduling systems. Intelligent Systems Engrg. 3(2) 55-66.

Leyton-Brown, K., E. Nudelman, Y. Shoham. 2002. Learning the
empirical hardness of optimization problems: The case of com-
binatorial auctions. P. Van Hentenryck, ed. Proc. 8th Inter-
nat. Conf. Principles Practice Constraint Programming (CP 2002).
Lecture Notes in Computer Science, Vol. 2470. Springer, Berlin,
91-100.

Luby, M., A. Sinclair, D. Zuckerman. 1993. Optimal speedup of Las
Vegas algorithms. Inform. Processing Lett. 47(4) 173-180.

Minton, S. 1996. Automatically configuring constraint satisfaction
programs: A case study. Constraints 1(1-2) 7-43.

Nowicki, E., C. Smutnicki. 1996. A fast taboo search algorithm for
the job shop problem. Management Sci. 42(6) 797-813.

Nowicki, E., C. Smutnicki. 2005. An advanced tabu algorithm for
the job shop problem. J. Scheduling 8(2) 145-159.

Nuijten, W. P. M. 1994. Time and resource constrained scheduling:
A constraint satisfaction approach. Ph.D. thesis, Department of
Mathematics and Computing Science, Eindhoven University of
Technology, Eindhoven, The Netherlands.

R Development Core Team. 2009. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing,
Vienna. http://www.R-project.org.

Rice, J. R. 1976. The algorithm selection problem. Adv. Comput. 15
65-118.

Scheduler. 2007. ILOG Scheduler 6.5 user’s manual and reference
manual. IBM ILOG, Armonk, NY.

Smith, S. E,, C.-C. Cheng. 1993. Slack-based heuristics for constraint
satisfaction scheduling. Proc. 11th National Conf. Artificial Intel-
ligence (AAAI-93), AAAI, Washington, DC, 139-144.

Sutton, R. S., A. G. Barto. 1998. Reinforcement Learning: An Introduc-
tion. MIT Press, Cambridge, MA.

Taillard, E. D. 1989. Parallel taboo search technique for the job-
shop scheduling problem. Technical Report ORWP 89/11,
DMA, Ecole Polytechnique Fédérale de Lausanne, Lausanne,
Switzerland.

Taillard, E. D. 2008. Eric Taillard’s page. http://mistic.heig-vd.ch/
taillard / problemes.dir/ordonnancement.dir /ordonnancement.html.

Taillard, E. D. 1993. Benchmarks for basic scheduling problems. Eur.
J. Oper. Res. 64(2) 278-285.

Watson, J.-P. 2003. Empirical modeling and analysis of local search
algorithms for the job-shop scheduling problem. Ph.D. thesis,
Department of Computer Science, Colorado State University,
Fort Collins.

Watson, J.-P. 2005. On metaheuristic “failure modes”: A case study
in tabu search for job-shop scheduling. Proc. 6th Metaheuristics
Internat. Conf., Vienna.

Watson, J.-P, J. C. Beck. 2008. A hybrid constraint program-
ming/local search approach to the job shop scheduling prob-
lem. L. Perron, M. A. Trick, eds. Proc. 5th Internat. Conf.
Integration Al OR Techniques Constraint Programming Combin.
Optim. Problems (CPAIOR’08). Lecture Notes in Computer Science,
Vol. 5015. Springer, Berlin, 263-277.

Watson,].-P., A. E. Howe, L. D. Whitley. 2006. Deconstructing
Nowicki and Smutnicki’s i-TSAB tabu search algorithm for
the job-shop scheduling problem. Comput. Oper. Res. 33(9)
2623-2644.

Wu, H., P. van Beek. 2007. On universal restart strategies for back-
tracking search. C. Bessiene, ed. Proc. 13th Internat. Conf. Prin-
ciples Practice Constraint Programming. Lecture Notes in Computer
Science, Vol. 4741. Springer, Berlin, 681-695.

Zhang, C. Y., P. Li, Y. Rao, Z. Guan. 2008. A very fast TS/SA algo-
rithm for the job shop scheduling problem. Comput. Oper. Res.
35(1) 282-294.

