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Abstract. Edge-finding bounding techniques are particular constraint propagation techniques which reason about the order in which several activities can execute on a given resource. The aim of the following paper is to provide a rather comprehensive (although necessarily incomplete) review of existing edge-finding algorithms. The simplest case of non-preemptive disjunctive scheduling is reviewed first, followed by generalizations to preemptive disjunctive and non-preemptive cumulative scheduling. A new quadratic algorithm for non-preemptive disjunctive scheduling is also introduced. This algorithm can be used in association with a traditional edge-finding algorithm, in order to update the earliest start time (or the latest end time) of an activity A, when it is shown that A cannot precede (respectively, cannot follow) all the activities in a set . To our knowledge, this is the first reported algorithm to perform all the corresponding deductions in O(n2) where n denotes the number of activities that require the resource under consideration.
1
INTRODUCTION
Roughly speaking, scheduling is the process of assigning activities to resources in time. Several basic scheduling problems can be distinguished:

· In disjunctive scheduling, each resource can execute at most one activity at a time. In cumulative scheduling, a resource can run several activities in parallel, provided that the resource capacity is not exceeded.

· In non-preemptive scheduling, activities cannot be interrupted. Each activity A must execute without interruption from its start time to its end time. In preemptive scheduling, activities can be interrupted at any time, to let some other activities execute.
Most scheduling problems can easily be represented as instances of the constraint satisfaction problem (CSP) [Kumar 92]: given a set of variables and a set of constraints between the variables, assign a value to each variable, so that all the constraints are satisfied. In non-preemptive scheduling, two variables, start(A) and end(A), are associated with each activity A; they represent the start time and the end time of A. A preemptive scheduling problem is more difficult to represent: one must associate a set variable (i.e., a variable the value of which will be a set) set(A) with each activity A; set(A) represents the set of times at which A executes. Ignoring implementation details, let us note that:
· in the non-preemptive case, set(A) = [start(A) end(A)), with the interval [start(A) end(A)) closed on the left and open on the right so that |set(A)| = end(A) – start(A) = duration(A);
· assuming time is discretized, start(A) and end(A) can be defined, in both the preemptive and the non-preemptive case, 


by start(A) = mint(set(A)(t) and end(A) = maxt(set(A)(t + 1); in the preemptive case, these variables are often needed to connect activities together by temporal constraints.

Constraint propagation is a deductive process which consists in deducing new constraints from existing constraints. Given a set of activities and a set of constraints (including temporal constraints, resource constraints, problem-specific constraints, constraints representing already made decisions, and bounds on one or several optimization criteria), constraint propagation determines conditions that a schedule must satisfy to meet all the considered constraints. These necessary conditions can then be used either to find an optimal solution and prove its optimality (for “small” problems) or to guide a heuristic search procedure (or the user of an interactive system) towards “good” solutions.

Edge-finding bounding techniques are particular constraint propagation techniques which reason about the order in which several activities can execute on a given resource. In the simplest case of non-preemptive disjunctive scheduling, edge-finding consists of determining whether an activity A can, cannot, or must, execute before (or after) a set of activities ( which require the same resource. Two types of conclusions can then be drawn: new ordering relations (“edges” in the graph representing the possible orderings of activities) and new time-bounds, i.e., strengthened earliest and latest start and end times of activities. Cumulative and preemptive scheduling cases are more complex since several activities can overlap (on a cumulative resource) or preempt one another. Then edge-finding consists of determining whether an activity A can, cannot, or must, start or end before (or after) a set of activities (.

The aim of this paper is to provide a rather comprehensive (although necessarily incomplete) review of existing edge-finding algorithms. Section 2 presents the first edge-finding algorithm, developed in [Pinson 88] [Carlier & Pinson 90] for non-preemptive disjunctive scheduling, discusses some of its variants, and provides a precise characterization of the results the algorithm produces. The following sections present extensions to mixed preemptive and non-preemptive disjunctive scheduling (Section 3) and to cumulative scheduling (Section 4). Finally, Section 5 provides a new quadratic algorithm for non-preemptive disjunctive scheduling. This algorithm can be used in association with a traditional edge‑finding algorithm, in order to update the earliest start time (or the latest end time) of an activity A, when it is shown that A cannot precede (respectively, cannot follow) all of the activities in a set (. To our knowledge, this is the first reported algorithm to perform all the corresponding deductions in O(n2) where n denotes the number of activities that require the resource under consideration.

2 
EDGE-FINDING FOR NON-PREEMPTIVE DISJUNCTIVE SCHEDULING
In non-preemptive disjunctive scheduling, two activities A and B which require the same resource R must be ordered: either A precedes B or B precedes A. The edge-finding technique consists in determining whether an activity A must precede (or follow) a set of activities ( which all require R. In the following, we assume the scheduling horizon is bounded, so that the domain of the start and end variables of activities are bounded by earliest and latest start and end times, possibly derived through the propagation of other constraints (such as precedence relations, release dates and due dates, etc). estA denotes the earliest start time of A, letA the latest end time of A, pA the processing time (duration) of A, est( the smallest of the earliest start times of the activities in (, let( the greatest of the latest end times of the activities in (, and p( the sum of the durations of the activities in (. A « B (respectively, A » B) means that A executes before (respectively, after) B and A « ( (respectively, A » () means that A executes before (respectively, after) all the activities in (. As we shall see, variants exist but the following rules capture most of the edge-finding technique:


((, (A((, let(({A}– est( ( p( + pA ( A « (

((, (A((, let( – est(({A}( p( + pA ( A » (

A « ( ( end(A) ( min(’(((let(’ – p(’)


A » ( ( start(A) ( max(’(((est(’ + p(’)

If n activities require the resource, there are a priori O(n  2n) pairs (A, () to consider. An algorithm that performs all the time-bound adjustments in O(n2) is presented in [Carlier & Pinson 90].
 This algorithm consists of a “primal” algorithm to update earliest start times and a “dual” algorithm to update latest end times. The primal algorithm runs as follows:

· Compute “Jackson’s Preemptive Schedule” (JPS) for the resource under consideration. JPS is the preemptive schedule obtained by applying the following priority rule: whenever the resource is free and one activity is available, schedule the activity A for which letA is the smallest. If an activity B becomes available while A is in process, stop A and start B if letB is strictly smaller than letA; otherwise continue A.

· For each activity A, compute the set ( of the activities which are not finished at t = estA on JPS. Let pB* be the residual duration on the JPS of the activity B at time t. Take the activities of ( in decreasing order of latest end times and select the first activity C such that:


estA + pA + (B(({A} | letB ( letC (pB*) ( letC
If such an activity C exists, then post the following constraints:


A » {B(({A} | letB ( letC}

start(A) ( maxB(({A} | letB ( letC(CBJPS)

where CBJPS is the completion time of activity B in JPS.

Several variants of this algorithm are available. [Nuijten 94] and [Martin & Shmoys 96] present variants which also run in O(n2), but do not require the computation of Jackson’s Preemptive Schedule. An O(n  log(n)) algorithm is presented in [Carlier & Pinson 94]. This algorithm is the best in terms of worst-case complexity, but relies on more complex data structures. [Caseau & Laburthe 94] presents another variant, based on the explicit definition of “task intervals.” This variant runs in O(n3) in the worst case, but works in an incremental fashion and allows the performance of additional deductions (cf. Section 5). Finally, [Brucker & Thiele 96] proposes several extensions to take setup times into account.

As shown in [Lévy 96], the edge-finding algorithms above may perform different deductions than the more standard disjunctive constraint propagation algorithms [Erschler 76] [Le Pape 88], which consist of imposing a disjunct from a disjunction when all the other disjuncts have been proven impossible. In this case, the disjunctions are of the form (end(A)  start(B) or end(B)  start(A)) where A and B are any two activities requiring the same resource. Examples given in [Lévy 96] show that each of the two techniques (edge-finding and disjunctive constraint propagation) performs some deductions that the other technique does not perform. Examples given in [Baptiste 95] show that the same result applies to the edge-finding rules and the energetic reasoning rules of [Erschler et al 91]. In practice, an edge-finding algorithm is often coupled with a disjunctive constraint propagation algorithm to allow a maximal amount of constraint propagation to take place.

Coupled with branch-and-bound backtracking algorithms, these constraint propagation algorithms prove to be very successful on both academic and industrial problems [Carlier & Pinson 90] [Nuijten 94] [Caseau & Laburthe 95] [Baptiste & Le Pape 95]. For example, the following table provides the results obtained with the Ilog Schedule scheduling tool (version 2.0) [Le Pape 95] on the ten 10x10 (10 machines, 10 jobs, 100 activities) instances of the Job-Shop Scheduling Problem (JSSP) used by Applegate and Cook in their computational study of the JSSP [Applegate & Cook 91]. (See [Blazewicz et al 96] for a review on the JSSP.) In this table, column “MAK” provides for each instance the optimal makespan, i.e., the minimal total duration of the schedule. Columns “BT” and “CPU” provide the total number of backtracks and CPU time needed to find an optimal solution and prove its optimality. Columns “BT(pr)” and “CPU(pr)” provide the number of backtracks and CPU time needed for the proof of optimality. CPU times are expressed in seconds on an RS6000 workstation, rounded to the closest tenth of a second. The algorithm used to solve the problem is described in [Baptiste et al 95].

	
	MAK
	BT
	CPU
	BT(pr)
	CPU(pr)

	MT10
	930
	13684
	184.8
	4735
	52.8

	ABZ5
	1234
	19303
	226.6
	4519
	49.7

	ABZ6
	943
	6227
	80.3
	312
	3.8

	LA19
	842
	18102
	219.2
	6561
	74.7

	LA20
	902
	40597
	407.3
	20626
	186.9

	ORB1
	1059
	22725
	323.7
	6261
	85.3

	ORB2
	888
	31490
	416.4
	14123
	189.3

	ORB3
	1005
	36729
	488.4
	22138
	277.6

	ORB4
	1005
	13751
	169.9
	1916
	19.0

	ORB5
	887
	12648
	168.5
	2658
	29.7


[Baptiste 95] and [Martin & Shmoys 96] provide an interesting characterization of edge-finding algorithms: considering only the resource constraint and the current time-bounds of activities, the primal algorithm computes the earliest start time at which each activity A could start if all the other activities were preemptable. This suggests a logical extension of the technique to preemptive and mixed cases where some activities are preemptable and some are not: for each activity A requiring the resource, if A is not preemptable, the non-preemptive edge-finding bound applies; if A is preemptable then, considering only the resource constraint and the current time-bounds, it would be nice to determine the earliest start and end times between which A could execute if all the activities were preemptable. This is the topic of the next section.

3 
EDGE-FINDING FOR PREEMPTIVE AND MIXED DISJUNCTIVE SCHEDULING

Let us define (( so that A (( ( means “A ends after all the activities in (” and substitute (( for » in the rules of the primal algorithm.


((, (A((, let( – est(({A}( p( + pA ( A (( (

A (( ( ( start(A) ( max(’(( (est(’ + p(’)

When A cannot be interrupted, these two rules remain valid (even if other activities can be interrupted) and the adjustment of estA is the same than in the non-preemptive case. When A can be interrupted, the first rule is still valid but the second is not. However, the second rule can be replaced by a weaker one:


A (( ( ( end(A) ( max(’(((est(’({A} + p(’({A})

This leads to a more general primal edge-finding algorithm:
· Compute Jackson’s Preemptive Schedule JPS.

· For each activity A, compute the set ( of the activities which are not finished at t = estA on JPS. Let pB* be the residual duration on the JPS of the activity B at time t. Take the activities of ( in decreasing order of latest end times and select the first activity C such that:


estA + pA + (B(({A} | letB ( letC (pB*) ( letC
If such an activity C exists, then post the following constraints:



A (( {B(({A} | letB ( letC}


If A cannot be interrupted:



   start(A) ( maxB(({A} | letB ( letC (CBJPS)



If A can be interrupted:



   end(A) ( estA + pA + (B(({A} | letB ( letC (pB*)
It is proven in [Baptiste 95] that considering only the resource constraint and the current time-bounds of activities, this algorithm computes:

· when A is not preemptable: the earliest time at which A could start if all the other activities were preemptable.

· when A is preemptable: the earliest time at which A could end if all the other activities were preemptable.
[Le Pape & Baptiste 96] presents a variant of this algorithm (which extends the basic edge-finding algorithm of [Nuijten 94]) and a series of experiments which show that the edge-finding technique performs better than other techniques on the Preemptive Job-Shop Scheduling Problem (PJSSP). The following table provides the results obtained on the preemptive variants of the ten JSSP instances of [Applegate & Cook 91], except ORB3 which remains open, with a lower bound of 971 and an upper bound of 973 for the optimal makespan. The algorithm used to solve the problem is a variant of the algorithm described in [Baptiste & Le Pape 96]. It is implemented in Claire [Caseau & Laburthe 96a]. CPU times are expressed in seconds on a PC Dell GXL 5133, rounded to the closest tenth of a second.

	
	MAK
	BT
	CPU
	BT(pr)
	CPU(pr)

	MT10
	900
	140903
	5659.5
	41255
	1679.0

	ABZ5
	1203
	1192553
	42172.8
	338597
	11943.0

	ABZ6
	924
	17699
	849.5
	8157
	366.9

	LA19
	812
	34637
	1453.2
	10928
	454.0

	LA20
	871
	2779
	151.8
	998
	56.5

	ORB1
	1035
	347653
	13864.0
	85091
	3422.5

	ORB2
	864
	53127
	1844.7
	16189
	574.6

	ORB3
	OPEN
	
	
	
	

	ORB4
	980
	97654
	3318.7
	37122
	1271.6

	ORB5
	849
	10380
	420.2
	4151
	163.0


4 
EDGE-FINDING FOR NON-PREEMPTIVE CUMULATIVE SCHEDULING
Given an activity A requiring a resource of capacity C  1, let W(A) be the “energy” required to execute A. Assuming A requires the same amount cA of the resource at any time during its execution, W(A) is equal to the product pA  cA. In the following, we consider the case where pA and cA are given constants. However, some of the following edge-finding rules could be modified to apply when pA and cA are constrained variables, or when cA is allowed to vary over time (between a minimum cAmin and a maximum cAmax).

Given a set ( of activities, let W(()  (A((W(A) be the “energy” required to execute (. Note that if for a given set (, W(() exceeds the energy C  (let( ( est() “provided” by the resource, an inconsistency is detected. This type of reasoning is heavily exploited in [Nuijten 94] [Nuijten & Aarts 96] where the following deduction rules (and their symmetric counterparts) are introduced.

Rule 1. ((, (A((, if C  (let( ( est(({A})  W((({A}), then  A (( (.

Proof. If (B(( such that A ends before B, then A ends before let( and thus all activities in (({A} have to be scheduled during [est(({A} let(). Thus, C  (let( ( est(({A}) ( W((({A}). Absurd.

This deduction rule allows to update estA. For any non-empty subset (’ of ( such that W((’)  (C ( cA) (let(’ ( est(’), we can deduce estA ( let(’ ( ((C (let(’ ( est(’) ( W((’)) / cA(. Indeed, if t  let(’ denotes a time at which all the activities in (’ are completed, W((’) exceeds (C ( cA) (t ( est(’), so A cannot execute all over [est(’ t). Since A must finish after all the activities in (’, this implies that A must start after est(’ and that a capacity of cA cannot be used for activities in (’ from the start time of A up to let(’. Thus, the product cA let(’ ( estA) cannot exceed the existing slack C (let(’ ( est(’) ( W((’). This directly implies estA ( let(’ ( ((C (let(’ ( est(’) ( W((’)) / cA(.

Rule 2. ((, (A((, if est(  estA  minB(((estB + pB) and C  (let( ( est()  W(() + cA  (min(let(, estA + pA) ( est(), then at least one activity B in ( must precede A.

Proof. If A starts before the end of every activity B in (, then before the end of A, no activity in ( can use the cA resource units required by A. Thus, the energy cA  (min(let(, estA + pA) ( est() cannot be assigned to the activities of ( during the interval       [est( let(). Therefore, if the provided energy C  (let( ( est() is less than W(() + cA  (min(let(, estA + pA) ( est(), at least one activity B in ( must precede A.

This deduction rule allows to update estA to the new value minB(((estB + pB).

Rule 3. ((, (A((, if estA  est( and est(  estA + pA and        C  (let( ( est()  W(() + cA (estA + pA ( est(), then A (( (.

Proof. If (B(( such that A ends before B, then A ends before let( and thus at least estA + pA ( est( time units of A overlap [est( let(). Therefore, if the provided energy C  (let( ( est() is less than W(() + cA (estA + pA ( est(), A must end after all activities in (.

This deduction rule allows to update estA. As for rule 1, we can deduce estA ( let(’ ( ((C (let(’ ( est(’) ( W((’)) / cA( for any subset (’ of ( such that W((’)  (C ( cA) (let(’ ( est(’).

[Nuijten 94] presents constraint propagation algorithms which achieve the time-bound adjustments corresponding to the three rules above. If n is the number of activities which require the resource, and nc is the number of distinct values assumed by cA over all the activities A, the time complexity of these algorithms are respectively O(n2  nc) for rule 1 and O(n3  nc) for rules 2 and 3. A nice property of the first algorithm is that when the resource capacity is one, this algorithm runs in O(n2) and computes exactly the same time-bounds as the edge-finder described in Section 2.

In [Caseau & Laburthe 96b], the concept of “task interval” is applied to non-preemptive cumulative scheduling. A task interval is a set of activities (I,J  {K | estI ( estK and letK ( letJ}. The following rules are described:

· (I, (J, if W((I,J)  C  (letJ ( estI), then an inconsistency is detected.

· (I, (J, (A such that estA  estI or letJ  letA, let slack(I, J) be the slack of (I,J (slack(I, J) = C * (letJ ( estI) ( W((I,J)) and overlap(A, I, J) be the product of cA with the duration of the overlap of the intervals [estI letJ) and [estA (estA + pA)). If overlap(A, I, J) exceeds slack(I, J), then A (( (I,J (see proof of rule 3). This implies estA ( letJ ( (slack(I, J) / cA(.
The overall constraint propagation algorithm runs in O(n3) in the worst case. However, the quantities W((I,J) can be incrementally maintained. A priori, the last deduction rule leads to less precise time-bound adjustment than those obtained by rules 1, 2 and 3, but its straightforward implementation results in a much more incremental algorithm than those described in [Nuijten 94].

[Carlier & Pinson 96] studies a pseudo-preemptive relaxation of the “parallel-machine” resource constraint, a specialization of the cumulative constraint to the case where each activity requires one unit of the resource ((A, cA  1). Just as for disjunctive scheduling, a particular schedule, “Jackson’s Pseudo-Preemptive Schedule” (JPPS), is introduced. The makespan of JPPS can be computed in O(n  log(n) + n  C  log(C)) time and is a tight lower bound for the parallel-machine problem with earliest and latest start and end times. A key improvement would be, like for disjunctive scheduling, to use JPPS to obtain tight time-bound adjustments, but to the best of our knowledge no such technique is available yet.

In most cases, cumulative edge-finding algorithms are coupled with (explicit or implicit) time-table mechanisms [Le Pape & Smith 88] [Fox 90] [Le Pape 94] which keep track of information about resource utilization and resource availability over time. For example, when the latest start time lst of an activity A is smaller than its earliest end time eet, it is guaranteed that A will execute between lst and eet. Over this period, cA units of capacity are marked as no longer available for other activities B. When cB exceeds the capacity that remains available at time t, this leads to updating the time-bounds of B. In most cases, the edge-finding and the time-table techniques effectively complement each other, i.e., the combination of both techniques provides more precise time-bounds than each technique considered separately.
 As shown in [Lock 96], “energetic reasoning” extensions [Erschler et al 91] [Lopez 91] [Beck 92] [Baptiste & Le Pape 95] of the time-table mechanism can also be considered, but it is still unclear how much energetic reasoning can be used without incurring an excessive cost in CPU time.
5
A QUADRATIC ALGORITHM FOR THE NOT-FIRST / NOT-LAST PROBLEM
The algorithms presented in the preceding sections mostly focus on determining whether an activity A must execute before (or after) a set of activities  requiring the same resource. A natural complement consists of determining whether A can execute    before (or after) . In the non-preemptive disjunctive case, this leads to the following rules [Pinson 88] [Carlier & Pinson 90] [Caseau & Laburthe 94]:


((, (A((, let( – estA ( p( + pA ( ((A « ()


((, (A((, letA – est( ( p( + pA ( ((A » ()


((A « () ( start(A) ( minB(((estB + pB)


((A » () ( end(A) ( maxB(((letB – pB)

The problem which consists of performing all the time-bound  adjustments corresponding to the first and third rules can be called the “not-first” problem, since it consists of updating the earliest start time of every activity A which cannot be first to execute in a set ({A}. Similarly, the problem which consists of performing all the time-bound adjustments corresponding to the second and fourth rules can be called the “not-last” problem: it consists of updating the latest end time of every activity A which cannot be last to execute in a set ({A}. Most researchers who have been working on edge-finding techniques have considered the “not-first” and “not-last” rules above [Pinson 88] [Carlier & Pinson 90] [Caseau & Laburthe 94] [Nuijten 94] [Baptiste & Le Pape 95] [Lévy 96], but in the absence of low-polynomial algorithms for solving the complete “not-first” problem, the rules had to be applied in an incomplete way, allowing only some but not all of the possible time-bound adjustements. In this section, we present an O(n2) time and O(n) space algorithm to solve the “not-first” problem. The “not-last” problem is solved in a symmetric fashion. To our knowledge, this is the first reported algorithm to perform all the deductions allowed by the rules above in quadratic time.

Let us first introduce some assumptions and notations. We assume that the relation estA + pA  letA holds for every activity A. Otherwise, the scheduling problem clearly allows no solution and the constraint propagation process can stop. We also assume that the activities A1 ... An which require the resource under consideration are sorted in non-decreasing order of due-dates (this can be done in O(n  log(n)) time). esti, leti and pi denote the earliest start time, latest end time, and processing time of Ai. Hence, i  j implies leti  letj. For a given j and a given k, (jk) denotes the set of indices m in {1 ... k} such that estj + pj  estm + pm and (ijk) denotes (jk) – {i}. Hence, if i does not belong to (jk), (ijk) is equal to (jk). Let Sj,k = p(jk) if j k and Sj,k = –( otherwise. Let j,k = minl k(letl – Sj,l).

Lemma 1. For a given j, the values j,1 ... j,n can be computed in O(n) time.

Proof. Indeed, the values of Sj,k and j,k can be computed in constant time from the values of Sj,k-1 and j,k-1. One just has to test whether k verifies estj + pj  estk + pk or not.
Lemma 2. If the “not-first” rules applied to activity Ai and set ( allow to update the earliest start time of Ai to estj + pj then there exists an index k ( j such that the “not-first” rules applied to activity Ai and set (ijk) allow to update the earliest start time of Ai to estj + pj.

Proof. Let k be the maximal index of the activities in (. ( is included in (ijk) and let( is equal to let(ijk). Hence the rules can be applied to Ai and (ijk) and provide the conclusion that Ai cannot start before estj + pj since every m in (ijk) satisfies        estj + pj  estm + pm.

Lemma 3. Let i and j be such that esti + pi  estj + pj. In this case, the “not-first” rules allow to update the earliest start time of Ai to estj + pj if and only if esti + pi  j,n.

Proof. ( Let us assume that the rules allow to update the earliest start time of Ai to estj + pj. According to lemma 2, there exists k ( j such that (ijk) is not empty and letk – esti ( p((ijk) + pi. Since  esti + pi  estj + pj implies that i does not belong to (jk), this implies esti + pi letk – Sj,k ( j,n.

( Let us assume that esti + pi  j,n. j,n is finite, so there exists an index k ( j such that j,n = letk – Sj,k. Since i does not belong to (jk), this implies that letk – esti ( p((ijk) + pi. So, the rules allow to update the earliest start time of Ai to estj + pj.

Lemma 4. Let i and j be such that esti + pi ( estj + pj. In this case, the “not-first” rules allow to update the earliest start time of Ai to estj + pj if and only if either esti + pi  j,i-1 or esti  j,n.

Proof. ( Let us assume that the rules allow to update the earliest start time of Ai to estj + pj. According to lemma 2, there exists k ( j such that (ijk) is not empty and letk – esti ( p((ijk) + pi. Two cases, k < i and i < k, can be distinguished. If k < i, i does not belong to (jk). This implies esti + pi letk – Sj,k ( j,i-1. On the contrary, if i < k, i belongs to (jk). Then p((jk) = p((ijk) + pi and esti letk – Sj,k ( j,n.

( If esti + pi  j,i-1, j,i-1 is finite, so there exists an index k < i such that j,i-1 = letk – Sj,k. Since i does not belong to (jk), this implies that letk – esti ( p((ijk) + pi. So, the rules allow to update the earliest start time of Ai to estj + pj. Let us now assume that         esti + pi ( j,i-1 and esti  j,n. Then there exists an index k ( j such that j,n = letk – Sj,k. Note that k ( i (otherwise, j,n = j,i-1  esti contradicts esti + pi ( j,i-1). Consequently, i belongs to (jk). In addition, (jk) is not reduced to {i}, otherwise we would have    esti  j,n = letk – Sj,k = letk – pi ( leti – pi which contradicts the initial assumption that esti + pi  leti for all i. Hence, (ijk) is not empty and satisfies letk – esti ( p((ijk) + pi. So, the rules allow to update the earliest start time of Ai to estj + pj.

Theorem. The following algorithm performs the same time-bound adjustments than the “not-first” rules. It runs in O(n2) time and O(n) space.
Iterate on Aj
· Compute j,1 ... j,n
· Iterate on Ai
If esti + pi < estj + pj
Then
If esti + pi > j,n
Then esti = max(esti, estj + pj)
End If
Else
If esti + pi > j,i-1 or esti > j,n
Then esti = max(esti, estj + pj)

End If
End If
End Iterate
End Iterate
Proof. Lemmas 3 and 4 imply that the algorithm performs exactly the deductions implied by the rules. The algorithm runs in O(n2) steps since for each j in the outer loop, O(n) steps are required to compute j,1 ... j,n and for each i in the inner loop, O(1) steps are required to perform the relevant tests. In addition, the algorithm requires a linear amount of memory space since only the values j,1 ... j,n for a given j are required.

Let us note that when the durations of activities are fixed, the   “not-first” and “not-last” rules subsume the disjunctive constraint propagation technique mentioned in Section 2. Hence, no disjunctive constraint propagation algorithm is needed when the “not-first” algorithm above and its dual “not-last” algorithm are applied.
6
CONCLUSION AND PERSPECTIVES
This paper has presented two extensions of the basic disjunctive edge-finding technique: preemptive edge-finding and cumulative edge-finding. We believe that much more work remains, especially in the cumulative case for which the constraint propagation algorithms are still rather costly in terms of CPU time. We also think that the preemptive cumulative case which, to our knowledge, remains unexplored is of great theoretical and practical interest.
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� O(n2) corresponds to applying the rules once. In constraint programming, one would apply these rules (and other rules, used to propagate other constraints) in an incremental fashion until the domains of all the problem variables become stable. In the worst case, this could lead to executing the edge-finding algorithm O(Dn) times where D is a bound on the size of the domains of the variables involved in the propagation. In most cases, however, this does not occur, i.e., each propagation algorithm is applied only a couple of times.


� In the disjunctive case, the time-table mechanism is generally not considered, as it is subsumed by the disjunctive constraint propagation mechanism mentioned in Section 2 [Le Pape & Baptiste 96].





PAGE  

