Magic square

An example of how to represent a problem

An idea from Chris Beck

- put a number in each square
- each number is different
- a number is in the range 1 to 16
- the sum of a column is
- the same as a sum of a row
- the same as the sum of a main diagonal

WikipediA
 The Free Encyclopedia

navigation

－Main page
－Community portal
－Featured content
－Current events
－Recent changes
－Random article
－Help
－Contact Wikipedia
－Donations

search

Go
Search
toolbox
－What links here
－Related changes
－Upload file
－Special pages
－Printable version
－Permanent link
－Cite this article

in other languages

－Français

article

```
discussion
```

Your continued donations heep Wikipedia nunning！

Lo Shu Square

From Wikipedia，the free encyclopedia
Lo Shu Square（Simplified Chinese：楁书；Traditional Chinese：洛恭；pinyin：Iuò shū；also written 雒晝；literally：Luo（River）Book／Scroll）or the Nine Halls Diagram（Simplified Chinese：九宫图；Traditional Chinese：九宮 围；pinyin：jiŭ gōng tú），is the unique normal magic square of order three．Lo Shu is part of the legacy of the most ancient Chinese mathemtical and divinatory（Yi Jing 易縒）traditions，and is an important emblem in Feng Shui（風，水），the art of geomancy concerned with the placement of objects in relation to the flow of qi（氣）＇natural energy＇．
Chinese legends concerning the pre－historic Emperor $Y u$（夏禹）tell of the Lo Shu，often in connection with the Ho Tu （河国）figure and 8 trigrams．In ancient China there was a huge deluge：the people offered sacrifices to the god of one of the flooding rivers，the Lo river（洛水），to try to calm his anger．A magical turtle emerged from the water with the curious and decidedly unnatural（for a turtle shell）Lo Shu pattern on its shell：circular dots giving unitary（base 1）representations（figurate numbers）of the integers one through nine are arranged in a three－by－three grid．

The odd and even numbers alternate in the periphery of the Lo Shu pattern，the 4 even numbers are at the four corners，and the 5 odd numbers（outnumbering the even numbers by one）form a cross in the center of the square．The sums in each of the 3 rows，in each of the 3 columns，and in both diagonals，are all 15 （fifteen is the number of days in each of the 24 cycles of the Chinese solar year）．Since the center cell is 5 ，the sum of any two non－central cells in the same row，column，or diagonal，is 10 （e．g．，opposite comers add up to 10，the number of the Ho $T u$（河国））

The Lo Shu is sometimes connected numerologically with the 8 trigrams，which can be arranged in the 8 outer cells， reminiscent of circular trigram diagrams．The numbers 1 （ 001 ，the beginning of all things，bottom of the central column） and 9 （completion，1001，top of the central column）are considered most auspicious，while the number 5 （101）at the very center is the perfectly balanced number（also at the heart of the $\mathrm{Ho} \mathrm{Tu}_{0}$ ）．Like the $\mathrm{Ho}_{0} \mathrm{Tu}$（河国），the Lo Shu square，in

Modern representation of the Lo Shu square as a magic square．

\square

LO SHU MAGIC SQUARE

One of most ancient tool of Feng Shui and widely used by the practitioner is the Lo Shu magic square. 6000 years ago; this form was found on the back of the Turtle, one of the celestial animals, as the Turtle appeared on the river Lo, in the following pattern

Th placement and numbers. The total in any direction will add upto figure 15.Feng Shui formulas of astrology, flying star and I-Ching are all based on this Lo Shu magic square.

4	9	2
2	5	7

-

WolframMathWorld the web＇s most extensive mathematics resource

Built with Mathematica Technology

Algebra

Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry
History and Terminology
Number Theory
Probability and Statistics Recreational Mathematics
Topology
Alphabetical Index
Interactive Entries
Random Entry
New in MathWonld
MabsWonddClassroom
About MaskWondd
Send a Message to the Team
Order book from Amazon

Last updated：
12，644 entries
Thu Jan 252007
Created，developed，and nurtured by Eric Weisstein at Wolfram Research

Recreational Mathematics＞Magic Figures＞Magic Squares

Lo Shu

COMMENT
On this Page

8	1	6
3	5	7
4	9	2

The unique magic square of order three．The Lo Shu is an associative magic square， but not a panmagic square．

SEE ALSO：Associative Magic Square，Magic Square，Panmagic Square． ［Pages Linking Here］

REFERENCES：

Gardner，M．The Sixth Book of Mathematical Games from Scientific American．Chicago，IL：University of Chicago Press，Pp． 19 and 24， 1984.

Hunter，J．A．H．and Madachy，J．S．Mathematical Diversions．New York：Dover，pp．23－24， 1975.

Kraitchik，M．Mathematical Recreations．New York：W．W．Norton，Pp．146－147， 1942.

Wells，D．The Penguin Ditionary of Curious and Interesting Mumbers．Middlesex，England：Penguin Books，PP．75－76， 1986.

Other Wolfram Sites
E Wolfram Research
\square Integrator
\square Tones
E）Functions Site
（2）Wolfram Science
E more．．
＊Latest Mathematica Information＞＞
都 Download Mathematica Trial＞＞
－Complete Mathematica
Documentation＞＞

Show your math sawny with a Math Wordo T－shirt．

Read the latest Technical Software Nems．

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

Dürer's magic square is a magic square with magic constant 34 used in an engraving entitled Melancholia I by Albrecht Dürer (The British Museum, Burton 1989, Gellert et al. 1989). The engraving shows a disorganized jumble of scientific equipment lying unused while an intellectual sits absorbed in thought. Dürer's magic square is located in the upper right-hand corner of the engraving. The numbers 15 and 14 appear in the middle of the bottom row, indicating the date of the engraving, 1514.

Dürer's magic square has the additional property that the sums in any of the four quadrants, as well as the sum of the middle four numbers, are all 34 (Hunter and Madachy 1975, p. 24). It is thus a gnomon magic square. In addition, any pair of numbers symmetrically placed about the center of the square sums to 17 , a property making the square even more magical.

```
SEE ALS0: Dürer's Solid, Gnomon Magic Square, Magic Square. [Pages Linking Here]
```

The photo below shows a different kind of magic square．This one is on the Passion facade of the Sagrada Familia，the unfinished cathedral in Barcelona
designed by Antoni Gaudi．Each row and column add up to 33，the supposed age Passion facade of the Sagrada Familia，the unfimished cathedral in Barcelona
designed by Antoni Gaudi．Each row and column add up to 33，the supposed age

4	5	16	9
14	11	2	7
1	8	13	12
15	10	3	6

Back to CP

Chapter 11

First Example：Magic square

A simple magic square of order 3 can be seen as the＂Hello world！＂program in Choco．First of all，we need to agree on the definition of a magic square of order 3 ．Wikipedia tells us that ：

A magic square of order n is an arrangement of n^{2} numbers，usually distinct integers，in a square， such that the n numbers in all rows，all columns，and both diagonals sum to the same constant．A normal magic square contains the integers from 1 to n^{2} ．

So we are going to solve a problem where unknows are cells value，knowing that each cell can take its value between 1 and n^{2} ，is different from the others and columns，diagonals and rows are equal to the same constant M（which is equal to $\left.n *\left(n^{2}+1\right) / 2\right)$ ．

We have the definition，let see how to add some Choco in it．

11．1 First，the model

To define our problem，we need to create a Model object．As we want to solve our problem with constraint nrooramming（of course we do）we need to create a CPModel

1st stab

$$
\begin{aligned}
& D_{i} \in[1 . .16] \\
& \sum \text { row }_{i}=\sum \text { row }_{i+1} \\
& \sum \text { col }_{j}=\sum \text { col }_{j+1} \\
& \sum \text { diag }_{l}=\sum \text { diag }_{l+1} \\
& m_{i, j} \neq m_{k, l}
\end{aligned}
$$

- put a number in each square
- each number is different
- a number is in the range 1 to 16
- the sum of a column is
- the same as a sum of a row
- the same as the sum of a main diagonal

Use sum $(x)=\operatorname{sum}(y)$ where x and y are

- different rows
- different columns
- different diagonals

Every element of the array is different

- represent as a clique of not equals

How does it go?
For propagation and search?

2nd stab

- put a number in each square
- each number is different
- a number is in the range 1 to 16
- the sum of a column is
- the same as a sum of a row
- the same as the sum of a main diagonal

Use allDiff
$D_{i} \in[1 . .16]$
$\sum r o w_{i}=k$
$\sum \operatorname{col}_{j}=k$
$\sum \operatorname{diag}_{l}=k$

But what is k ?

How does model perform?

```
import org.chocosolver.util.tools.ArrayUtils;
import org.chocosolver.solver.Model;
import org.chocosolver.solver.Solver;
import org.chocosolver.solver.variables.IntVar;
public class Magic {
    public static void main(String[] args) throws Exception {
    int n = Integer.parseInt(args[0]);
    int k= n* (n* n + 1)/2;
    Model model = new Model("magic");
    Solver solver = model.getSolver();
    IntVar S[][] = model.intVarMatrix("S",n,n,l,n*n);
    model.allDifferent (ArrayUtils.flatten(S)) .post();
    for (int i=0;i<n;i++) model.sum(S[i],"=",k).post();
    for (int j=0;j<n;j++) model.sum(ArrayUtils.getColumn(S,j),"=",k).post();
    IntVar diagL[] = new IntVar[n];
    for (int i=0;i<n;i++) diagL[i] = S[i][i];
    model.sum(diagL,"=",k) .post();
IntVar diagR[] = new IntVar[n];
for (int i=0;i<n;i++) diagR[i] = S[i][n-i-1];
model.sum(diagR,"=",k).post();
solver.solve();
for (int i=0;i<n;i++) {
    for (int j=0;j<n;j++)
        System.out.print(S[i][j].getValue() + " ");
    System.out.println();
}
System.out.println(solver.getMeasures());
    }
}
```

C: \Documents and Settings \pat>cd ..
C: \Documents and Settings>cd ..
C: \>cd pat
C: \pat>cd cpm
C: \pat \cpM>cd JChoco
C: \pat \cpM\JChoco>ed magic

8	1	6
3	5	7
4	9	2

C: \pat \cpM\JChoco\magic>javac Magic. java
C: \pat\cpM\JChoco\magic>java Magic 3
$20[+0]$ millis.
$4[+0]$ nodes
feasible: true
$k=15$
$\begin{array}{lll} \\ 4 & =15 \\ 3 & 15\end{array}$
95
27

C：\pat\cpM\JChoco\magic〉

Text and Content Layouts

Slide 7 of 18	Default Design	English（U．K．）	戓买

Magic square on the web

http://mathworld.wolfram.com/MagicSquare.html
http://mathforum.org/alejandre/magic.square.html

Is there an order 3 magic square with the number 5 in one of the outer corners?

Thanks to Chris Beck

people / J. Christopher Beck

I joined the Department of Mechanical and Industrial Engineering, University of Toronto in August, 2004. I am an Assistant Professor in the area of Information Engineering but also do a lot of what might be considered Operations Research.

Before joining U of T I spent 2 years as a Staff Scientist at the Cork Constraint Computation Centre in Cork, Ireland. I spent 3 years as Senior Scientist and Software Engineer on the Scheduler R\&D team at ILOG in Paris, France.

I do research in the areas of optimization, heuristic search, constraint programming, constraint-directed scheduling, hybrid algorithms, dynamic and uncertain problems, and problem modeling. Broadly, I am interested in when and why a particular problem solving technique works: what characteristics make a problem suitable (or unsuitable) for a search technique.

Contact Information

