nqueens

(CP: "hello world")

The Free Encyclopedia

navigation

- Main page
- Contents
- Featured content
- Current events
- Random article

search

interaction

- About Wikipedia
- Community portal
- Recent changes
- Contact Wikipedia
- Donate to Wikipedia
- Help

toolbox

- What links here
- Related changes
- Upload file
- Special pages
- Printable version
- Permanent link
- Cite this page

Learn more about citing Wikipedia.	Try Beta \& Log in/create account

article discussion edit this page history

Eight queens puzzle

From Wikipedia, the free encyclopedia
The eight queens puzzle is the problem of putting eight chess queens on an 8×8 chessboard such that none of them is able to capture any other using the standard chess queen's moves. The queens must be placed in such a way that no two queens would be able to attack each other. Thus, a solution requires that no two queens share the same row, column, or diagonal. The eight queens puzzle is an example of the more general \boldsymbol{n} queens puzzle of placing n queens on an $n \times n$ chessboard, where solutions exist only for $n=1$ or $n \geq$ 4.

\quad Contents [hide]
1 History
2 Constructing a solution
3 Solutions to the eight queens puzzle
4 Counting solutions
5 Related problems
6 The eight queens puzzle as an exercise in algorithm design
7 An animated version of the recursive solution
8 See also
9 References
10 External links
10.1 Links to solutions

One solution.

History

The puzzle was originally proposed in 1848 by the chess player Max Bezzel, and over the years, many mathematicians, including Gauss and Georg Cantor, have worked on this puzzle and its generalized n-queens problem. The first solutions were provided by Franz Nauck in 1850. Nauck also extended the puzzle to n-queens problem (on an $n \times n$ board—a chessboard of arbitrary size). In 1874, S. Gunther proposed a method of finding solutions by using determinants, and J.W.L. Glaisher refined this approach.

－Help	10 Externallinks 10.1 Links to solutions
toolbox	

－What links here
－Related changes
－Upload file
－Special pages
－Printable version
－Permanent link
－Cite this page
languages
－Català
－Česky
－Dansk
－Deutsch
－Español
－Français
－Italiano
－עברית
＊jsporvero
－Magyar
－日本語
－Polski
－Português
－Slovenščina
－Српски／Srpski
－ไทย
－Türkçe
－Tiếng Việt
－中文

History

The puzzle was originally proposed in 1848 by the chess player Max Bezzel，and over the years，many mathematicians，including Gauss and Georg Cantor，have worked on this puzzle and its generalized n－queens problem．The first solutions were provided by Franz Nauck in 1850 Nauck also extended the puzzle to n－queens problem（on an $n \times n$ board－a chessboard of arbitrary size）．In 1874，S．Gunther proposed a method of finding solutions by using determinants，and J．W．L．Glaisher refined this approach．

Edsger Dijkstra used this problem in 1972 to illustrate the power of what he called structured programming．He published a highly detailed description of the development of a depth－first backtracking algorithm．${ }^{2}$
This puzzle appeared in the popular early 1990s computer game The 7th Guest．

Constructing a solution

The problem can be quite computationally expensive as there are $4,426,165,368$（or $64!/(56!8!$ ））possible arrangements of eight queens on the board，but only 92 solutions．It is possible to use shortcuts that reduce computational requirements or rules of thumb that avoids brute force computational techniques．For example，just by applying a simple rule that constrains each queen to a single column（or row），though still considered brute force，it is possible to reduce the number of possibilities to just $16,777,216\left(8^{\wedge} 8\right)$ possible combinations，which is computationally manageable for $n=8$ ，but would be intractable for problems of $n=1,000,000$ ．Extremely interesting advancements for this and other toy problems is the development and application of heuristics（rules of thumb）that yield solutions to the n queens puzzle at an astounding fraction of the computational requirements．This heuristic solves n queens for any $\mathrm{n} n \geq 4$ or $n=1$ ；

1．Divide n by 12．Remember the remainder（ n is 8 for the eight queens puzzle）．
2．Write a list of the even numbers from 2 to n in order．
3．If the remainder is 3 or 9 ，move 2 to the end of the list．
4．Append the odd numbers from 1 to n in order，but，if the remainder is 8 ，switch pairs（i．e． $3,1,7,5,11,9, \ldots$ ）．
5．If the remainder is 2 ，switch the places of 1 and 3 ，then move 5 to the end of the list．
6．If the remainder is 3 or 9 ，move 1 and 3 to the end of the list．
7．Place the first－column queen in the row with the first number in the list，place the second－column queen in the row with the second number in the list，etc．

For $n=8$ this results in the solution shown above．A few more examples follow．
－ 14 queens（remainder 2 ）： $2,4,6,8,10,12,14,3,1,7,9,11,13,5$

The famous n-queens problem is actually a simplifcation of the much more important m-queens problem, which is originally attributed to Adardhir I the founder of the Sassanid Empire. His mother Rodhagh challenged him to cover his empire with the minimum number of castles so that no place was not protected by cavalry within 1 week riding. Adardhir simplifed this problem into the m-queens problem, based on the game of chess, which was becoming popular at the time, under the name shatranj. His son Shapur I is attributed with the first optimal solution on a standard 8×8 chessboard. The m-queens problem, generalizing Adardhir's problem, is to cover an $n \mathrm{n}$ chess board with as few queens as possible so that no queen can take another and no more queens can be placed on the board without being taken.

For example given $n=5$ a solution might be
$q=[2,0,5,3,1]$; representing the solution

\cdot	Q	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	Q
\cdot	\cdot	Q	\cdot	\cdot
Q	\cdot	\cdot	\cdot	\cdot

where 0 means no queen on that row. Note that above a 5 th queen cannot be placed on the board witjout being under attack.
and a minimal solution might be
$q=[5,2,0,3,0]$; representing the solution

$\begin{array}{lll} \cdot & \cdot & \cdot \\ \cdot & Q & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & Q \end{array}$

That is, above we see that by placing 3 queens on the 5×5 board the queens do not attack each other and all other vacant positions are under attack. The above solution is minimal

Peter Stuckey myth?

WIKIPEDIA

The Free Encyclopedia

navigation

- Main page
- Contents
- Featured content
- Current events
- Random article

interaction
- About Wikipedia
- Community portal
- Recent changes
- Contact Wikipedia
- Donate to Wikipedia
- Help

toolbox

- What links here
- Related changes
- Upload file
- Special pages
- Printable version
- Permanent link
- Cite this page

Make a donation to Wikipedia and give the gift of knowledge!
Try Beta \quad \& Log in / create account article discussion edit this page history

Edsger W. Dijkstra

From Wikipedia, the free encyclopedia
(Redirected from Edsger Dijkstra)
Edsger Wybe Dijkstra (May 11, 1930 - August 6, 2002; Dutch pronunciation: ['etsxər 'wibə 'derkstra]) was a Dutch computer scientist. He received the 1972 Turing Award for fundamental contributions to developing programming languages, and was the Schlumberger Centennial Chair of Computer Sciences at The University of Texas at Austin from 1984 until 2000.
Shortly before his death in 2002, he received the ACM PODC Influential Paper Award in distributed computing for his work in the sub-topic of self-stabilization of program computation. This annual award was renamed the Dijkstra Prize the following year, in his honour.

Contents [hide]
1 Life and work
2 EWDs and writing by hand
3 Awards and honors
4 See also
5 Footnotes
6 References
6.1 Writings by E.W. Dijkstra
6.2 Others about Dijkstra, eulogies
7 External links

Life and work

Born in Rotterdam, Netherlands, Dijkstra studied theoretical physics at Leiden University, but he quickly realized he was more interested in computer science. Originally employed by the Mathematisch Centrum in Amsterdam, he held a professorship at the Eindhoven University of Technologv in the Netherlands, worked as a research fellow for Burrouqhs

Edsger Wybe Dijkstra

Born May 11, 1930

 Rotterdam, NetherlandsDied August 6, 2002 (aged 72) Nuenen, Netherlands

Fields Computer science
Institutions Mathematisch Centrum Eindhoven University of Technology The University of Texas at Austin

Doctoral advisor Adriaan van Wijngaarden
Doctoral Nico Habermann students Martin Rem David Naumann Cornelis Hemerik Jan Tijmen Udding Johannes van de Snepscheut

The Free Encyclopedia

navigation

- Main page
- Contents
- Featured content
- Current events
- Random article

interaction
- About Wikipedia
- Community portal
- Recent changes
- Contact Wikipedia
- Donate to Wikipedia
- Help

toolbox

- What links here
- Related changes
- Upload file
- Special pages
- Printable version
- Permanent link
- Cite this page

Structured programming

From Wikipedia, the free encyclopedia

Structured programming can be seen as a subset or subdiscipline of procedural programming, one of the major programming paradigms. It is most famous for removing or reducing reliance on the GOTO statement.
Historically, several different structuring techniques or methodologies have been developed for writing structured programs. The most common are:

1. Edsger Dijkstra's structured programming, where the logic of a program is a structure composed of similar sub-structures in a limited number of ways. This reduces understanding a program to understanding each structure on its own, and in relation to that containing it, a useful separation of concerns.
2. A view derived from Dijkstra's which also advocates splitting programs into sub-sections with a single point of entry, but is strongly opposed to the concept of a single point of exit.
3. Data Structured Programming or Jackson Structured Programming, which is based on aligning data structures with program structures. This approach applied the fundamental structures proposed by Dijkstra, but as constructs that used the high-level structure of a program to be modeled on the underlying data structures being processed. There are at least 3 major approaches to data structured program design proposed by Jean-Dominique Warnier, Michael A. Jackson, and Ken Orr.
The two latter meanings for the term "structured programming" are more common, and that is what this article will discuss. Years after Dijkstra (1969), object-oriented programming (OOP) was developed to handle very large or complex programs (see below: Object-oriented comparison).

Contents [hide]

1 Low-level structure Programming 2 Design
3 Structured programming languages
4 History
41 Thenrotical foundation

Programming paradigms

- Agent-oriented

- Component-based
- Flow-based
- Pipeline
- Concatenative
- Concurrent computing
- Declarative (contrast: Imperative)
- Functional
- Dataflow
- Cell-oriented (spreadsheets)
- Reactive
- Graph-oriented
- Goal-oriented
- Constraint
- Logic
- Constraint logic
- Abductive logic
- Inductive logic
- Event-driven
- Service-oriented
- Feature-oriented
- Function-level (contrast: Value-level)
- Imperative (contrast: Declarative)
- Greater separation of concerns
- Asnert_nriented

STRUCTURED

 PROGRAMMINGO.-J. DAHL
 Bündirn, Osb, Narmay
E. W. DUKSTRA Dopapmex of Maricuratics Tedinologikol Univerith,
Endiover, The Neberiants
C. A. R. HOARE Desartment of Companer Soleven

\square

Preface

v
I. Notes on Structured Programming. idgeirk w. prokstra

1. To My Reader
2. Oa Oar Inabality To Do Much
3. On The Rellitivy
4. On Oar Mental Aids
5. On Oar Mental Aids Example of a Correctness Proof
6. An Example of a Correctness Proo
7. On the Validity of Proofs Yersus the Validity of Implement-
ations.
On Understanding Programs
8. On Comparing Programs A Fint Fxample of Sep-wise Program Composition
9. A First Example of Step-wise Program Composition
10. On Program Families
11. On Trading Storage Space for Computation Speed
12. On a Program Modet
13. A Second Example of Step-wise Program Composition
14. On What We Have Achieved
15. On Grouping and Sequencing
16. Design Considerations in More Detal
17. The Problem of the Eight Queens
II. Notes on Data Structuring, c. A. 8. HOARE
18. Introduction
19. The Concept of Type
20. Unstroctured Data Types
21. The Cartesian Product
22. The Discriminated Union
23. The Array
24. The Powerset
25. Recursive Data Structure
26. Recirsive Das Structurs
27. Example: Exarrination Timetables

IIL. Hierarchical ProgramStrectures. OLE- oHANDAHLAND C. A. X. HOARE 175

1. Introduction
2. Coroutines
3. List Stractures
4. Program Concatenation,
5. Concept Hierarchies References

E. w. duksth

This section has not been included because the problem tackled in it is very ecicing. On the contrary, I feel tempted to remark that the problem is perhaps too trivial to act as a good vesting ground for an orderly approach tocause it contains a true cye-wittess acosumt of atat happened in the classroom. It slould be ineerpereted as a a paritial answer to the question that classroom. It sboukd be ineerpretcd as a parial answer to the question that II never used the "Notes on Struxtured Programming"-mainly addressed to myself and pertaps 10 my pollengues-in teaching. The classroom experiment dessribed in this section took place at the end of a course entitited "Introduction into the Art of Programming", for which separate lesture notes - with exerciss and all that-were written. As at the moment of writing the students that followad this course have still to pass their examination, it is for me still an open question how successful I have been. They liked the course, I have beard that they described my programs as
"logical poems", so I have the best of bopes.) "logical poems", so I have the best of bopes.)

17. The Problem Of The Eight Queens

This last section is adapted from my lecture notes "Introduaction into the Art of Programming". 1 owe the example-as many other gocd ones-to Niklans Wirth. This last section is added for two reasons.
Firstly, it is a second effort to do more justice to the process of invention. (As a matter of fact I start where the student is not familiar with the coocapt of backtracking and aim at discovering it as I go alone.)
Secondly, and that is more important, it deals with recursion as a programming technique. In preceding sections (particularly in "On a program model") I have reviewed the subroutine concept; there it emerged as an embodiment of whin hrore also cancd operaio can distinguish quits clarly tiwo diffent manatic levels. On the leval of the dis progran the subroutine represents a primitive action; on that lesel it is used en account of "what it does for a primitive action; on that kevel it is ussd on account of "what it does for as" and on that same level it is irrelevant "how it works", On the level of
the subroatine bedy we are concerned with how it works but can-and shoald-abstract fromt how it is used. This clear separation of the two semantic levels "what it does" and "bow it works" is denied to the designer of a recursive procedure. As a resalt of this circumstance the design of a recursive routibe requires a different mental sixil, justifying the inclusion of the current section in this manayeript. The recursive procedure has to be understood and conseived on a single semantic level: as sach it is more like a sequencing device, comparable to the repetitive clauses
\square
\square c:\} C ··· \square 삘 $W \cdot$ c...

论 层（

P＠RTAL

Subscribe（Full Service）Reqister（Limited Service，Free）Login
Search：〇The ACM Digital Library © The Guide
UK Higher Education Institutions（UK HEI）：Glasgow University Library

THE GUIDE TO COMPUTING LITERATURE

Letters to the editor：go to statement considered h
Full text

茴Pdf（ 1.07 MB ）

Source
Communications of the ACM archive
Volume 11，Issue 3 （March 1968）table of contents Pages：147－148
Year of Publication： 1968
ISSN：0001－0782

Author Publisher
Bibliometrics Downloads（ 6 Weeks）：71，Downloads（ 12 Month
Additional Information：references cited by indexterms
Tools and Actions：

DOI Bookmark：
\uparrow REFERENCES

4）Request Permissions Revie Save this Article to a Binder D

Use this link to bookmark this Article：http What is a DOI？

Go To Statement Considered Harmful
Kay Worch snd Phuses：ko to aistenment，jung lestruetioe．
 CR Categories： $4.23,5.23,5.24$
Endom：
For s number of years 1 have been fumilisr with the observation that the quality of programeses is a decreasing facetion of the
 disustross efferts，and I became oowininced that the go to alath－ momt should be mbolisbed from all＂higiter lowel＂programining languges（ise everything exsept，perhapa，blain machine oode） At That time I did not attach tos mpoh imporianes to this ils
 been urged to do mo．

 nuther of fis setivity，foe it is this procese Hat has to amomplist the desired effect；it is this prosese that in is dynamie bebavioe
 gased to the machine．
My moeced remark is that cour intellestaal poxess are rether geased to master statia relations and thas our powen to viauline
proceevess evdving in time wre pelatively poonly developed．For

dysamie proyrex is only obarsoterized whea we abse give to which eall of the proeedure we refer．With the indusion of proceitres
we tan charactecize the progeres of the proxes vis a sequence of textual indioes，the length of this sequence being equil to the dyamin depth of proecolure callitg． Let us dow conelder repetition chanses aliks，while B repeat A se repeat A until B ）．Legienlly spenking，wioh elames are now revunive peossdures．For rexomons of repalism I dan＇t wish to es－ elose them：on the one hand，repetition clacases ean be imple－
 nakas us well equippod to etctin our intellectual grapp on the proeespos gerorated by ropotition clauses．With the inclusien of the repetition elsesso textral iadieses are no longer sufifinent to a repecition elause，bovever，wo can weocisto a mo－ealled＂dy－ tamie indas，＂inexoratly opuntire the ordinal nunber of the
 peosedure calls）may be applied sestoily，we find that DVK the （mixed）sequeose of textual and／or dymamie indices．
The main point is that the vilues of these indioes are cutaite peogrammer＇s eoatrol；they are generaved fether by the verite－up he wisber or stat．They provide istepeademt coordiantes in vhich 60 deseribe the prognve of the peocoses．
Why do wo moed nurh ind reendent
Why do wo moed such independent coantiratan？The mason

Note：OCR errors may be found in this Reference List extracted from the full text article．ACM has opted to expose the complete List rather than only correct and linked references．
\square

Back to nqueens

- 20 queens (remainder 8): $2,4,6,8,10,12,14,16,18,20,3,1,7,5,11,9,15,13,19,17$.

Solutions to the eight queens puzzle

The eight queens puzzle has 92 distinct solutions. If solutions that differ only by symmetry operations (rotations and reflections) of the board are counted as one, the puzzle has 12 unique (or fundamental) solutions, which are presented below:
$+$
$+$
que (

Unique solution 1

Unique solution 4

Unique solution 2

Unique solution 3

Unique solution 6

Unique solution 10

Unique solution 11

Unique solution 12

Counting solutions
The following table gives the number of solutions for placing n queens on an $n \times n$ board, both unique (sequence A002562® in OEIS) and distinct (sequence A000170 『 in OEIS).

$\boldsymbol{n}:$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$..	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$
unique:	1	0	0	1	2	1	6	12	46	92	341	1,787	9,233	45,752	..	$28,439,272,956,934$	$275,986,683,743,434$	$2,789,712,466$
distinct:	1	0	0	2	10	4	40	92	352	724	2,680	14,200	73,712	365,596	..	$227,514,171,973,736$	$2,207,893,435,808,352$	$22,317,699,61$

Note that the six queens puzzle has fewer solutions than the five queens puzzle.
There is currently no known formula for the exact number of solutions.

Related problems

Using pieces other than queens

For example, on an 8×8 board one can place 32 knights, or 14 bishops, 16 kings or 8 rooks, so that no two pieces attack each other. Fairy chess pieces have also been substituted for queens. In the case of knights, an easy solution is to place one on each square of a given color, since they move only to the opposite color.

Nonstandard boards

Pólya studied the n queens problem on a toroidal ("donut-shaped") board. In 2009 Pearson and Pearson algorithmically populated threesdimensional boards $(n \times n \times n)$ with n^{2} queens, and proposed that multiples of these can yield solutions for a four-dimensional version of the puzzle.

Domination

Given an $n \times n$ hnard find the domination number which is the minimum number of nuppne (nr nther nipros) neprled to attark ar arrunv

Main article: Eight queens puzzle solutions

Finding all solutions to the eight queens puzzle is a good example of a simple but nontrivial problem. For this reason, it is often used as an example problem for various programming techniques, including nontraditional approaches such as constraint programming, logic programming or genetic algorithms. Most often, it is used as an example of a problem which can be solved with a recursive algorithm, by phrasing the n queens problem inductively in terms of adding a single queen to any solution to the problem of placing $n-1$ queens on an n-by-n chessboard. The induction bottoms out with the solution to the 'problem' of placing 0 queens on an n-by-n chessboard, which is the empty chessboard.
This technique is much more efficient than the naive brute-force search algorithm, which considers all $64^{8}=2^{48}=281,474,976,710,656$ possible blind placements of eight queens, and then filters these to remove all placements that place two queens either on the same square (leaving only $64 / / 56!=178,462,987,637,760$ possible placements) or in mutually attacking positions. This very poor algorithm will, among other things, produce the same results over and over again in all the different permutations of the assignments of the eight queens, as well as repeating the same computations over and over again for the different sub-sets of each solution. A better brute-force algorithm places a single queen on each row, leading to only $8^{8}=2^{24}=16,777,216$ blind placements.
It is possible to do much better than this. One algorithm generates the permutations of the numbers 1 through 8 (of which there are $8!=$ 40,320), and uses the elements of each permutation as indices to place a queen on each row, guaranteeing no rook attacks. Then it rejects those boards with diagonal attacking positions. The backtracking depth-first search program, a slight improvement on the permutation method, constructs the search tree by considering one row of the board at a time, eliminating most nonsolution board positions at a very early stage in their construction. Because it rejects rook and diagonal attacks even on incomplete boards, it examines only 15,720 possible queen placements. A further improvement which examines only 5,508 possible queen placements is to combine the permutation based method with the early pruning method: the permutations are generated depth-first, and the search space is pruned if the partial permutation produces a diagonal attack. Constraint programming can also be very effective on this problem.

An alternative to exhaustive search is an 'iterative repair' algorithm, which typically starts with all queens on the board, for example with one queen per column. It then counts the number of conflicts (attacks), and uses a heuristic to determine how to improve the placement of the queens. The 'minimum-conflicts' heuristic - moving the piece with the largest number of conflicts to the square in the same column where the number of conflicts is smallest - is particularly effective: it solves the $1,000,000$ queen problem in less than 50 steps on average. This assumes that the initial configuration is 'reasonably good' - if a million queens all start in the same row, it will obviously take at least 999,999 steps to fix it. A 'reasonably good' starting point can for instance be found by putting each queen in its own row and column such that it conflicts with the smallest number of queens already on the board.
Note that 'iterative renair' unlike the 'hacktrackinc' search nutline. abnve. dnes not auarantee a solutinn- like all non-hillclimbinc fi e. aree.dv)

How might it go?

FAIL

Representation/model 8 constrained integer variables Domains [0..7]
A variable represents a row $v[i]=j \leftrightarrow$ queen on row i, column j

> Representation/model Constraints
> no column attacks $v[i]=v[j]$ for all $i \neq j$ no diagonal attacks $|v[i]-v[j]| \neq|i-j|$

```
emacs@BYRON
File Edit Options Buffers Tools Java Help
```



```
import java.io.*;
```

import java.io.*;
import java.util.*;
import java.util.*;
import org.chocosolver.solver.Model;
import org.chocosolver.solver.Model;
import org.chocosolver.solver.Solver;
import org.chocosolver.solver.Solver;
import org.chocosolver.solver.variables.IntVar;
import org.chocosolver.solver.variables.IntVar;
import org.chocosolver.solver.constraints.IIntConstraintFactory.*;
import org.chocosolver.solver.constraints.IIntConstraintFactory.*;
public class NQueens0 {
public class NQueens0 {
public static void main(String[] args) {

```
    public static void main(String[] args) {
```

```
int n = Integer.parseInt(args[0]);
```

int n = Integer.parseInt(args[0]);
Model model = new Model("nqueens");
Model model = new Model("nqueens");
Solver solver = model.getSolver();
Solver solver = model.getSolver();
IntVar[] q = model.intVarArray("queen",n,0,n-1);
IntVar[] q = model.intVarArray("queen",n,0,n-1);
//
//
// columns constraint
// columns constraint
//
//
for (int i=0;i<n-1;i++)
for (int i=0;i<n-1;i++)
for (int j=i+1;j<n;j++)
for (int j=i+1;j<n;j++)
model.arithm(q[i],"!=",q[j]) . post();
model.arithm(q[i],"!=",q[j]) . post();
//
//
// diagonal constraint
// diagonal constraint
//
//
for (int i=0;i<n-1;i++)
for (int i=0;i<n-1;i++)
for (int j=i+1;j<n;j++)
for (int j=i+1;j<n;j++)
model.distance(q[i],q[j],"!=",Math.abs(i-j)).post ();
model.distance(q[i],q[j],"!=",Math.abs(i-j)).post ();
boolean solved = solver.solve();
boolean solved = solver.solve();
if (solved) {

```
if (solved) {
```

NQueens0

```
1mport Java.10.*;
import java.util.*;
import org.chocosolver.solver.Model:
import org.chocosolver.solver.Solver;
import org.chocosolver.solver.variables.Intvar:
import org.chocosolver.solver.constraints.IIntConstraintFactory.*;
```

```
int n = Integer.parseInt(args[0]);
Model model = new Model("nqueens");
Solver solver = model.getSolver();
IntVar[] q = model.intVarArray("queen",n,0,n-1);
```

```
//
// columns constraint
//
for (int i=0;i<n-1;i++)
    for (int j=i+1;j<n;j++)
        model.arithm(q[i],"!=",q[j]).post();
```

```
//
// diagonal constraint
//
for (int i=0;i<n-1;i++)
    for (int j=i+l;j<n;j++)
        model.distance(q[i],q[j],"!=",Math.abs(i-j)) .post();
```

solver.setSearch (Search.inputorderLBSearch(q)); // simplest boolean solved $=$ solver.solve();

```
if (solved) {
    for (int i=0;i<n;i++) {
        for (int j=0;j<q[i].getValue();j++) System.out.print(".");
        System.out.print("Q");
        for (int j=q[i].getValue();j<n;j++) System.out.print(".");
        System.out.println():
    }
}
System.out.println(solver.getMeasures());
```


Q.
Q
Q.
.Q.
Q.
-
Q.
Q.
Q.
Q.
Q.
Q
Q
Q.
Q.

- Complete search - i solution found.
Mode1[nqueens]
Solutions: 1
Building time : 0.057s
Resolution time : 0.881 s
Nodes: $37,331(42,351.6 \mathrm{n} / \mathrm{s})$
Backtracks: 74,624
Fails: 37,320
Restarts: 0
PS C:\cpM\choco4\nqueens>

NQueens1

solver. setSearch (Search.minDomLBSearch(q)); // fail-first boolean solved = solver. solve();


```
int solutions = 0;
while (solver.solve()) solutions++;
```

System.out.println("solutions: "+ solutions);
System.out.println(solver.getMeasures ());
PS C: \CPM\choco4 \nqueens> java NQueens3 8
solutions: 92

- Complete search - 92 solution(s) found.
Mode1[nqueens]
Solutions: 92
Building time : 0.057 s
Resolution time : 0.089s
Nodes: 455 ($5,096.8 \mathrm{n} / \mathrm{s}$)
Backtracks: 727
Fails: 272
Restarts: 0
PS C: \cpM\choco4\nqueens> java NQueens3 12
solutions: 14200
- Complete search - 14,200 solution(s) found.
Mode1 [nqueens]
Solutions: 14,200
Building time : 0.058s
Resolution time : 2.017 s
Nodes: 116,973 ($58,003.8 \mathrm{n} / \mathrm{s}$)
Backtracks: 205,547
Fails: 88,574
Restarts: 0
PS C: \cpM\choco4\nqueens> t

Version 3.2 (2-core)			
N	N -Queens So Total	ions Unique	$\begin{aligned} & \text { days thime } \mathrm{mm} \text { :ss. } \end{aligned}$
5	10	2	0.00
6	4	1	0.00
7:	40	6	0.00
8	92	12	0.00
9	352	46	0.00
10	724	92	0.00
11	2680	341	0.00
12	14200	1787	0.00
13	73712	9233	0.02
14	365596	45752	0.05
15	2279184	285053	0.22
16	14772512	1846955	1. 47
17:	95815104	11977939	9. 42
18	666090624	83263591	1:11. 21
19	4968057848	621012754	8:32. 54
20	39029188884	4878666808	1:10:55. 48
21	314666222712	39333324973	9:24:40. 50
AMD Athlon(tm) Dual Core Processor 5050e 2. 60 GHz Microsoft Visual C++ 2008 Express Edition with SP1			

//
// columns constraint ... allDiff!
//
model.allDifferent (q) .post () :
//
// columns constraint ... allDiff!
//
model.allDifferent (q) .post () :

Could we have a different representation?

Could we solve it a different way (other than systematic search)?

Does the problem get harder or easier as it gets larger?

What happens if we start with some queens already on the board?

Harder questions

Could we view nqueens differently, maybe as a permutation problem?


```
stop
```

