number partitioning

Given a bag of numbers, can you partition this
into 2 bags such that the sum of the integers
in each bag is equal?

Recently featured in the Crystal Maze!
(Thanks Zoel)

Try itl

B np10 - WordPad

File Edit “iew Insert Format Help

DEeE & #H

10

s

Wwon @ -] 00 Lon

4532187359

Try that!

= npb - Notepad

File Edit Formak View Help

S/ The instance in Gent & walsh

L

Try that?

I~ | POF [N
&M

My Computer BlueBadage7;jus

< 5B

My Metwork SMr_Prosser_...

Places

g »

Recycle Bin_ Agenda_Fal...

-

g
DeptVPH

bridges

¥
AR
o
Shortcutito
XBIREM

POF A

SmallBoatGr.,

h

arksutra

POF | !\

Moxon_Ride...

0

» Start

<R
o £

OCANWSNOANFENNANOWANNOHANOOIWNHOANAWONRWVMAODRNAWHNE

B np40 - ... E|@

File Edit Format

L ECT o EUND

& num...

View

B micr...

LJ

ema...

c:\ SCOM. .

/7 Korf ...

C np40...

= .
* v~ -
&
'5, A
> 3 3

R LI KO T m 10:34

Given a bag of numbers, can you partition this
into 2 bags such that the sum of the integers
d in each bag is equal?

Garey & Johnson "Computers and Intractability”

[SP12] PARTITION
INSTANCE: Finite set A and a size s(a) € Z* for eacha € A
QUESTION: Is there a subset A" A such that X _4 s(a) =>,.4.4 S(a)

FARTITON

"W

f ol s e

How complex?

Who cares?

Imagine you have 2 machines on the shop floor
You have n activities, of varying durations
Place the activities on the machines to minimise makespan

Why just 2-partition?
Why not m-way partitioning?
Is there an optimisation problem?

A choco4 model

[Q{ Zhpublic_htmPcphMchocodinumPart\Decision java - Notepad++ -

File Edit

Search View Encoding Language

Settings Tools Macre Run Plugins Window 7

cHHEERA| i Dol ax|EBE

=1 ERELDE ® | ® D B |

(o O R I O O (Y S P % T

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

|=] Decision java 3 |

=]

=]

/i

// Given an instance, is there a partion +/- 1ﬂ

s

import
import
import
import
import
import

public

Jjava.lo.*;
Java.util.*;

org.chocosolver.
org.chocosolver.
org.chocosolver.
org.chocosolver.

class Decision

solver . .Model ;

solver.Solver;
solver.variables.IntVar;
solver.search.strategy.Search;

{

public static woid main{String[] args) throws IOExcepticon {

}

Scanner sc =
int n =
Model model =
Solver solver =
IntVar[] D =
int[] w =
int total =

new Scanner (new File(args[0]1)):

sc.nextInt({); // number of numbers

new Model {"number partitioning™});

model . .getSolver () ;

model.intVarArray("D",n,0,1); // decision ... left or right-?
new int[n]; // weights

0; // sum of weights

for (int i=0;i<n;i++){
w[i] = sc.nextInt();

total = total
}

sc.close () ;

+ wl[il;

model.scalar(D,w,"=",total/Z) .post () ;

//solver.limitTi

me (10000); // how? that's how

solver.setSearch(Search.minDomUBSearch({D)); // take 1 then 0

boolean solved = scolver.solwvel() ;
System.out.print (scolved) ;
System.out.println(” nodes: "+ solver.getMeasures() .getNodeCount());

Java source file

length: 1,210 lines: 38 Ln:2 Col:48 Sel: 0|0 Windows (CRLF) UTF-2

IN5

(o Z:\public_htmlcpMi\chocod\numPart\data\np6 -... — O X
File Edit Search View Encoding Language Settings Tools Macro
Run Plugins Window 7 X
o = 2 3 & [B

B Decision java anEJl

1 &

2 25

3 17

4 10

= 8

= 7

7 4

5 S/

% // The instance in Gent & Walsh

10 J//

Ln:10 Col:3 Sel:0|0 Windows (CRLF) UTF-8 INS

@ nauru.des.gla.ac.uk - PuTTY

_— - - -

Scanner sc
int n

Model model
Solwver solver
IntVar[] D

sc.nextInt () ;

model .getSolver () ;

int[] w = new int[n]; // weights
int total = 0; // sum of weights
for (int i=0;i<n;i++){

w[i] = sc.nextInt{():

total = total + wl[i];

}

sc.close() ;

new Scanner (new File (args[(]));
// number of numbers
new Model ("number partiticoning”) ;

model .intVarArray("D" ,n,0, 1) ;

// declision left or right?

[Z:\public_htmlcpM\chocod\numPart\data\np6 -... — O x
File Edit Search View Encoding Language Settings Toels Macro
Run Plugins Window 7 X

cHEHER LA /I Mkoe|mipl x|
B Decision java 3 Enpﬁ[ﬂl

&
25
17
10
g8
7
4
/S
/Y
/Y

L T T I T [T S O L Y e

The instance in Gent & Walsh

ot
!

Ln:10 Col:3 Sel:0|0 Windows (CRLF) UTF-8 INS

model .scalar(D,w,"=",total/2) .post () ;
//solver.limitTime (10000); // how? that's how
solver.setSearch (Search.minDomUBSearch(D)); // take 1 then 0

boolean solved = solver.solvel() ;
System.out.print (solwved) ;
System.out.println(” nodes: "+ solver.getMeasures() .getNodeCount()) ;

Is there a better way to do numPart?

A http:/hwww. blackwell-synergy.com/doi/pdf/10.1111/0824-7935.00069?cookieSet=1 - Microsoft Internet Explorer |- E|

3

File Edit Miew Favorites Tools Help |".

: a — I RN c
eﬁack . > |ﬂ @ -.'_lj /._JSearch E:ﬁ Favarites Q‘B ;.ﬁ.ddress |@h| htkpf v, blackwell-synergy . com/doifpdf 10,111 1/0824-7335, 000697 cookieSet=1 v|G|:.

-

AS 2ao-#SBOEE 4P 4« | @OEE . T- S ~-& OONE G:-||M

Computational Intellicence, Volume 14, Number 3, 19938

ANALYSIS OF HEURISTICS FOR NUMBER PARTITIONING
[AN P. GENT AND TOBY WALSH

Department of Computer Science, University of Strathclyde, Glasgow

[Thumhnails\& Bookmarks

We illustrate the use of phase transition behavior in the study of heuristics. Using an “annealed™ theory, we
define a parameter that measures the “constrainedness™ of an ensemble of number partitioning problems. We identify
a phase transition at a critical value of constrainedness. We then show that constrainedness can be used to analyze
and compare algorithms and heuristics for number partitioning in a precise and quantitative manner. For example,
we demonstrate that on uniform random problems both the Karmarkar—Karp and greedy heuristics minimize the
constrainedness, but that the decisions made by the Karmarkar—Karp heuristic are superior at reducing constrained-
ness. This supports the better performance observed experimentally for the Karmarkar-Karp heuristic. Our results
refute a conjecture of Fu that phase transition behavior does not occur in number partitioning. Additionally, they
demonstrate that phase transition behavior is useful for more than just simple benchmarking. It can, for instance,
b used to analvze heuristics, and to compare the quality of heuristic solutions.

Kev words: heuristics, number partitioning, phase transitions.

1. INTRODUCTION

Where are the hard computational problems? Many instances of NP-complete problems

are surprisingly easy to solve. One place to find hard instances is at a phase transition -
b] M4 4 Tof22 » M EFIx963In [O = HA

&] Done & Internet

@ numPart

= =)X]

A http:/iwww. blackwell-synergy.com/doi/pdf/10.1111/0824-7935.00069?cookieSet=1 - Microsoft Internet Explorer
.'!*r

. File Edt View Favortes Tools Help

@Back - _/l |ﬂ @ _;j /:__\J Search ‘*E::(Favorites @

x>

. Address |@ htkp:) e blackwell-synergy . com/daifpdf/ 10,111 1/0824-7935, 000697 cookieSet=1 V| G0

A& k- #hd& BOR M4 b b €% OEERCR-B 2o -@ O0OHE 5 R
i‘
lé 432 COMPUTATIONAL INTELLIGENCE
A 3. HEURISTICS FOR NUMBER PARTITIONING -
E A variety of heuristics have been proposed for number partitioning. The greedy heuristic,
F| for instance, simply places the largest remaining number into the bag with the smaller sum
(Korf 1995). Consider partitioning the bag {25, 17, 10, 8, 7, 4} using the greedy heuristic:
Numbers remaining Partial partition A
{25.17.10.8,7. 4} - -
{17.10.8.7, 4} {251} 25
{10.8,7, 4 {25117} 8
8. 7.4} 125117, 10} 2
7.4} {25, 8}{17. 10} 6
4} {25, 81{17. 10,7} 1
- {25, 8.4}{17.10,7} 3
The partition constructed by the greedy heuristic thus has a partition difference, A of 3.
The set differencing method of Karmarkar and Karp (1982) replaces two numbers by
their difference. This commits the two numbers to opposite bags without deciding into which
bag each number goes. For example, consider again partitioning the bag {25, 17, 10, 8, 7. 4}
into two separate bags. If we put 25 in the first bag and 17 in the second bag, then this is .
] W 4| Gof2z > M EBEIxgeim | O = M | . ﬁ' . - JJ
B Internet

@ Dane

@ numPart

/= Korf - Windows Internet Explorer

@,_; - |ﬁ, itk f v, aaai, orgfocs findes, phpf TICAL TICAI-09) papet view /625 705 *4| # | |number partitioning korf | B2
w dr ﬁv B g-gvlj’PaQEvifjjTDnISv@lvﬂ-ﬁ

SHa € eFzic ®®[mw-]

I L L

. branch the correspundmg number is assigned to one of the
Lé k subsets. The second pruning rule above is replaced by the
following, Lett be the sum of all the mumbers, s the current
largest subset sum, and d the difference of the best complete
partition found so far. If s —]‘::—‘{ > d. terminate this branch.
The reason is that the best we could do would be to perfectly
equalize the remaining & — 1 subsets, and if this would result
in a partition no better than the best so far, there is no reason
to continue searching that path. Ateach branch, we place the
next number in the subsets in increasing order of their sums,

POF [

e T T T T T Tt Tt T et

2.3 Karmarkar-Karp Heuristic (KK)

A heuristic much better than greedy was called set differenc-
ing by its authors [Karmarkar and Karp, 1982], but is usu-
ally referred to as the KK heuristic. It places the two largest
numbers in different subsets, without determining which sub-
set each goes into. This is equivalent to replacing the two
numbers with their difference. For example, placing 8 in sub-
set A and 7 in subset B is equivalent to placing their differ-
ence of 1 in subset A, since we can always subtract the same
amount from both sets without affecting the solution. Swap-
ping their positions is equivalent to placing the 1 in subset B.
The KK heuristic repeatedly replaces the two largest numbers
with their difference, inserting the new number in the sorted
order, until there iz only one number left, which is the final
partition difference. In our example, this results in the series
of sets (8.,7.6,54), (6,54.1), (4,1,1), (3.1}, (2). Some addi-
tional bookkeeping is required to extract the actual partition,
which in this case is (7.5.4) and (8.6), with a partition dif-
ference of 16-14=2. The solution quality of this heuristic is
the last emaining number, which is nuch smaller than the
smallest original number, due to the repeated differencing.

2.4 Complefe Karmarkar-Karp Algorithm (CRK)

We extended the KK heuristic to the complete Karmarkar-
Karp algorithm (CEX) [Karf, 1998]. While the KK heuristic
ablways places the two largest numbers in different subsets,
the only other option is to assign them to the same subset.
This is done by replacing the two largest numbers by their
sum. CKK searches a binary tree where at each node the left
branch replaces the two largest numbers by their difference,
and the right branch replaces them by their sum. By searching

@ numPart

O T S —

deu::reamng order of their]argest SU. lmua]ljr,eax:h number is
in a separate triple, with zero for the remaining numbers. For
example, the initial state of a three-way KK partition of the set
(4.5.6,7.8) would be ((8,0.00.07.0,00,06,0,00,(5.0,0)(4,0,00).
At each step of the KK heuristic, if (a, b, ¢) and (., y,z) are
the triples with the largest numbers, they are replaced with
(a+ 2,6+ y. c+x), which is then normalized by subtract-
ing the smallest element of the triple from each element. This
combination is chosen to minimize the largest values. In our
example. this results in the set ((8,7.00(6,0,00(5.0,00(4,0,0)).
Combining the next two largest triples results in the set,
((8,7.605,0,004,0,00), which after normalization is repre-
sented by ((5,0,00.(4,0,00,(2,1.00). Combining the next two
results in ((5,4,00,02,1,00), and combing the last two produces
(5,5,2) or(3,3,0) after normalizing, for a final partition differ-
ence of 3, corresponding to the partition (), (7.4), and (6,5),
which happens to be optimal in this case.

For the complete CKK algorithm, at each node we com-
bine the two triples with the largest sums in every possible
weay rather than just one way, branching on each combination.
For three-way partitioning, there are six ways to combine two
triples, corresponding to different permutations of three ele-
ments, and for k-way partitioning. there are k! branches at
each node. For example, given the triples (a.b.c) and (x.yz).
their different possible combinations are (a+x,b+w, 0+ 2],
[a+z btz e+u).(a+y, btz e+2) (a+y b+z,e41),
(a+z,b+z, c+y). and (a+ 2, b4y, c+x). Since the small-
est sum of each k-4uple is always zero after normalization, we
only maintain mwples of & — 1 sums for k-way partitioning.

2.5 Psendo-Polynomial-Time Algorithms

Technically, number partitioning is not stongly NP-
complete, but can be solved in pseudﬂ -polynomial-time by
dynamic programming, This requires memory that is propor-
tional to nfk — 1) - -m*=1 for k-way partitioning of n num-
bers with a maximum value of m. As a result, these algo-
rithms are not practical for multi-way partitioning. For ex-
ample, three-way partitioning of 40 7-digit integers requires
a petabyte (10'%) of storage.

2.6 Previous State-Of-The-Art
For two-way partitioning, CKK is the algorithm of choice.
It is slightly faster than CGA without perfect partitions, and

>

International Joint
Conference on
Artificial
Intelligence
Twenty-First
International Joint
Conference on
Artificial
Intelligence

PR.ESENTATIONS

EReading Tools

Abstract

Review policy

About the author

How to cite item
Indexing metadata
Print wversion

Motify colleague®
Email the author® Add
commentT

SEARCH COMNFERENCE

£

&

.. and now for something completely different!!!

Assume for sake of argument, we have 3 digit humbers

Will it be easier to partition a bag of 100 numbers or a bag of 10 numbers?

Will we always be able to partition a bag of numbers?

Random Data

la Z:\public_htmP\cpM\chocod\numPart\RandomGen1.java - Notepad++ — O >
File Edit Search View Encoding Language Settings Tools Macre Run Plugins Window 7 X
cHHEERLE&| Mk oe/y x%|EBE(ST EEAa® @OENBE|

B Decision java ﬂl B et 2 = RandomGen1java E9 |

1 import java.util.Random; A
2
3 [Hpublic class RandomGenl {
=
5 B public static void main(String[] args) {
6 int n = Integer.parseInt{args[0]); // number of numbers
7 int d = Integer.parselnt(args[.]1); // number of digits
8 long = = Uy
= FEandom gen = new ERandom() ;
10
11 System.out.println(n) ;
12 H for (int i=0;i<n;i++){
13 x = U;
14 for (int Jj=0;j<d;j++) = = x * 10 + gen.nextInt(l0);
15 System.out.println(x + " ");
16 e }
17 - }
18 }
19 = v

Java source length: 447 lines: 19 Ln:1 Col:1 Sel:0|0 Windows (CRLF) UTF-2 INS

Random Data

simeulue. dcs.gla.ac. uk - PuTTY

W

&

Answer these questions

1. As we increase n does the problem get easier?
2. As we increase n do more or less instances have partitions?
3. Aswe increase d do problems get easier or harder?

Experiment

Experiment 1: d = 3, vary n from 9 to 26 in single steps, sample size 10
Experiment 2: d = 3, vary n from 100 to 500 in steps of 100, sample size 10
Experiment 3: d = 6, vary n from 15 to 26 in single steps, sample size 10

Experiment 4: d = 6, vary n from 100 to 500 in steps of 100, sample size 10

Experiment 5: d = 7, n = 100, sample size 10

Observe % solubility and search effort

