Allocating employees to cost
centres

A case study



« We are given a number of employees (n)
* where each employee has a name and a salary
« We are given a number of cost centres (m)
« where each cost centre has a budget
* all cost centres have the same budget
 Allocate the employees to cost centres, where
* the sum of salaries in a cost centre is within budget




import java.util.*;
public class Person implements Comparable<Person> {

String name;
int salary;

public Person(String name,int salary){
this.name = name;
this.salary = salary;

¥

public int compareTo(Person p){
return p.salary - salary;

¥

public String toString(){
return "

"+ name +","+ salary +")";

¥
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public class Person implements Comf&zu 7w

String name;
int salary;

public Person(String name,int
this.name = name;
this.salary = salary;

¥

public int compareTo(Person p)
return p.salary - salary;

¥

public String toString(){
return "("+ name +","+ sal

¥

1 Robyn 97
2 Verconica 99
3 Seth 72

Cameron 43

> Constance 94
6 Jenny 25
/ Katharine 94
8 Sheryl 83
9 Tim 75
10 Edwin 26

Hilda 48

2 Ronnie 85
13 Marsha 39

4 Alvin 45
15 Michael 77
5> Nicole 83
17 Caroline 30
8 Stanley 40
19 Julie 98
20 Ernest 72

Kristine 77

2 Kristina 43
23 William 45

Maureen 39

25 Rachel 40
26 Gene 39

2/ Oscar 28
28 Ethel 24
29 Stacey 54

30
31

S/

Tom 32
Annette 46
Derek 94

Normal text file




public class Allocate {

Person person[];

int salary[];

Model model;

Solver solver;

IntVar inCentre[][];
IntVar centreSalary[];
int budget;

int n;

int m;

String id;

//
//
/7
/7
/7
//
//
/7
/7
/7

the employees to be allocated to cost centres

salary[i] of ith person

the model

the solver object

inCentre[i][j] = 1 iff jth person works in ith cost centre
centreSalaries[i] is sum of the salaries in the ith cost centre
the budget for each cost centre

number of employees

number of cost centres

an identification for the problem




public Allocate(String fname,int numberOfPeople,int numberOfCostCentres,int budget) throws Exception {
n numberOfPeople;
m numberOfCostCentres;
this.budget budget;
id fname;

person new Person[n];

salary new int[n];

model new Model(id);

solver model.getSolver();

inCentre model.intVarMatrix("inCentre”,m,n,0,1);
centreSalary = model.intVarArray("centre salaries”,m,9,budget);




Scanner sc = new Scanner(new File(fname));

for (int i=0;i<n;i++) person[i]
sc.close();
for (int i=0;i<n;i++) salary[i]

new Person(sc.next(),sc.nextInt());

person[i].salary;




for (int i=@;i<m;i++)
model.scalar(inCentre[i],salary,

=", centreSalary[i]).post();
//

// constrain centreSalary[i] to be the scalar product of inCentre[i] and salary[i]

//

for (int i=0;i<n;i++)
model.sum(ArrayUtils.getColumn(inCentre,i),"=",1).post();
//
// constrain a person such that he/she can only be in one cost centre at a time!
// i.e. the sum of a column of the array inCentre must be equal to 1,
// such that a person is in exactly one cost centre

//




public static void main(String[] args) throws FileNotFoundException, IOException, Exception {
if (args.length == 9){
System.out.println("java Allocate fname budget #employees #centres"”);

return;
}
String fname = args[0];
int budget = Integer.parselnt(args[1]);

int numberOfEmployees = Integer.parselnt(args[2]);
int numberOfCentres Integer.parselnt(args[3]);

Allocate alloc = new Allocate(fname,numberOfEmployees,numberOfCentres,budget);
boolean solved = alloc.solve();

System.out.println(solved);

if (solved) System.out.println(alloc);

System.out.println("nodes: " + alloc.solver.getMeasures().getNodeCount() +

cpu: + alloc.solver.getMeasures().getTimeCount());




Command Prompt

C:\cpM\choco4\teamsWithBudgets>java Allocate
java Allocate fname budget #employees #centres

C:\cpM\choco4\teamsWithBudgets>java Allocate ©.txt 150 10 10
true

0.txt #employees: 10 #centres: 10 budget: 150
centre[0] © 0 1 © 0 0 97

centre[1] 26

centre[2] 126

centre[3] (%]

centre[4] 97

centre[5] 75

centre[6] (9]

centre[7] 94

centre[8] 99

94
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(Seth,72) (Jenny,25)
(Edwin,26) ... cost: 26
(Cameron,43) (Sheryl,83)

. cost: ©
(Robyn,97) ... cost: 97
(Tim,75) ... cost: 75

. cost: ©
(Katharine,94) ... cost: 94
(Veronica,99) ... cost: 99
(Constance,94) ... cost: 94

cpu: 0.038137063

C:\cpM\choco4\teamsWithBudgets>_



Command Prompt

C:\cpM\choco4\teamsWithBudgets>java Allocate ©.txt 150 10 7
true

0.txt #employees: #centres: 7 budget: 150

centre[0] ©0 © © @0 0 0 119

centre[1] 118

centre[2] 99

centre[3] 72

centre[4] 120

centre[5] 97

centre[6] 83

centre-0: (Jenny,25) (Katharine,94) ... cost: 119
centre-1: (Cameron,43) (Tim,75) ... cost: 118
centre-2: (Veronica,99) ... cost: 99

centre-3: (Seth,72) ... cost: 72

centre-4: (Constance,94) (Edwin,26) ... cost: 120
centre-5: (Robyn,97) ... cost: 97

centre-6: (Sheryl,83) ... cost: 83

nodes: 50 cpu: 0.02624389

C:\cpM\chocod4\teamsWithBudgets>_




Command Prompt

C:\cpM\choco4\teamsWithBudgets>java Allocate ©.txt 150 10 6
true

0.txt #employees: #centres: 6 budget: 150

centre[0] ©0 © © 0 0 0 137

centre[1] © 124
centre[2] © 109
centre[3] © 147
centre[4] © 94

centre[5] 1 97

centre-0: (Cameron,43) (Katharine,94) ... cost: 137
centre-1: (Veronica,99) (Jenny,25) ... cost: 124
centre-2: (Sheryl,83) (Edwin,26) ... cost: 109
centre-3: (Seth,72) (Tim,75) ... cost: 147
centre-4: (Constance,94) ... cost: 94

centre-5: (Robyn,97) ... cost: 97

nodes: 53 Cpu: ©.030337468

C:\cpM\choco4\teamsWithBudgets>_




Command Prompt

C:\cpM\chocod4\teamsWithBudgets>java Allocate 0.txt 150 10 5
false
nodes: 769 cpu: ©0.14290735

C:\cpM\choco4\teamsWithBudgets>_




Command Prompt

C:\cpM\choco4\teamsWithBudgets>java Allocate @.txt 150 20 12
true

0.txt #Hemployees:
centre[@] © 0 ©
centre[1]
centre[2]
centre[3]
centre[4]
centre[5]
centre[6]
centre[7]
centre[8]
centre[9]
centre[10] © © ©
centre[11] © 0 ©
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centre-0: (Alvin,45) (Ernest,72)

centre-1: (Sheryl,83) ... cost: 83

centre-2: (Julie,98) ... cost: 98

centre-3: (Katharine,94) (Hilda,48) ... cost: 142
centre-4: (Veronica,99) (Cameron,43) ... cost: 142
centre-5: (Constance,94) (Caroline,30) ... cost: 124
centre-6: (Edwin,26) (Nicole,83) ... cost: 109
centre-7: (Michael,77) (Stanley,40) ... cost: 117
centre-8: (Robyn,97) ... cost: 97

centre-9: (Seth,72) (Tim,75) ... cost: 147
centre-10: (Marsha,39) ... cost: 39

centre-11: (Jenny,25) (Ronnie,85) ... cost: 110

nodes: 199 cpu: 0.04195229

C:\cpM\chocod4\teamsWithBudgets>




Command Prompt

C:\cpM\chocod4\teamsWithBudgets>java Allocate ©.txt 150 20 10
true

0.txt #Hemployees: 2
centre[@] © 0 ©
centre[1]
centre[2]
centre[3]
centre[4]
centre[5]
centre[6]
centre[7]
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(Michael,77) (Ernest,72) ... cost:

OO RFRPR OO
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(Jenny,25) (Sheryl,83) (Stanley,40) ... cost: 148
(Edwin,26) (Marsha,39) (Nicole,83) ... cost: 148
(Constance,94) ... cost: 94

(Seth,72) (Tim,75) ... cost: 147

(Katharine,94) ... cost: 94

(Robyn,97) (Alvin,45) ... cost: 142

(Veronica,99) (Cameron,43) ... cost: 142
(Caroline,30) (Julie,98) ... cost: 128

(Hilda,48) (Ronnie,85) ... cost: 133

Cpu: 0.08598319

C:\cpM\choco4d\teamsWithBudgets>




Command Prompt

C:\cpM\choco4\teamsWithBudgets>java Allocate 0.txt 150 20 9
false
nodes: 9301860 cpu: 63.349964

C:\cpM\chocod4\teamsWithBudgets>




variable & value ordering



What are decision variables and what order are values picked?



// solve using value ordering over decision variables

boolean solve(){
//solver.setSearch(Search.minDomLBSearch(ArrayUtils.flatten(inCentre)));
//solver.setSeaPch(SeaPch.minDomUBSeaPch(AkrayUtils.flatten(inCentPe)));
return solver.solve();




This is a classic problem ...
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From Wikipedia, the free encyclopedia
Main page In the bin packing problem, objects of different volumes must be packed into a finite number of bins or Covering/packing-problem pairs
Contents containers each of volume V in a way that minimizes the number of bins used. In computational complexity theory, covert ol Packi o

overing problems acking problems

fieattired content it is a combinatorial NP-hard problem.['] The decision problem (deciding if objects will it into a specified number of gE UL
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bins) is NP-complete.[2] . i i
Random article Minimum vertex cover Maximum matching
Donate to Wikipedia There are many variations of this problem, such as 2D packing, linear packing, packing by weight, packing by Minimum edge cover Maximum independent set
Wikipedia store cost, and so on. They have many applications, such as filling up containers, loading trucks with weight capacity VT E
ierantion constraints, creating file backups in media and technology mapping in Field-programmable gate array
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Help
About Wikipedia The bin packing problem can also be seen as a special case of the cutting stock problem. When the number of bins is restricted to 1 and each item is characterised
Community portal by both a volume and a value, the problem of maximising the value of items that can fit in the bin is known as the knapsack problem.

Recent changes
- Despite the fact that the bin packing problem has an NP-hard computational complexity, optimal solutions to very large instances of the problem can be produced

Contact page
with sophisticated algorithms. In addition, many heuristics have been developed: for example, the first fit algorithm provides a fast but often non-optimal solution,

Tools involving placing each item into the first bin in which it will fit. It requires ©(n log n) time, where n is the number of elements to be packed. The algorithm can be made
What links here much more effective by first sorting the list of elements into decreasing order (sometimes known as the first-fit decreasing algorithm), although this still does not
Related changes guarantee an optimal solution, and for longer lists may increase the running time of the algorithm. It is known, however, that there always exists at least one ordering

Upjoadiie of items that allows first-fit to produce an optimal solution.®] V




[SR1] BIN PACKING

INSTANCE: Finite set U of items, a size s(u) in Z* for eachuin U, a
positive integer bin capacity B, and a positive integer K.

QUESTION: Is there a partition of U into disjoint sets Uy, U,, ..., U,
such that the sum of the sizes of the items in each U, is B or less?

Garey & Johnson
"Computers and Intractability: A guide to the theory of NP-Completeness”



[SR1] BIN PACKING

INSTANCE: Finite set U of items, a size s(u) in Z* for eachuin U, a
positive integer bin capacity B, and a positive integer K.

QUESTION: Is there a partition of U into disjoint sets Uy, U,, ..., U,
such that the sum of the sizes of the items in each U, is B or less?

Garey & Johnson
"Computers and Intractability: A guide to the theory of NP-Completeness”



Is there a heuristic we might use?



Bin Packing
First fit decreasing algorithm

A B C D E F

With the first fit decreasing algorithm we sort the blocks into
descending order first.




Bin Packing
First fit decreasing algorithm

A B C D E F

Now we use the first fit algorithm
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Bin Packing
First fit decreasing algorithm

A B C D E F

Now we use the first fit algorithm
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Bin Packing
It decreasing algorithm

A B C D E F

Now we use the first fit algorithm
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Bin Packing
H+ f  creasing algorithm

A B C D E F

Now we use the first fit algorithm I




Bin Packing
F.ficﬁsing algorithm
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A B C D E F

Now we use the first fit algorithm




Bin Packing
F.ficﬁsing algorithm
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A B C D E F

Now we use the first fit algorithm
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Bin Packing
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Now we use the first fit algorithm
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Bin Packing
F'ifit decreasing algorithm
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A B C D E F

Now we use the first fit algorithm




Bin Packing
== algorithm

A B C D E F

Now we use the first fit algorithm




Bin Packing
First fit decreasing algorithm

1
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A B C D E F

We have packed them into 5 bins.
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Scanner sc = new Scanner(new File(fname));
for (int i=0;i<n;i++) person[i] = new Person(sc.next(),sc.nextInt());
sc.close();

// EDIT
// %Prays.sort(person);

//
// first fit decreasing

//

for (int i=0;i<n;i++) salary[i] = person[i].salary;




Try 1s* fit decreasing (see Person)



Slow proving optimality

Don't have a test that sum of numbers over capacity
is less than or equal to the number of bins available!




Symmetries?

Are there any symmetries that are slowing down search?

Can we remove those symmetries?

What are the symmetries in this problem?



// EDIT

//for (int i=@;i<m-1;i++)

// model.arithm(centreSalary[i],">=",centreSalary[i+1]).post();
//

// symmetry breaking consistent with first fit decreasing

// costliest cost centres have low index

//

// EDIT

//for (int centre=0;centre<m-1;centre++)

// model.lexlLessEq(inCentre[centre+l],inCentre[centre]).post();
//

// symmetry breaking such that inCentre[i] lex>= inCentre[i+1]

//




Is there another model?
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See AllocateBP

€9 emacs@BYRON - O X
File Edit Options Buffers Tools Java Help

OBExB 9 ¥BB

String id: Jf an identification for the problem

public AllocateBP (String fname, int number0fPeople,int number0fCostCentres,int budget) throws Exception {

n = numberOfPeople;

m = nmumber0fCostCentres;

this.budget = budget:;

id = fname;

person = new Person[n]:

salary = new int[n]:

model = new Model (id):

solver = model.getSolver():

employee = model.,.intVarArray("emnplovyvee”,n, 0, m-1) ;
costlCentre = model.,.intVarArray("cost centre",m, 0,budget):;
Scanner sc = newW Scanner (new File (fname)):

for (int i=0;i<n;i++) person[i] = new Person(sc.next(),sc.nextInt()):

sc.close ()
for (imt i=0;i<n;i++) salary[i] = person[i] .salary:

model .binPacking (employee, salary, costCentre, Q) .post () ;

solve using value ordering over decision variables
boolean solve () {
sulver.setﬂearch:Search.minDumUBSeaIch:empluyee}};I
return solver.solvel():
}
-%———  AllocateBP.Jjava 30% L47 (Java/l Lbbrev)

K



So?

What have we learned?

oc oA WS

Identify the decision variables

What is value ordering doing to the search?

Can we use any heuristics?

Are there symmetries that we can break?

Are there any simple/redundant tests/constraints overlooked?
Is there an alternative model?




« How would we modify our model to address
« Two people must be in same cost centre
« Two people must not be in same cost centre
« Cost centres have a limit on
« Sum of salaries and ...
« Number of employees in cost centre




end



