Allocating employees to cost
centres

A case study

« We are given a number of employees (n)
* where each employee has a name and a salary
« We are given a number of cost centres (m)
« where each cost centre has a budget
* all cost centres have the same budget
 Allocate the employees to cost centres, where
* the sum of salaries in a cost centre is within budget

import java.util.*;
public class Person implements Comparable<Person> {

String name;
int salary;

public Person(String name,int salary){
this.name = name;
this.salary = salary;

¥

public int compareTo(Person p){
return p.salary - salary;

¥

public String toString(){
return "

"+ name +","+ salary +")";

¥

- - — I+ C\epM\chocod\teamsWithBud
lmpor-.-t]a\fa.utll.*_; L[cpM\chocod\teamsWithBu

File Edit Search View Encoding
+] l =] Gl-lEM
=] 0.txt ﬂ‘

public class Person implements Comf&zu 7w

String name;
int salary;

public Person(String name,int
this.name = name;
this.salary = salary;

¥

public int compareTo(Person p)
return p.salary - salary;

¥

public String toString(){
return "("+ name +","+ sal

¥

1 Robyn 97
2 Verconica 99
3 Seth 72

Cameron 43

> Constance 94
6 Jenny 25
/ Katharine 94
8 Sheryl 83
9 Tim 75
10 Edwin 26

Hilda 48

2 Ronnie 85
13 Marsha 39

4 Alvin 45
15 Michael 77
5> Nicole 83
17 Caroline 30
8 Stanley 40
19 Julie 98
20 Ernest 72

Kristine 77

2 Kristina 43
23 William 45

Maureen 39

25 Rachel 40
26 Gene 39

2/ Oscar 28
28 Ethel 24
29 Stacey 54

30
31

S/

Tom 32
Annette 46
Derek 94

Normal text file

public class Allocate {

Person person[];

int salary[];

Model model;

Solver solver;

IntVar inCentre[][];
IntVar centreSalary[];
int budget;

int n;

int m;

String id;

//
//
/7
/7
/7
//
//
/7
/7
/7

the employees to be allocated to cost centres

salary[i] of ith person

the model

the solver object

inCentre[i][j] = 1 iff jth person works in ith cost centre
centreSalaries[i] is sum of the salaries in the ith cost centre
the budget for each cost centre

number of employees

number of cost centres

an identification for the problem

public Allocate(String fname,int numberOfPeople,int numberOfCostCentres,int budget) throws Exception {
n numberOfPeople;
m numberOfCostCentres;
this.budget budget;
id fname;

person new Person[n];

salary new int[n];

model new Model(id);

solver model.getSolver();

inCentre model.intVarMatrix("inCentre”,m,n,0,1);
centreSalary = model.intVarArray("centre salaries”,m,9,budget);

Scanner sc = new Scanner(new File(fname));

for (int i=0;i<n;i++) person[i]
sc.close();
for (int i=0;i<n;i++) salary[i]

new Person(sc.next(),sc.nextInt());

person[i].salary;

for (int i=@;i<m;i++)
model.scalar(inCentre[i],salary,

=", centreSalary[i]).post();
//

// constrain centreSalary[i] to be the scalar product of inCentre[i] and salary[i]

//

for (int i=0;i<n;i++)
model.sum(ArrayUtils.getColumn(inCentre,i),"=",1).post();
//
// constrain a person such that he/she can only be in one cost centre at a time!
// i.e. the sum of a column of the array inCentre must be equal to 1,
// such that a person is in exactly one cost centre

//

public static void main(String[] args) throws FileNotFoundException, IOException, Exception {
if (args.length == 9){
System.out.println("java Allocate fname budget #employees #centres"”);

return;
}
String fname = args[0];
int budget = Integer.parselnt(args[1]);

int numberOfEmployees = Integer.parselnt(args[2]);
int numberOfCentres Integer.parselnt(args[3]);

Allocate alloc = new Allocate(fname,numberOfEmployees,numberOfCentres,budget);
boolean solved = alloc.solve();

System.out.println(solved);

if (solved) System.out.println(alloc);

System.out.println("nodes: " + alloc.solver.getMeasures().getNodeCount() +

cpu: + alloc.solver.getMeasures().getTimeCount());

Command Prompt

C:\cpM\choco4\teamsWithBudgets>java Allocate
java Allocate fname budget #employees #centres

C:\cpM\choco4\teamsWithBudgets>java Allocate ©.txt 150 10 10
true

0.txt #employees: 10 #centres: 10 budget: 150
centre[0] © 0 1 © 0 0 97

centre[1] 26

centre[2] 126

centre[3] (%]

centre[4] 97

centre[5] 75

centre[6] (9]

centre[7] 94

centre[8] 99

94

OO0
ORP OO0 ®
OO0 OO0
OO0, OC®
PO O OO0
OO0 OO
OO0 RO
OO0 00RO
OO0 0O OO
OO R

(Seth,72) (Jenny,25)
(Edwin,26) ... cost: 26
(Cameron,43) (Sheryl,83)

. cost: ©
(Robyn,97) ... cost: 97
(Tim,75) ... cost: 75

. cost: ©
(Katharine,94) ... cost: 94
(Veronica,99) ... cost: 99
(Constance,94) ... cost: 94

cpu: 0.038137063

C:\cpM\choco4\teamsWithBudgets>_

Command Prompt

C:\cpM\choco4\teamsWithBudgets>java Allocate ©.txt 150 10 7
true

0.txt #employees: #centres: 7 budget: 150

centre[0] ©0 © © @0 0 0 119

centre[1] 118

centre[2] 99

centre[3] 72

centre[4] 120

centre[5] 97

centre[6] 83

centre-0: (Jenny,25) (Katharine,94) ... cost: 119
centre-1: (Cameron,43) (Tim,75) ... cost: 118
centre-2: (Veronica,99) ... cost: 99

centre-3: (Seth,72) ... cost: 72

centre-4: (Constance,94) (Edwin,26) ... cost: 120
centre-5: (Robyn,97) ... cost: 97

centre-6: (Sheryl,83) ... cost: 83

nodes: 50 cpu: 0.02624389

C:\cpM\chocod4\teamsWithBudgets>_

Command Prompt

C:\cpM\choco4\teamsWithBudgets>java Allocate ©.txt 150 10 6
true

0.txt #employees: #centres: 6 budget: 150

centre[0] ©0 © © 0 0 0 137

centre[1] © 124
centre[2] © 109
centre[3] © 147
centre[4] © 94

centre[5] 1 97

centre-0: (Cameron,43) (Katharine,94) ... cost: 137
centre-1: (Veronica,99) (Jenny,25) ... cost: 124
centre-2: (Sheryl,83) (Edwin,26) ... cost: 109
centre-3: (Seth,72) (Tim,75) ... cost: 147
centre-4: (Constance,94) ... cost: 94

centre-5: (Robyn,97) ... cost: 97

nodes: 53 Cpu: ©.030337468

C:\cpM\choco4\teamsWithBudgets>_

Command Prompt

C:\cpM\chocod4\teamsWithBudgets>java Allocate 0.txt 150 10 5
false
nodes: 769 cpu: ©0.14290735

C:\cpM\choco4\teamsWithBudgets>_

Command Prompt

C:\cpM\choco4\teamsWithBudgets>java Allocate @.txt 150 20 12
true

0.txt #Hemployees:
centre[@] © 0 ©
centre[1]
centre[2]
centre[3]
centre[4]
centre[5]
centre[6]
centre[7]
centre[8]
centre[9]
centre[10] © © ©
centre[11] © 0 ©

N
(av]
[}

r+
=
@

OCO0ORPR OO O®OOWU
C OO, OO
OO

#centres:
© 00

CROPOOOOO®®
COOOOR OO ®
PP PO O ®
COOOOROO®®®
COOOHROOO®®
COOOOOOO®®
COPOOOOR OO ®
COOOOOO® ® K
FOPOPOOOO O ®
COPOROOOO®®
COPPOOR OO ®
CODOOOOO®®®
COOOOOO®® R g
COROOOOO®® O
COOROOOO® O ®
COOOROOOO®

centre-0: (Alvin,45) (Ernest,72)

centre-1: (Sheryl,83) ... cost: 83

centre-2: (Julie,98) ... cost: 98

centre-3: (Katharine,94) (Hilda,48) ... cost: 142
centre-4: (Veronica,99) (Cameron,43) ... cost: 142
centre-5: (Constance,94) (Caroline,30) ... cost: 124
centre-6: (Edwin,26) (Nicole,83) ... cost: 109
centre-7: (Michael,77) (Stanley,40) ... cost: 117
centre-8: (Robyn,97) ... cost: 97

centre-9: (Seth,72) (Tim,75) ... cost: 147
centre-10: (Marsha,39) ... cost: 39

centre-11: (Jenny,25) (Ronnie,85) ... cost: 110

nodes: 199 cpu: 0.04195229

C:\cpM\chocod4\teamsWithBudgets>

Command Prompt

C:\cpM\chocod4\teamsWithBudgets>java Allocate ©.txt 150 20 10
true

0.txt #Hemployees: 2
centre[@] © 0 ©
centre[1]
centre[2]
centre[3]
centre[4]
centre[5]
centre[6]
centre[7]

o]
(o
Q.

CDCDCDCDCDCDCS)CDCDHO‘(%
‘—r

: 1

0
[a]

CDCDCDCDCDCDCS)CDHCS)g

CDG)CDCDG)HCS)CDCDCD%P

OCO0OFRPR OO0 OC®
OO0 OO RFRLROOC®
OO OO OCOR,RO®
OO OO R OO0 O H
OO OO OO, OO
HCDCDCDCDCDCS)@CDCS)E?
P OO0 OO R
OO0 OO, OC®
OO0 O0OFRPR OO0 OO®O®OC
OO OO OO
OCFRP OO OO
OO OO OO, OW
OCFRP OO
OO0 OO ®O K

0
()
0
0
(<
1
0
(<
0

(Michael,77) (Ernest,72) ... cost:

OO RFRPR OO
O OO RFRLROEO

(Jenny,25) (Sheryl,83) (Stanley,40) ... cost: 148
(Edwin,26) (Marsha,39) (Nicole,83) ... cost: 148
(Constance,94) ... cost: 94

(Seth,72) (Tim,75) ... cost: 147

(Katharine,94) ... cost: 94

(Robyn,97) (Alvin,45) ... cost: 142

(Veronica,99) (Cameron,43) ... cost: 142
(Caroline,30) (Julie,98) ... cost: 128

(Hilda,48) (Ronnie,85) ... cost: 133

Cpu: 0.08598319

C:\cpM\choco4d\teamsWithBudgets>

Command Prompt

C:\cpM\choco4\teamsWithBudgets>java Allocate 0.txt 150 20 9
false
nodes: 9301860 cpu: 63.349964

C:\cpM\chocod4\teamsWithBudgets>

variable & value ordering

What are decision variables and what order are values picked?

// solve using value ordering over decision variables

boolean solve(){
//solver.setSearch(Search.minDomLBSearch(ArrayUtils.flatten(inCentre)));
//solver.setSeaPch(SeaPch.minDomUBSeaPch(AkrayUtils.flatten(inCentPe)));
return solver.solve();

This is a classic problem ...

File Edit View History Bookmarks Tools Help

IGHECHEET Tl (e ISR Gl \Y/ Bin packing problem - Wikipe: X

&« c ® @ https://en.wikipedia.org/wiki/Bin_packing_problem B - 9% Q search N @

& Notlogged in Talk Contributions Create account Log in

3 Q Article Talk Read Edit View history |Search Wikipedia Q
f
LB

WikipepiA Bin packing problem
The Free Encyclopedia L .

From Wikipedia, the free encyclopedia
Main page In the bin packing problem, objects of different volumes must be packed into a finite number of bins or Covering/packing-problem pairs
Contents containers each of volume V in a way that minimizes the number of bins used. In computational complexity theory, covert ol Packi o

overing problems acking problems

fieattired content it is a combinatorial NP-hard problem.['] The decision problem (deciding if objects will it into a specified number of gE UL
Current events . " 2 Minimum set cover Maximum set packing

bins) is NP-complete.[2] . i i
Random article Minimum vertex cover Maximum matching
Donate to Wikipedia There are many variations of this problem, such as 2D packing, linear packing, packing by weight, packing by Minimum edge cover Maximum independent set
Wikipedia store cost, and so on. They have many applications, such as filling up containers, loading trucks with weight capacity VT E
ierantion constraints, creating file backups in media and technology mapping in Field-programmable gate array

semiconductor chip design.
Help
About Wikipedia The bin packing problem can also be seen as a special case of the cutting stock problem. When the number of bins is restricted to 1 and each item is characterised
Community portal by both a volume and a value, the problem of maximising the value of items that can fit in the bin is known as the knapsack problem.

Recent changes
- Despite the fact that the bin packing problem has an NP-hard computational complexity, optimal solutions to very large instances of the problem can be produced

Contact page
with sophisticated algorithms. In addition, many heuristics have been developed: for example, the first fit algorithm provides a fast but often non-optimal solution,

Tools involving placing each item into the first bin in which it will fit. It requires ©(n log n) time, where n is the number of elements to be packed. The algorithm can be made
What links here much more effective by first sorting the list of elements into decreasing order (sometimes known as the first-fit decreasing algorithm), although this still does not
Related changes guarantee an optimal solution, and for longer lists may increase the running time of the algorithm. It is known, however, that there always exists at least one ordering

Upjoadiie of items that allows first-fit to produce an optimal solution.®] V

[SR1] BIN PACKING

INSTANCE: Finite set U of items, a size s(u) in Z* for eachuin U, a
positive integer bin capacity B, and a positive integer K.

QUESTION: Is there a partition of U into disjoint sets Uy, U,, ..., U,
such that the sum of the sizes of the items in each U, is B or less?

Garey & Johnson
"Computers and Intractability: A guide to the theory of NP-Completeness”

[SR1] BIN PACKING

INSTANCE: Finite set U of items, a size s(u) in Z* for eachuin U, a
positive integer bin capacity B, and a positive integer K.

QUESTION: Is there a partition of U into disjoint sets Uy, U,, ..., U,
such that the sum of the sizes of the items in each U, is B or less?

Garey & Johnson
"Computers and Intractability: A guide to the theory of NP-Completeness”

Is there a heuristic we might use?

Bin Packing
First fit decreasing algorithm

A B C D E F

With the first fit decreasing algorithm we sort the blocks into
descending order first.

Bin Packing
First fit decreasing algorithm

A B C D E F

Now we use the first fit algorithm

> 4
o -

Bin Packing
First fit decreasing algorithm

A B C D E F

Now we use the first fit algorithm

> 4
o -

Bin Packing
It decreasing algorithm

A B C D E F

Now we use the first fit algorithm

4
B :

Bin Packing
H+ f creasing algorithm

A B C D E F

Now we use the first fit algorithm I

Bin Packing
F.ficﬁsing algorithm

6

2 4

A B C D E F

Now we use the first fit algorithm

Bin Packing
F.ficﬁsing algorithm

6

2 4

A B C D E F

Now we use the first fit algorithm

.

A B

Bin Packing

~eCrea

4

algorithm

C

D

F

Now we use the first fit algorithm

|

Bin Packing
F'ifit decreasing algorithm

6
5 4 .

A B C D E F

Now we use the first fit algorithm

Bin Packing
== algorithm

A B C D E F

Now we use the first fit algorithm

Bin Packing
First fit decreasing algorithm

1
-

4

A B C D E F

We have packed them into 5 bins.

w E htkp: v, nanamic, arg. kS El @ First fit decreasing ’P ']
W |ﬂFrameset for Lewvel 5 Mumeracy ﬁ - K % = F'age - ﬂ-T-:u:uIs -

Welcome to:

".gnﬂhlr%

SN
(na) MIC

National Association for Numeracy and Mathematics in Colleges

Improving Learning in Mathematics
approaches that encourage active learning including group work,
discussion and open questions.

Friday 23" Qctober 2009.
University of Wales, Caerleon campus, Newpor+t

News:

1 A P N | ALl . 1 (e M Al H i I | @_

Scanner sc = new Scanner(new File(fname));
for (int i=0;i<n;i++) person[i] = new Person(sc.next(),sc.nextInt());
sc.close();

// EDIT
// %Prays.sort(person);

//
// first fit decreasing

//

for (int i=0;i<n;i++) salary[i] = person[i].salary;

Try 1s* fit decreasing (see Person)

Slow proving optimality

Don't have a test that sum of numbers over capacity
is less than or equal to the number of bins available!

Symmetries?

Are there any symmetries that are slowing down search?

Can we remove those symmetries?

What are the symmetries in this problem?

// EDIT

//for (int i=@;i<m-1;i++)

// model.arithm(centreSalary[i],">=",centreSalary[i+1]).post();
//

// symmetry breaking consistent with first fit decreasing

// costliest cost centres have low index

//

// EDIT

//for (int centre=0;centre<m-1;centre++)

// model.lexlLessEq(inCentre[centre+l],inCentre[centre]).post();
//

// symmetry breaking such that inCentre[i] lex>= inCentre[i+1]

//

Is there another model?

Eile Edit View History Bookmarks Tools Help

4 lIntConstraintFactory (Choco-4 X Bin packing problem - Wikipec X +

&« c @ ® www.choco-solver.org/apidocs/index html e O vy Search In @@ =
~ . . ~
All Classes binPacking
Packages
default Constraint binPacking(IntVar[] itemBin,
org.chocosolver.memory int[] itemSize,
org.chocosolver.memory.structure TntvVar[] binLoad
Ve ’

org.chocosolver.memory.trailing
org.chocosolver.memory.trailing.trail
org.chocosolver.memory.trailing.trail.chunc v

int offset)

Creates a BinPacking constraint. Bin Packing formulation: forall b in [0,binLoad.length-1], binLoad[b]=sum(itemSize[i] | i in

< >

S— [o,itemSize.length-1], itemBin[i] = b+offset forall i in [0,itemSize.length-1], itemBin is in [offset,binLoad.length-1+offset],
LongWorld . P ters:

MathUtils arameters:

MaxDelta itemBin - IntVar representing the bin of each item

MaxRegret

MD itemSize - int representing the size of each item

MDRk
Measures binLocad - IntVar representing the load of each bin (i.e. the sum of the size of the items in it)
MGaStl)JresRecorder offset - 0 by default but typically 1 if used within MiniZinc (which counts from 1 to n instead of from 0 to
ember

MinDelta n-1)

MinusView

Model

MonotonicRestartStrategy boolsIintChanneling

Move

MoveBinaryDDS
MoveBinaryDFS
MoveBinaryHBFS

default Constraint boolsIntChanneling (BoolVar[] bVars,

IntVar wvar,

MoveBinaryLDS int offset)

MovelLearnBinaryTDR

MoveLNS Creates an channeling constraint between an integer variable and a set of boolean variables. Maps the boolean assignments variables bVars with
MoveRestart the standard assignment variable var.

MoveSeq v var = i <-> bVars[i-offset] = 1

< > v

File Edit View History Bookmarks Tools Help

lintConstraintFactory (Choco-4 X @ A Constraint for Bin Packing | © X +

. sl

< C (® @ https://link.springer.com/chapte - O v Search I 0 =

@ Springer Link Search Q ' Menu v

International Conference on Principles and Practice of Constraint
Programming

-..CP 2004: Principles and Practice of Constraint Programming - CP 2004 pp
648-662 | Cite as

A Constraint for Bin Packing

Authors Authors and affiliations

Paul Shaw

Conference paper
10 16 656

Citations Readers Downloads

Part of the Lecture Notes in Computer Science book series (LNCS, volume 3258)

File Edit View History Bookmarks Tools Help

lIntConstraintFactory (Choco-4 X @ A Constraint for Bin Packing | © X +

< C @© ® @ https://linkspringer.com/chapte e O vy Search IN @ =
A Constraint for Bin Packing Buy options
Abstract

We introduce a constraint for one-dimensional bin packing. This constraint uses propagation
rules incorporating knapsack-based reasoning, as well as a lower bound on the number of bins
needed. We show that this constraint can significantly reduce search on bin packing problems.
We also demonstrate that when coupled with a standard bin packing search strategy, our
constraint can be a competitive alternative to established operations research bin packing

algorithms.

This is a preview of subscription content, log in to check access

Cite paper v

File Edit View History Bookmarks

lIntConstraintFactory (Choco-4 X

Thanks me ol' muckal

Tools Help

Paul Shaw 400

connections
Constraint Programming Lead at IBM
Nice Area, France | Computer Software

Current IBM
Previous ILOG, Strathclyde University
Education University of Strathclyde

Recommendations 3 people have recommended Paul Shaw

File Edit View History Bookmarks Tools Help

lIntConstraintFactory (Choco-4 X [EEECEEETIRYENERIY

/]\

C ® ® @ https://researcher. Search

Marketplace Search for people

IBM Research Research areas v Work with us v

feedback

Paul Shaw

3

STSM, Optimization Technology. CP Optimizer Development Manager
paul.shaw@fr.ibm.com +33-4-9296-6225

Profile

Publications Patents

At IBM, I head up constraint programming development, a

technology for the resolution of complex highly combinatorial

problems, in CP Optimizer, the CP solver of CPLEX Optimization

[af THP= I NAs . PN PR P-X SR TN e W tiom cman =

mradiiot Foniie 1o

N >

Q

o
M

About us v

Blog

File Edit View History Bookmarks Tools Help

lintConstraintFactory (Choco-4 X [EEESEEETIRSEIEI:AY

& G @ ® @ https://researcher.watso Bl - @ %% Search mn » =
EE:;_—E; Marketplace Search for people Q S =
IBM Research Research areas v Work withus v Aboutus v Blog

At IBM, I head up constraint programming development, a
technology for the resolution of complex highly combinatorial
problems, in CP Optimizer, the CP solver of CPLEX Optimization
Studio. My product focus is on product innovation, speed,
quality and robustness. I have over twenty years of experience
in combinatorial optimization. My technical interests vary over
many aspects of science and technology. Specialties: Constraint
programming, combinatorial optimization, local search and
meta-heuristics, vehicle routing, packing.

Conference activity
PC Member at:
CP 2018, CP 2017, CP 2016, CPAIOR 2015, CP 2014, CP 2013,

CPAIOR 2013, TRICS 2013, CP 2012, CP 2011, CPAIOR 2011,

File Edit View History Bookmarks Tools Help

lintConstraintFactory (Choco-4 X [EEESEEETIRSEIEI:AY

& G @ ® @ https://researcher.watso Bl - @ %% Search mn » =
IBM Research Research areas v Work withus v Aboutus v Blog
Invited talks

CPAIOR 2018, Dutch OR Society 2014, CPAIOR 2009, CP 2007,
CPAIOR 2005

Awards

Best of IBM, 2011 - Awarded each year to around 0.1% of
IBMers for technical contributions

Share this page
[ilYince @

See AllocateBP

€9 emacs@BYRON - O X
File Edit Options Buffers Tools Java Help

OBExB 9 ¥BB

String id: Jf an identification for the problem

public AllocateBP (String fname, int number0fPeople,int number0fCostCentres,int budget) throws Exception {

n = numberOfPeople;

m = nmumber0fCostCentres;

this.budget = budget:;

id = fname;

person = new Person[n]:

salary = new int[n]:

model = new Model (id):

solver = model.getSolver():

employee = model.,.intVarArray("emnplovyvee”,n, 0, m-1) ;
costlCentre = model.,.intVarArray("cost centre",m, 0,budget):;
Scanner sc = newW Scanner (new File (fname)):

for (int i=0;i<n;i++) person[i] = new Person(sc.next(),sc.nextInt()):

sc.close ()
for (imt i=0;i<n;i++) salary[i] = person[i] .salary:

model .binPacking (employee, salary, costCentre, Q) .post () ;

solve using value ordering over decision variables
boolean solve () {
sulver.setﬂearch:Search.minDumUBSeaIch:empluyee}};I
return solver.solvel():
}
-%——— AllocateBP.Jjava 30% L47 (Java/l Lbbrev)

K

So?

What have we learned?

oc oA WS

Identify the decision variables

What is value ordering doing to the search?

Can we use any heuristics?

Are there symmetries that we can break?

Are there any simple/redundant tests/constraints overlooked?
Is there an alternative model?

« How would we modify our model to address
« Two people must be in same cost centre
« Two people must not be in same cost centre
« Cost centres have a limit on
« Sum of salaries and ...
« Number of employees in cost centre

end

