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Chapter 1

Modelling

Barbara M. Smith

Constraint programming can be a successful technology for solving practical problems;
however, there is abundant evidence that how the problem to be solved is modelled as
a Constraint Satisfaction Problem (CSP) can have a dramatic effect on how easy it is to
find a solution, or indeed whether it can realistically be solved at all. The importance
of modelling in constraint programming has long been recognized e.g. in invited talks by
Freuder [14] and Puget [34].

In this chapter, it will be assumed that the problem to be solved can be represented as a
CSP whose domains are finite; infinite domains are discussed in Chapter 16, “Continuous
and Interval Constraints”. In most of the examples, the variable domains will be sets of
integers; see Chapter 17, “Constraints over Structured Domains”, for more on set variables
and other variable types.

A complicating factor in modelling is the interaction between the model, the search
algorithm and the search heuristics. To simplify matters, it will be assumed that, having
modelled the problem of interest as a CSP, the CSP will be solved using a constraint solver
such as ILOG Solver, ECLiPSe, Choco, SICStus Prolog, or the like. The default com-
plete search algorithms provided by these solvers are sufficiently similar that they provide
a common context for discussing modelling. Furthermore, they are designed to solve large
problems of practical significance, and for such problems, it is worth the effort of develop-
ing the best model of the problem that we can find. Some of what follows will also apply
to other search techniques such as local search (covered in Chapter 8) or to other com-
plete search algorithms, but much will not, because the search algorithm has a profound
influence on modelling decisions.

In this chapter, it will be assumed that the problem to be solved is well-defined; al-
though eliciting a correct and full problem description can be a significant proportion of
the problem-solving effort, it will be assumed here that that step has been done. It will
also be assumed that the problem does not involve preferences or uncertainty, which are
covered in Chapters 9 and 21.
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1.1 Preliminaries

In this section, the concepts needed in the rest of the chapter are defined.
A Constraint Satisfaction Problem (CSP) is a triple 〈X, D, C〉 where: X is a set of

variables, {x1, ..., xn}; D is a set of domains, D1, ..., Dn associated with x1, ..., xn re-
spectively; and C is a set of constraints. Each constraint c ∈ C is a pair c = 〈σ, ρ〉 where
σ, the constraint scope, is a list of variables, and ρ, the constraint relation, is a subset of
the Cartesian product of their domains.

The domain of a variable is the set of possible values that can be assigned to it. In this
chapter, it will be assumed that the domain of a variable is a finite set.

An assignment is a pair (xi, a), which means that variable xi ∈ X is assigned the
value a ∈ Di. A compound assignment is a set of assignments to distinct variables in X .
A complete assignment is a compound assignment to all variables in X .

The relation of a constraint c = 〈σc, ρc〉 specifies the acceptable assignments to the
variables in its scope. That is, if the constraint scope σc is {xi1 , xi2 , ..., xik

} and 〈a1, a2, ...,
ak〉 ∈ ρc, the compound assignment assigning a i to xik

, 1 ≤ i ≤ k, is an acceptable
assignment; we say that the assignment satisfies the constraint c. A solution to the CSP
instance 〈X, D, C〉 is a complete assignment such that for every constraint c ∈ C, the
restriction of the assignment to the scope σc satisfies the constraint.

The relation of a constraint may be specified extensionally by listing its acceptable
(satisfying) tuples, or intensionally by giving an expression involving the variables in the
constraint scope such as x < y from which it can be determined whether or nor a given
tuple satisfies the constraint.

The arity of a constraint is the size of its scope. A unary constraint is defined on a
single variable, a binary constraint on two variables. There is no requirement that different
constraints must have different scopes.

Given a constraint c = 〈σc, ρc〉, the projection of c onto τ ⊂ σc is a constraint c′ whose
scope is τ and whose relation is the set of tuples derived by taking each tuple in ρ c and
selecting only those components corresponding to the variables in τ .

Many forms of consistency have been defined for CSPs and individual constraints.
Here, only those commonly used by constraint solvers are defined. Consistency and con-
straint propagation are covered fully in Chapter 3.

A binary constraint is arc consistent if for every value in the domain of either variable,
there exists a value in the domain of the other such that the pair of values satisfies the
constraint. A non-binary constraint is generalized arc consistent or hyper-arc consistent
iff for any value for a variable in its scope, there exists a value for every other variable in
the scope such that the tuple satisfies the constraint. Domain propagation on a constraint
removes unsupported values (i.e. values which cannot be extended to a pair of tuple of
values satisfying the constraints) from the domains of the variables in its scope until the
constraint is (generalized) arc consistent.

A constraint c on variables with ordered domains (such as integers) is bounds consis-
tent if for every variable x in its scope, there exists a value d j for every other variable
xj (1 ≤ j ≤ k) in the scope of c, with minDj ≤ dj ≤ maxDj , such that the com-
pound assignment {(x, l), (x1, d1), ..., (xk, dk)} satisfies c, where l is the minimum of the
domain of x, and similarly, values d ′

j can be found with minDj ≤ d′j ≤ maxDj , such
that {(x, u), (x1, d

′
1), ..., (xk, d′k)} satisfies c, where u is the maximum of the domain of

x. (For arithmetic constraints, the values dj , d
′
j can be real values rather than integers.)
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Bounds propagation on an arithmetic constraint reduces the bounds of the variables until
the constraint is bounds consistent.

1.2 Representing a Problem

It is difficult to define precisely what we mean when we say that a CSP represents a prob-
lem P . A possible definition is that: a CSP M = 〈X, D, C〉 represents a problem P , or M
is a model of P , if every solution of C corresponds to a solution of P and every solution
of P can be derived from at least one solution to C.

The definition does not require that there is a one-to-one correspondence between the
solutions of P and the solutions of M . This is because modelling a problem as a CSP often
introduces symmetry, by representing entities that are indistinguishable in P by distinct
variables or values in M . Hence, multiple solutions of M may correspond to the same
solution to P .

Symmetry causes a further complication, because if there is symmetry in both P and
M , one way to deal with it is to add constraints to M ; the aim is to eliminate all but one so-
lution in every symmetry equivalence class. The symmetry-breaking constraints exist only
in M , not in P , so that multiple symmetrically-equivalent solutions to P can correspond
to the same solution to M . Hence, the correspondence between the solutions to M and the
solutions to P can be many-to-many. We might avoid this last complication by agreeing
that symmetry-breaking constraints are a special case, intended to eliminate solutions to
M and therefore also solutions to P , and that they can be ignored in considering whether
M is a model of P .

A final difficulty with the definition is that it implies that any CSP models a problem
that has no solutions. The definition of equivalence of CSPs given by Rossi, Petrie and
Dhar [36] similarly makes any CSPs with no solutions equivalent.

In practice, in modelling a problem as a CSP, we do not rely on this definition, but
choose variables and values to represent entities in P and write the constraints on these
variables to represent the rules and restrictions defining the solutions to P . However, it
must certainly be true that any solution to M yields exactly one solution to P , and that
any solution to P corresponds to a solution to M or is symmetrically equivalent to such a
solution, and that if M has no solutions, this is because P itself has no solutions.

The aim in choosing a model of a problem is to arrive at a CSP that can be solved
quickly; we typically require good run-time behaviour over the range of instances to be
solved. Note that the shortest run-time does not necessarily mean the least search (as
measured by nodes visited or backtracks, say).

1.3 Propagation and Search

In this chapter, it will be assumed, unless stated otherwise, that the CSP will be solved
by a complete search algorithm that interleaves search with constraint propagation. in-
dexconstraint propagation Such search algorithms are dealt with in Chapter 4, “Backtrack-
ing Search Algorithms for CSPs”, along with variable and value ordering heuristics. The
search proceeds by constructing a series of choice points, at each of which a set of mu-
tually exclusive and exhaustive choices is constructed, involving variables whose value
is not yet assigned. Common sets of choices are {xi = a, xi �= a} (binary branching);
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{xi = 1, xi = 0} (when the variables are Boolean); {xi ≤ a, xi > a} (domain split-
ting); {xi = v1, xi = v2, ..., xi = vk}, where v1, v2, ..., vk are the values currently
available in Di (k-way branching). Choices can involve more than one variable, e.g.
{xi ≤ xj , xi > xj}; this is common in scheduling, for instance, where the choices might
represent the two possible orders for the starting times of two activities (see Chapter 22).
Although all these types of choice, and more, are possible, in the examples quoted in this
chapter binary branching has been used.

The search pursues each choice in turn, first adding the constraint defining the choice
to the existing constraints and propagating it, until local consistency is restored in the
resulting subproblem. Typically, each type of constraint in the problem has an associ-
ated propagation algorithm, achieving the level of consistency specified for that constraint.
Constraint propagation continues until no further propagation can be done, and every con-
straint is again in its target state of consistency. Given a target level of consistency for each
constraint in C, the CSP 〈X, D, C〉 is locally consistent if every constraint achieves its tar-
get consistency level. If, at any stage during the search, constraint propagation results in an
empty domain for some future (not-yet-assigned) variable, the search backtracks, restoring
the domains to their state before the last choice was made, and exploring another of the
choices created at the last choice point; if no further choices remain, the search backtracks
to a previous choice point, and so on, until either a solution is found or all possible choices
have been explored.

This form of search is used by default in commercial constraint solvers. It has a pro-
found influence on the modelling process, because in taking many modelling decisions, the
user needs to consider their effect on constraint propagation.

Typically, constraint solvers will enforce arc consistency (AC) on some, but not all,
binary constraints and bounds consistency (BC) on arithmetic constraints. They will not
usually maintain generalized arc consistency (GAC) on non-binary constraints, except for
global constraints for which an efficient propagation algorithm exists. For some global
constraints, the user may be able to choose the level of consistency to be maintained. For
some complex constraints, the default may be to do very little consistency checking; the
propagation algorithm may take action only when all but one or two of the variables in its
scope have been instantiated.

These decisions in designing constraint solvers stem from a trade-off between the time
and space required to maintain generalized arc consistency on all constraints and the reduc-
tion in search that could result. Puget has explained the decision to maintain only bounds
consistency on arithmetic constraints in ILOG Solver by saying: “Solver is a compro-
mise between efficiency and completeness...In the example... [of constraint propagation of
arithmetic constraints] the incompleteness comes from the fact that arithmetic expressions
only propagate bounds.. This is an example of the choice we made. Propagating holes in
expressions would require much more memory and time than the current implementation.
From tests made on a very large set of examples, we found that the current compromise is
by far better.”

Even if we start from the assumption that the CSP will be solved using this general
search algorithm, the form of the choices made at choice points, as well as the specific
variable and value choices, will also affect the solution time.

Beacham, Chen, Sillito and van Beek [2] investigate the interaction between constraint
models, search algorithms and search heuristics, using crossword puzzle problems. They
compare three constraint models and two well-known search heuristics (minimum domain
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and domain/degree); the search algorithms are forward checking and a search algorithm
that maintains generalized arc consistency, with three different ways of enforcing GAC.
They conclude that the three choices of model, algorithm and heuristic interact, and that
for the most efficient problem solving, none of the decisions can be made independently
of the others.

It is a moot point whether the choice of search heuristics is part of modelling or not. It is
certainly true that the performance of a model will be affected by the search heuristics, but
for the purposes of this chapter, choosing the search heuristics will be excluded. However,
for some types of model, there is a choice of which of the variables in the model should be
used to drive the search, i.e. which variables should participate in choice points, and this
will be considered as part of modelling.

1.4 Viewpoints

Different models of a problem P may result from viewing the problem P from different
angles or perspectives. The term viewpoint was introduced informally by Geelen [19], in
discussing permutation problems, and was subsequently adopted and formally defined by
Law and Lee [29]. A viewpoint is a pair 〈X, D〉, where X = {x1, . . . , xn} is a set of vari-
ables, and D is a set of domains; for each xi ∈ X , the associated domain Di is the set of
possible values for x. It must be possible to ascribe a meaning to the variables and values
of the CSP in terms of the problem P , and so to say what an assignment in the viewpoint
〈X, D〉 is intended to represent in terms of P . The complete assignments defined by the
viewpoint are intended to include all possible solutions of P . The constraints must then en-
sure that every solution to the CSP is a valid solution to P , and so are largely determined by
that requirement. Hence, it is different viewpoints that give rise to fundamentally different
models of a problem.

In principle, the values in the domain can be of any type. In practice, the types com-
monly supported by constraint solvers include integers, Booleans (perhaps only as a sub-
type of integers) and sets of integers. Other types have been proposed, e.g. multisets and
tuples; constraint solvers may directly support these, or provide facilities to allow new
types to be defined. Some of what follows may also apply to modelling using real-valued
variables, and since the domains of integer variables are sometimes represented as inter-
vals, the boundary can be blurred.

Except for some very small problems, the variables of a CSP are usually implemented
using some data structure such as a list or an array. Flener, Frisch, Hnich, Kiziltan and
Walsh [12] suggest that matrix models, based on matrices of variables, are a natural way
to model many problems; indeed, almost all the examples given in this chapter use 1- or
2-dimensional matrices of variables. For some applications, other structures are important;
for instance, models based on graphs are used in the network applications discussed in
Chapter 25.

There are usually different viewpoints that could be chosen in modelling a problem.
Although viewpoints can be combined, as will be described in section 1.9, it will be as-
sumed for now that only one will be used. Having chosen a viewpoint, the next step is to
express the constraints to ensure that the solutions to the CSP are correct, i.e. are solutions
to P . However, although correctness is a minimum requirement, it is not sufficient if we
are also concerned with how efficiently the CSP can be solved. A good rule of thumb
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in choosing a viewpoint is that it should allow the constraints to be easily and concisely
expressed; we should prefer viewpoints that allow the problem to be described using as
few constraints as possible, as long as those constraints have efficient, low-complexity
propagation algorithms.

Nadel [30] was possibly the first to discuss different ways of modelling a problem. He
lists nine different representations of the n-queens problem as a CSP (in fact, nine differ-
ent viewpoints), although two of these are derived from another two simply by swapping
the roles of rows and columns, and so result in identical CSPs. For instance, two of the
viewpoints are:

1. the variables r1, .., rn represent the rows of the board, and the domain of each vari-
able is the set of integers {1, 2, ..., n} representing the columns; an assignment (r i, c)
means that the queen in row i is in column c;

2. the variables q1, ..., qn correspond to the n queens and the domain of each variable
is the set of integers {1, 2, ..., n2}, representing the squares; an assignment (qi, a)
means that the ith queen is on square a.

In the first viewpoint, the rule that there is only one (in fact, exactly one) queen on each
row is covered by the fact that any variable can only be assigned one value. The rule that
there is only one queen in each column can be expressed by the constraints r i �= rj for
1 ≤ i < j ≤ n or by an allDifferent constraint on r1, ..., rn.

In the second viewpoint, the rules are more awkward to express. Constraints are needed
to ensure that no two queens are in the same row; if the ‘row’ element of a value can
be extracted, there could be a constraint between every pair of variables that their row
elements are not equal; the column constraints could be dealt with similarly. The diagonal
constraints are more difficult to write. One possibility is to state an extensional constraint
between each pair of variables, listing for each of the n2 values, the values representing
squares that are not in the same row, column or diagonal, although domain propagation
would then be expensive. Furthermore, such constraints would only express that fact that
there is at most one queen in each row or column, not that there must be exactly one.
Although only correct solutions would be found using these constraints, the model would
allow partial solutions in which the queens already placed attack all the squares on a row
or column, since there is nothing explicit in the constraints to forbid this. Hence, a model
based on the second viewpoint would be less efficiently solved than the model based on
the first viewpoint.

1.5 Expressing the Constraints

Once we have arrived at a viewpoint that allows the constraints to be easily and concisely
expressed, there are often choices in exactly how to write the constraints; an example has
already been seen in the first viewpoint for the n-queens problem, where there is a choice
between binary �= constraints and an allDifferent constraint.

The way in which the constraints are written affects the efficiency of the resulting
model, because it affects how the constraints will propagate during the search. Harvey and
Stuckey [22] observe that, “An unnerving and not well studied property of propagation
based solvers, is that the form of a constraint may change the amount of information that
propagation discovers.” They illustrate this with the constraints c1 ≡ (x = y), c2 ≡
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(x + y = z) and c3 ≡ (2y = z), where x, y and z are integer variables. If C = {c1, c2}
and C ′ = {c1, c3}, C and C ′ are equivalent, in the sense that they have the same solutions.
However, if C and C ′ are made locally consistent, then in C ′, the domain of z (using AC)
or its upper and lower bounds (using BC) will be even integers, but this is not necessarily
true of C.

Unfortunately, to arrive at a good model of P , it is essential to be aware of the range of
constraints supported by the constraint solver and the level of consistency enforced on each
and to have some idea of the complexity of the corresponding propagation algorithms. This
is, of course, a long way from the declarative ideal. In this section, some of the choices
available when writing constraints are discussed.

1.5.1 Combining Constraints

Combining constraints with the same scope can be a way of expressing them more con-
cisely. The conjunction of two constraints with the same scope allows only the tuples that
are allowed by both. Enforcing the same level of local consistency on a conjunction c 1∧c2

as on c1 and c2 separately will remove at least as many domain values. However, it may
or may not reduce the run-time, depending on how time-consuming it is to enforce local
consistency on the conjunction and on the separate constraints.

An example can be found in the n-queens problem. Using the first viewpoint listed
earlier (the standard CSP model for this problem), the variables x1, x2, ..., xn representing
rows 1 to n of the board, and the values are {1, 2, ..., n}, representing the columns. The
rule that two queens cannot be on the same column or diagonal can most simply be written
using more than one constraint between each pair of variables x i and xj , i < j. For
instance:

• xi �= xj

• xi − xj �= j − i

• xj − xi �= j − i

Figure 1.1 shows a state that might be arrived at during search, when n = 6. Two
variables, x1 and x2, have already been assigned, and the crossed squares are no longer
available, because queens placed there would conflict with the two already placed; the
corresponding values will have been removed from the domains of the remaining variables
x3, x4, x5, x6. A queen cannot now be placed in row 5, column 3, because it would conflict

Q
Q

Figure 1.1: A search state in the 6-queens problem



10 1. Modelling

with both remaining places for a queen in the 3rd row. However, the three constraints
between x3 and x5 are arc consistent; the value 3 for x5 is supported by the value 1 for
x3 as far as the first constraint is concerned, and by the value 3 for x 3 as far as the second
constraint is concerned. If the conjunction of the three constraints were expressed as a
single constraint, domain propagation would delete 3 from the domain of x 5. (However,
since the conjunction is unlikely to be expressible as a single constraint using the standard
constraints provided by constraint solvers, it might require writing a special constraint or
forcing AC in some other way. Simply writing a single constraint as a conjunction of the
separate constraints will not guarantee that the solver will enforce GAC on it, and it may
in fact do less consistency checking than on the separate constraints.)

Katsirelos and Bacchus [28] discuss improving constraint propagation by enforcing
GAC on conjunctions of constraints, rather than the individual constraints. If c 1 and c2 are
two constraints in a CSP, domain propagation on their conjunction c 1 ∧ c2 removes at least
as many domain values as domain propagation on c 1 and c2 separately. If the scopes of
c1 and c2 are disjoint, then domain propagation on the conjunction is equivalent to domain
propagation on the separate constraints, but the larger the overlap in the scopes, the larger
the potential domain pruning from conjoining the constraints. Katsirelos and Bacchus use
Bessière and Régin’s GAC-schema algorithm [4] in their experiments: for that algorithm,
if the scope of c1 is a subset of the scope of c2, it is less time-consuming to enforce GAC
on the conjunction than on the individual constraints. They propose, as a heuristic, to
combine constraints which share all or most of their variables. They use the Golomb ruler
problem, discussed in more detail in section 1.9, as an example. They model the problem
as a CSP by using the positions of the m ‘ticks’ on the ruler as the variables x1, ..., xm.
The constraints are that |xj − xi| �= |xl − xk|, for 1 ≤ i, j, k, l ≤ m. In this model,
there are seven constraints of this kind over any set of four variables (four quaternary and
three ternary). They show that combining the quaternary and ternary constraints on each
set of four such variables reduces the number of backtracks slightly and the run-time a lot,
compared to using the individual constraints; they maintain GAC on constraints in either
case. (Note that this is not the model usually used for the Golomb ruler problem, so that
their results are not comparable with others.)

1.5.2 Eliminating Variables

Harvey and Stuckey [22] give a number of theorems on rewriting linear constraints and how
bounds propagation or domain propagation will be affected. For instance, one theorem
concerns using a two-variable linear equation to substitute for one of these variables in
a linear constraint: suppose c1 ≡ (

∑n
i=1 aixi op d), where op ∈ {=,≤, �=} and c2 ≡

(bjxj + bkxk = e), j �= k, bj �= 0, bk �= 0. Let c3 be the constraint resulting from
using c2 to remove xj in c1. Then bounds propagation on {c3, c2} is stronger than bounds
propagation on {c1, c2}. (i.e. each variable domain in the first case is a subset of its domain
in the second case). The same is true for domain propagation.

1.5.3 Global Constraints

Constraint solvers provide a range of global constraints, developed to replace particular
sets of constraints that occur frequently. Global constraints are the subject of Chapter 7.
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They allow a single constraint on any number of variables to replace a set of constraints,
and provide a propagation algorithm that typically enforces GAC on the constraint.

There is sometimes a choice as to what level of consistency will be maintained on the
global constraint. A frequently occurring global constraint is the allDifferent constraint,
and it does provide such a choice. A constraint allDifferent(x1, x2, ..., xn) can either be
treated as if it had been written as n(n − 1)/2 binary �= constraints on which AC is main-
tained; or bounds consistency (BC) can be maintained on the global constraint; or general-
ized arc consistency (GAC) can be maintained. Maintaining a higher level of consistency
takes more time; on the other hand, if more values can be removed from the domains of the
variables, the search effort will be reduced and this will save time. Whether or not the time
saved outweighs the time spent depends on the problem. In the case of the allDifferent
constraint, experience suggests that if the number of values in the union of the domains of
x1, x2, ..., xn is n or not much greater, maintaining GAC is likely to be worthwhile; but if
the number of values is much greater than n, so that the allDifferent constraint is looser, it
is less likely that domain propagation will remove more values than the �= constraints, and
so it may not be cost-effective (see for instance [31]).

1.5.4 Extensional Constraints

Some constraint solvers give the user the option to enforce GAC on any constraint. CHIP,
for instance, had the facility to enforce arc consistency on arbitrary constraints defined by
Prolog predicates, and this was used in solving a microcode labelling problem, described in
[47]. ILOG Solver provides a table constraint, in which the set of allowed (or not allowed)
tuples can be explicitly listed. SICStus Prolog similarly has a case constraint that allows
the solutions to the constraint to be specified as a directed acyclic graph.

Cheng and Yap [7] demonstrate the usefulness of the SICStus Prolog case constraint
in Maximum Density Still Life, a problem derived from the Game of Life. The game is
played on a squared board and in the problem considered, each cell of the board is either
alive or dead according to the state of its eight neighbouring cells. The original model has
a Boolean variable for each cell, with the value 1 representing ‘alive’ and 0 representing
‘dead’. The constraint between a variable and the variables representing the neighbouring
cells is complex: the value of the cell is 1 if the sum of the neighbouring variables is exactly
3, or 0 if their sum is < 2 or > 4. The aim is to find a configuration of live and dead cells on
an n×n board that satisfies the constraints and maximizes the number of live cells. Cheng
and Yap use the case constraint to represent the constraint between the cells in a 3 × n
‘super-row’. They use the fact that the variables in the problem are Boolean to construct
a Binary Decision Diagram of the constraint and convert the BDD to a DAG. For a good
ordering of the variables, the size of the resulting BDD increases only linearly with n, so
that maintaining consistency of the case constraint remains efficient.

It can be useful to be able to express even binary constraints extensionally and ensure
that arc consistency is maintained. For instance, in the Black Hole patience game [20], a
pack of playing cards has to be arranged in sequence, in such a way that successive cards
in the sequence have consecutive values, so that for instance a five can only be followed
by a four or a six (of any suit). An ace can be either a high or a low value, and so can
be followed by a two or a king. (There are other conditions on the sequence that are not
relevant here.) The viewpoint used in solving Black Hole games using CP in [20] has a
variable xi for each position i in the sequence, 1 ≤ i ≤ 52; the domain of each variable
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is {1, .., 52}, representing the cards, where the values 1 to 13 represent the ace to king of
spades respectively, 14 to 26 represent the ace to king of hearts, and so on. To ensure a
correct sequence, there must be a binary constraint between x i and xi+1 for 1 ≤ i ≤ 51; for
instance, if xi is assigned the value 15 (representing the two of hearts), the possible values
for xi+1 are 1, 3, 14, 16, 27, 29, 40, 42, representing the aces and threes. The constraint is
expressed extensionally by listing the possible values for x i+1 for each possible value of
xi, using the table constraint in ILOG Solver, which maintains AC on the constraint.

1.5.5 Reified Constraints and Meta-constraints

A reified constraint associates a 0/1 variable x with a constraint c, so that x takes the value
1 if the constraint c is satisfied and 0 otherwise. More or less equivalently, in terms of
expressivity, a meta-constraint is a constraint over constraints. Fernandez and Hill [11]
discuss representing a self-referential puzzle introduced by Henz [23] in a variety of con-
straint programming languages, using reified constraints and meta-constraints.

More significantly, they can be used to express disjunctions of constraints. For instance,
the condition that constraint c1 or constraint c2 (or both) must be satisfied can be expressed
by associating the constraints with the variables x1 and x2 respectively and adding the
constraint that x1 + x2 ≥ 1.

Van Hentenryck and Deville [48] introduced the cardinality operator to express such
disjunctive conditions; it allows upper and lower bounds to be stated on the number of
constraints in a set that must be satisfied. Of course, it is not sufficient simply to allow
disjunctive conditions to be expressed; changes to the domains of the variables involved
must also be propagated efficiently. The implementation of reified constraints in constraint
logic programming is discussed in Chapter 12.

1.6 Auxiliary Variables

In the last section, different ways of writing constraints on the variables in the chosen
viewpoint were discussed. However, more choices are available, and the potential for
more efficient models, if other variables can be introduced.

Auxiliary variables are variables introduced into a model, either because it is difficult
to express the constraints at all in terms of the existing variables, or to allow the constraints
to be expressed in a form that would propagate better, i.e. lead to more domain reductions.

An early example appears in a paper on the car sequencing problem (problem 1 in
CSPLib) by Dincbas, Simonis and van Hentenryck [9]. A number of cars are to be made
on a production line: each of them may require one or more options which are installed
at different stations on the line. The option stations have lower capacity than the rest of
the production line, e.g. a station may be able to cope with at most one car out of every
two. The cars are to be arranged in a production sequence so that these capacities are not
exceeded.

In [9], the initial viewpoint has variables si, 1 ≤ i ≤ n, where n is the number of
cars to be produced, and therefore the length of the production sequence. The value of s i

represents the car to be produced in position i in the sequence, or more precisely the class
of car, since cars requiring the same set of options can be considered as identical.

It is straightforward to express some of the constraints required to model the problem
in this viewpoint, for instance, that the number of variables assigned a specific value is
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equal to the number of cars in the corresponding class. However, the option capacities are
difficult to express using these variables alone.

Dincbas et al. introduce auxiliary Boolean variables o ij , 1 ≤ i ≤ n, 1 ≤ j ≤ m, such
that oij = 1 iff the car in the ith slot in the sequence requires option j. The constraints
expressing the option capacities are expressed in terms of these variables; suppose that
the capacity of option 1 is one car in every two. Then the capacity of the option can be
enforced using the constraints:

oi,1 + oi+1,1 ≤ 1 for 1 ≤ i < n

Constraints are also needed to express the relationship between the auxiliary vari-
ables and the original variables. In this case, this could be done by the constraints o ij =
λsi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ m, where the constant λkj = 1 iff car class k requires option j.

Usually, auxiliary variables are not sufficient to define a viewpoint, i.e. it would not be
possible to build a model of the problem using only the auxiliary variables. However, the
auxiliary variables in the car sequencing problem could constitute a viewpoint; every valid
production sequence can be specified as a complete assignment to these variables.

It is sometimes worthwhile to use auxiliary variables as search variables, alongside the
original variables. An example occurs in a network design problem arising from the de-
ployment of synchronous optical networks (SONET) [43]. The network contains a number
of client nodes and a number of SONET rings. A SONET ring joins a number of nodes;
a node is installed on a ring using an add-drop multiplexer (ADM). There are known de-
mands (in terms of numbers of channels) between pairs of nodes; in a simplified version
of the problem, the level of demand is ignored, but if there is a traffic demand between two
nodes, there must be a ring that they are both installed on. Each node can be installed on
more than one ring, and there is a maximum number of nodes that can be installed on each
ring. The objective is to minimise the total number of ADMs required, while satisfying all
the demands.

The viewpoint used in [43] has variables xik , 1 ≤ i ≤ n, 1 ≤ k ≤ m, where n is the
number of nodes and m is the number of available rings. x ik = 1 if node i is assigned to
ring k, 0 otherwise.

A number of auxiliary variables are introduced, representing for instance the number of
rings that each node is on. It was found to be a successful search strategy to assign this last
set of variables first, before assigning the variables xik . In terms of the underlying problem,
although deciding how many rings each node is not sufficient to specify the network, it
greatly simplifies the remaining problem of deciding which rings each node is on.

Note that if the auxiliary variables would constitute a viewpoint in their own right, and
we assign values to these variables as well as the viewpoint variables, the resulting model
might be more appropriately considered as combining two viewpoints, as in section 1.9.

1.7 Implied constraints

Implied constraints, also called redundant constraints, are constraints which are implied by
the constraints defining the problem. They do not change the set of solutions, and hence
are logically redundant. The aim in adding implied constraints to the CSP is to reduce the
search effort to solve the problem.
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A necessary condition for an implied constraint to be useful in reducing search is that it
forbids one or more compound assignments that the existing constraints will allow (given
the level of propagation that will be maintained on the individual constraints during search).
A compound assignment forbidden by an implied constraint cannot lead to a solution, since
it does not change the set of solutions. Without the implied constraint, such an assignment
may occur during the search, and determining that it cannot be completed may take a very
long time.

Dincbas, Simonis and van Hentenryck [9] used implied constraints in solving the car
sequencing problem described earlier. In section 1.6, the constraints on the variables o ij

enforcing the option capacities are given. These constraints only express that fact that the
option capacities cannot be exceeded; there is nothing to prevent a partial sequence of cars
from using a particular option below capacity. However, a certain number of cars requiring
each option have to be fitted into the sequence, so that going below capacity in one part of
the sequence may make it impossible to avoid exceeding the capacity elsewhere. Hence,
there are implied constraints which have not yet been expressed.

For instance, suppose there are 30 cars, and 12 of them require option 1, with capacity
1 car in any 2. Then at least one of the cars in slots 1 to 8 of the production sequence
must require option 1; otherwise 12 of cars 9 to 30 will require option 1, which violates
the capacity constraint. Similarly, cars 1 to 10 must include at least two option 1 cars,
... , and cars 1 to 28 must include at least 11 of the option 1 cars. Dincbas et al. added
implied constraints of this kind for each option and for all sub-sequences starting with slot
1. Without these constraints, partial sequences in which one or more option stations are
under-utilized can be formed, and eventually the search will have to backtrack when it is
found that the sequence cannot be completed without exceeding the option capacity. The
implied constraints prevent wasted search of unsatisfiable subproblems.

1.7.1 Implied Constraints and Search Order

Ensuring that each implied constraint forbids an assignment that would be allowed other-
wise is not sufficient to guarantee that the added constraints will reduce the search effort.
It may be that the assignments forbidden by a proposed implied constraint would never
occur during the search anyway, given the search order. Hence, in backtracking search, the
order in which the variables are assigned can affect whether it will be beneficial to add an
implied constraint or not.

For instance, Borrett & Tsang [5] discuss adding an implied constraint between vari-
ables q and r when binary constraints between p and q and between p and r already exist
in the CSP. The constraint cqr could be derived by composing the constraints cpq and cpr

- effectively, making this triple of variables path consistent. Borrett & Tsang show that
using a simple backtracking algorithm (i.e. one doing no constraint propagation), if the
three variables p, q and r are assigned in that order, the implied constraint c qr will have
no effect on the number of nodes visited. On the other hand, if the CSP already contains
the constraints cpr and cqr, then adding the constraint cpq can reduce the number of nodes
visited, given the same search order.

Similarly, in the car sequencing problem, the usefulness of the implied constraints used
by Dincbas et al. depends on the search order [39]. In the example given earlier, at least
one car in slots i to i+7 of the sequence must require option 1, for any value of i from 1 to
23; hence, as well as the constraint added by Dincbas et al., there are many other equally
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valid constraints. Overall, there are potentially very many implied constraints imposing
a lower limit on the number of cars requiring a particular option in any sub-sequence of
length k. However, if the search builds up the sequence of cars consecutively from slot
1, only the implied constraints on the first k cars affect the search. The other possible
implied constraints would always be consistent, but checking this whenever one of the
variables involved is assigned a value would slow down the search. On the other hand, if
the variables were assigned in a different order, a different set of implied constraints would
be useful.

1.7.2 Implied Constraints v. Global Constraints

Following the work of Dincbas et al. on the car sequencing problem, Régin and Puget
[35] later developed a global constraint specifically for sequence problems, using the car
sequencing problem as a test case. They noted that “our filtering algorithm subsumes all
the implied constraints” used by Dincbas et al. The global constraint makes the effort of
devising and implementing implied constraints redundant, in this case. It may often be true
that implied constraints are only useful because a suitable global constraint does not (yet)
exist. On the other hand, many implied constraints are simple and cheap to propagate,
whereas global constraints are often time-consuming to propagate. Moreover, it is only
worth the effort of implementing a global constraint if it can be used for a significant class
of problems; for a one-off problem, where good implied constraints can be found, the
implied constraints are likely to be more cost-effective.

1.7.3 Implied Constraints from Subproblems

Van Beek and Wilken [46] use implied constraints in finding minimum length instruction
schedules for the object code produced by a compiler. The implied constraints are lower
bounds on the number of steps between a pair of instructions, found by considering sub-
problems; if a consistency check in the subproblem shows that the current lower bound
on the distance between two instructions cannot be achieved, a constraint increasing the
bound can be added. Van Beek and Wilken comment that generating powerful implied con-
straints in this way was the key to being able to solve very large real instruction scheduling
problems. In the SONET problem, described in section 1.6, implied constraints were also
derived (in that case by hand) from considering subproblems; the SONET constraints are
lower bounds on the auxiliary variables that represent the number of times that each node
is installed on a ring. These examples suggest that subproblems might also be a useful
source of tighter variable bounds in other cases.

1.7.4 Finding Implied Constraints

Implied constraints can often be explained as projections of a conjunction of a few of the
problem constraints onto a subset of the variables in the union of their scopes. These con-
straints can be seen as partially enforcing some higher level of consistency in the problem.
Although the search algorithm only enforces consistency on single constraints, there are
forms of consistency that take all the constraints on a subset of the variables and find in-
consistent tuples. Enforcing consistency on subsets of the constraints is computationally
expensive, even if only done before search; if it generated the equivalent of useful implied
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constraints, it would likely also generate a much larger number that would not be useful
during the search. Furthermore, consistency enforcing generates sets of forbidden tuples;
these would be presented to the constraint solver as extensional non-binary constraints,
which are time-consuming to propagate. This does not at present appear a promising route
to generating implied constraints automatically; it is not sufficiently selective, and implied
constraints need to be expressed in form that can propagate efficiently, like other problem
constraints.

Alternatively, adding implied constraints to a CSP is often inspired by a search taking
an unacceptably long time to solve a problem, and discovering on examining the search
tree in detail that assignments that are obviously incorrect are being considered; implied
constraints are generalizations that state explicitly what is incorrect about these assign-
ments and other potential failed assignments of the same kind. On this view, implied
constraints are akin to nogoods (inconsistent compound assignments) that are uncovered
during search. However, individual nogoods have little effect on the search, and if there are
enough of them to be useful, checking them will hinder the constraint solver. An advan-
tage is that they do take account of the search heuristics. Again, automatically generating
implied constraints from nogoods identified during the search would require some means
of expressing the constraints in a form that can propagate efficiently.

Some attempts have been made to generate implied constraints automatically, by look-
ing for logical consequences of the existing constraints. Hnich, Richardson and Flener
[26] classify implied constraints, and discuss automatically generating implied constraints
of each type. Some of the types that they identify have been discussed separately here; for
instance, one of the types is a global constraint (such as an allDifferent constraint) used
to replace a set of constraints (a clique of �= constraints). Other types require introducing
new variables. However, two of their types fit closely the implied constraints discussed in
this section: variable elimination (using one constraint to eliminate a variable in its scope
from other constraints involving that variable) and constraints over a new scope (using a
set of constraints to derive a new constraint over a subset of the union of their scopes).
Hnich et al. describe using PRESS (PRolog Equation Solving System) to try to derive
implied constraints from linear and nonlinear arithmetic constraints; in their test cases, it
can find some implied constraints of the variable elimination type, and also implied linear
constraints derived from nonlinear constraints, but not the other types.

Frisch, Miguel and Walsh [18] also make some initial steps towards automating the
generation of implied constraints by developing methods (analogous to methods in proof
planning) that can be applied to the set of constraints in a CSP to derive new constraints.
One is the eliminate method, which attempts to eliminate variables or terms from a
non-linear constraint, to give a constraint of lower arity that may propagate better. For
example:
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Neither of these approaches addresses the interaction of the search heuristics and the
implied constraints, but if a class of implied constraints can be identified for a type of prob-
lem, such as the car sequencing problem, it would be possible to identify the constraints
that are useful during search, and discard the rest. Simonis et al. [38] discuss using visual-
ization tools in a constraint solver to assess the value of implied constraints, by examining
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the progress of the search in detail. This makes it possible to check that the implied con-
straints work well with the search heuristics or to find out which of the implied constraints
are effective.

1.8 Reformulations of CSPs

In the last sections, different ways of improving a model were discussed; the changes to
the model keep the same viewpoint but change or add to the constraints, or expand the
viewpoint by adding auxiliary variables. The alternative way to change the model is to
change the viewpoint. This may require literally looking at the problem from a different
perspective and developing some insight into the problem. However, some transformations
from one viewpoint to another are standard or are useful in specific problem classes.

There is an established and continuing body of work on transforming CSPs into sat-
isfiability problems (e.g. [49]). This work will not be discussed here, because its aim is
fundamentally different; rather than developing a model that can be solved more efficiently
as a CSP, using a constraint solver, it aims to solve the underlying problem more efficiently
as a SAT problem, using a SAT solver.

1.8.1 Non-binary to Binary translations

Early search algorithms for CSPs only dealt with binary constraints; as a result, there are
some standard transformations of a CSP with non-binary constraints into a binary CSP
[1]. The hidden variable transformation adds a new variable h i to the CSP for each non-
binary constraint, ci; the values of hi correspond to tuples of variables in the scope of c i.
The original constraint ci is replaced by binary constraints between h i and the variables in
the scope of ci; each value of hi implies a value for each variable in the scope of c i, and
the binary constraints enforce this correspondence. In the terminology of this chapter, the
hidden variables would be classed as auxiliary variables, rather than a change of viewpoint.

The dual graph translation of a non-binary CSP replaces the original constraints by
new variables, and so produces a new CSP based on a different viewpoint. The dual vari-
able di represents the constraint ci, and its values represent the tuples satisfying ci. There
is a binary constraint between two dual variables d i and dj if the scopes of ci and cj have
a non-empty intersection; the binary constraint forbids pairs of values which would assign
different values to any of the shared variables.

Bacchus and van Beek [1] investigate these transformations empirically, using a for-
ward checking algorithm: when applied to the original non-binary model, the algorithm
checks a k-ary constraint whenever all but one variable in its scope has been assigned.
They show that both the hidden variable and dual graph transformation can outperform
the original model; however, given constraint solvers that have better ways of dealing with
many types of non-binary constraint, these transformations have been little used in prac-
tice.

An exception is the use of dual variables to replace 9-ary constraints in the Maximum
Density Still Life problem, described earlier in section 1.5.4. In [42], the 9-ary constraints
between a cell and its eight neighbours are replaced by dual variables, exactly as in the
dual graph transformation. Unlike the dual graph transformation, the original variables
are also kept, although only in order to express the objective, that the number of live cells



18 1. Modelling

should be maximized. The dual variables represent 3 × 3 ‘supercells’; one advantage of
the dual graph translation, as well as replacing the cumbersome 9-ary constraints, is that it
allows the supercells rather than the cells to be the search variables. Hence, the dual graph
translation in this case corresponds to a genuinely different perspective on the problem.

A similar transformation has been used by Hnich, Prestwich and Selensky [25] in mod-
elling the covering test problem (problem 45 in CSPLib), arising in software testing. The
covering test problem is: for a given tuple (t, k, g, b) find a covering array CA(t, k, g) of
size b or show that none exists. The covering array has k columns and b rows, and in every
subset of t columns every possible t-tuple over the alphabet Z g = {0, 1, 2, ..., g− 1} must
occur in at least one row. A solution for t = 3, k = 5, g = 2, b = 10 is shown in Figure
1.2. Every triple of values from {0, 1}, from (0, 0, 0) to (1, 1, 1), occurs in the first three
columns of the array, and this is true of every other subset of three columns as required.

1 2 3 4 5
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

Figure 1.2: A covering array CA(3, 5, 2) of size 10.

A natural way to model the problem is to introduce a b× k matrix of integer variables,
xri, for 1 ≤ r ≤ b and 1 ≤ i ≤ k, such that xri = m if the value in column i and row
r of the array is m. However, it is hard to express the constraints that in every subset of t
columns, every possible t-tuple must occur.

To make these constraints easier to express, Hnich et al. introduced compound vari-
ables, analogous to the variables of the dual graph transformation, to represent every t-
tuple of columns in each row. In the case of a binary alphabet, each compound variable
has domain {0, ..., 2t}. There are still non-binary constraints on these variables: there is
a global cardinality constraint on the compound variables corresponding to a given t-tuple
in each row, to ensure that every value between 0 and 2 t − 1 is assigned at least once. In
addition, just as in the dual graph translation, there are binary constraints between the com-
pound variables corresponding to a row that if they have columns in common, in terms of
the original variables, they must agree on the values that they give to their shared variables.

These examples show that the dual variables of the dual graph translation can be prac-
tically useful in rewriting non-binary constraints, even without eliminating the non-binary
constraints completely.
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1.8.2 Permutation Problems

A well-studied class of problem with two standard viewpoints is the class of permutation
problems. A CSP is a permutation problem if the union of the domains has the same
number of elements as there are variables and each variable must be assigned a different
value. Any solution assigns a permutation of the values to the variables. Other constraints
in the problem determine which permutations are acceptable solutions.

Each possible value is assigned to exactly one variable and each variable is assigned
exactly one value. The dual viewpoint was identified by Geelen [19]; it switches the roles
of the variables and values. For example, the usual CSP model of the n-queens problem
in which the variables represent the rows and the values represent the columns is a permu-
tation problem; the dual model has the variables representing the columns and the values
representing the rows. In this instance, the two viewpoints give the same CSP, so that one
is not better than the other. In many permutation problems, however, the constraints are
easier to express and propagate better in one viewpoint than the other. For example, the
problem of finding an n×n magic square, containing the numbers 1 to n 2 arranged so that
the sum of every row and column is the same, can be expressed as a permutation problem;
we can either find the number to go in each cell of square, or decide which cell to put
each number in. However, the constraints on the row and column sums are much easier to
express in the first viewpoint than the second.

As described in the next section, rather than choosing one viewpoint or its dual, we
can combine the two; much recent work on permutation problems has investigated this
possibility.

1.8.3 Boolean Models

Another possible viewpoint for a permutation problem has a Boolean variable x ij for every
possible variable-value combination (or value-variable combination in the dual viewpoint).
For instance, in the n-queens problem, the variables x ij , 1 ≤ i, j ≤ n correspond to the
squares of the board. The assignment (xij , 1) means that there is a queen on the square in
row i and column j, and (xij , 0) means that there is not.

Similarly, a Boolean viewpoint can be derived from and CSP viewpoint with integer or
set variables. For any assignment (xi, j) in an integer viewpoint, there is a Boolean variable
bij in the Boolean viewpoint; the assignment (bij , 1) corresponds to the assignment (xi, j),
whereas any other assignment to xi corresponds to (bij , 0). For any assignment (Xi, S)
in a viewpoint with set variables, and for any value j ∈ S, the Boolean variable b ij is
assigned the value 1.

The variables of the Boolean viewpoint are closely similar to the variables of the direct
encoding of a CSP into SAT [49]. However, the Boolean viewpoint usually gives a less
efficient CSP than the integer or set model. The transformation to a Boolean viewpoint
is described here to emphasize that there is always a choice of models in representing a
problem as a CSP; in practice, it is often more useful to try to convert an initial Boolean
model into one with integer or set variables.
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1.8.4 Different perspectives

So far in this section, the examples of changing viewpoint have involved reformulating an
existing viewpoint. However, for some problems, it may be possible to find a new view-
point by viewing the problem from a different angle; this is potentially valuable, because
the constraints expressed in a radically different viewpoint may express different insights
into the problem and so show different ways of solving it.

A problem where many different viewpoints have been devised is the ‘open stacks’
problem, set for the first Constraint Modelling Challenge, in connection with the Mod-
elling and Solving Problems with Constraints workshop at IJCAI’05. The submissions to
the Challenge can be found at www.dcs.st-and.ac.uk/˜ipg/challenge. The
problem, as stated for the Challenge, is: “A manufacturer has a number of orders from
customers to satisfy; each order is for a number of different products, and only one product
can be made at a time. Once a customer’s order is started (i.e. the first product in the
order has been made) a stack is created for that customer. When all the products that a
customer requires have been made, the order is sent to the customer, so that the stack is
closed. Because of limited space in the production area, the number of stacks that are in
use simultaneously i.e. the number of customer orders that are in simultaneous production,
should be minimized.”

A wide variety of viewpoints were represented amongst the Challenge entries. Perhaps
the most obvious viewpoint has variables representing positions in the production sequence
and values representing the products; this creates a permutation problem, so that this view-
point also has a dual. One insight into the problem is that although ostensibly requiring a
sequence of the products, it can in fact be solved by sequencing the customers; this gives
a viewpoint where the variables are the positions in a sequence of customers; the value
of the ith variable is the ith customer to have their order completed. Other viewpoints
focus on the stacks: one has variables representing the customers, and the value assigned
to a variable is the stack area that customer will use. Also focussing on the stacks, an-
other viewpoint has a Boolean variable for each pair of customers: the value 0 means that
they share a stack location, and 1 means that they do not. This last viewpoint relates very
directly to the objective, since minimizing the maximum number of open stacks is equiva-
lent to maximizing the number of customers that can share a stack location. Several other
viewpoints also feature in the entries.

Different viewpoints can be used individually as the basis of a model of the problem.
However, a more interesting approach is to combine different viewpoints; this will be
discussed in the next section. When the viewpoints being combined are based on different
insights into the problem, this potentially allows all these insights to contribute to solving
the problem, rather than forcing the modeller to choose just one.

1.9 Combining Viewpoints

If two viewpoints V1 = 〈X1, D1〉, V2 = 〈X2, D2〉 for the same problem have been iden-
tified, a complete model of the problem can be constructed from each viewpoint, say
M1 = 〈X1, D1, C1〉, M2 = 〈X2, D2, C2〉. Hence, the models are mutually redundant.
It can be beneficial to combine the two models rather than to choose between them. The
combined model has variables X1 ∪ X2 and (in the simplest form of combination) con-
straints C1 ∪ C2 ∪ Cc, where Cc is a set of channelling constraints. The channelling
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constraints express the relationship between the two sets of variables, X1, X2, in such a
way that assignments in either viewpoint can be translated into assignments in the other.
This idea was introduced by Cheng, Choi, Lee and Wu [6].

The potential advantage of combining viewpoints in this way comes from propagating
the constraints of the two models during the search for a solution. The search variables
can be the variables of one of the viewpoints, say X1 (this is discussed further below). As
search proceeds, propagating the constraints C1 removes values from the domains of the
variables in X1. The channelling constraints may then allow values to be removed from
the domains of the variables in X2. Propagating these value deletions using the constraints
of the second model, C2, may remove further values from these variables, and again these
removals can be translated back into the first viewpoint by the channelling constraints. The
net result can be that more values are removed within viewpoint V 1 than by the constraints
C1 alone, leading to reduced search. Cheng et al. give a detailed account of how the
propagation in a combined model works, using the n-queens problems as a case study.

Law and Lee [29] discuss a process they term model induction; this uses two view-
points, without combining them, and provides an insight into why multiple viewpoints
can be useful. Given two viewpoints 〈X, D〉 and 〈X ′, D′〉, the constraints of the second
viewpoint are translated into constraints in the first viewpoint, using the channelling con-
straints. The new constraints can be merged into the existing constraints with the same
scope in the first viewpoint. Law and Lee showed that this brings new information into the
first viewpoint and can speed up search.

In section 1.8, permutation problems were defined and the dual viewpoint described.
In solving a permutation problem, it is often beneficial to combine the two viewpoints.
In a permutation problem with k variables x1, x2, ..., xk , the domain of each variable is
{1, 2, ..., k}. The dual variables are d1, d2, ..., dk, also with domains {1, 2, ..., k}. The
channelling constraints defining the relationship between the variables of the two view-
points are: (xi = j) ≡ (dj = i), ∀i, j, 1 ≤ i ≤ k, 1 ≤ j ≤ k. (Note that these can
be more efficiently represented by a global inverse constraint [3] rather than n 2 binary
constraints, although the binary constraints give the same propagation.)

Hnich, Smith and Walsh [27] consider both permutation problems and injection prob-
lems (which are similar, but have more values than variables). Several possible combined
models for injection problems are investigated, in some cases using dummy values for the
dual variables, to allow for the values that are not assigned to the original variables.

Cheng et al. [6] also give an example of combining an integer variable viewpoint
with a set variable viewpoint in a nurse rostering problem; the problem can be viewed as
either allocating shifts to nurses or as allocating nurses to shifts. The first viewpoint has
an integer variable nij for each nurse i and day j; its value represents the shift that nurse i
works on day j. The second viewpoint has a set variable Skj for each shift k and day j; its
value represents the set of nurses that work shift k on day j. The channelling constraints
to combine the viewpoints are (nij = k) ≡ (i ∈ Skj).

As well as the inverse constraint already mentioned, a number of other global con-
straints such as the element constraint relate two sets of variables and so can often be
seen as channelling constraints between the variables of two viewpoints. (See Chapter 7,
“Global Constraints”.)

However, although it is not necessary for channelling constraints to be binary, they
must ensure that assignments in one viewpoint can trigger constraint propagation in the
other when only a few variables have been assigned. If constraint propagation via the
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channelling constraints can only occur when a complete assignment has been made (i.e.
therefore when a solution has already been found) there is no benefit from the combination.

1.9.1 Selecting constraints

It is clearly safe to combine two or more models of a problem into a single combined
model, containing the variables and the constraints of both models, together with the chan-
nelling constraints. The constraints of either model will ensure that the solutions to the CSP
correspond to the solutions to the problem, so that this will also be true of the combined
model.

However, it is often unnecessary to include all the constraints of both models, and the
search will be speeded up if some of the constraints are dropped.

In many cases, a motivation for combining viewpoints is that some of the constraints
are hard to express (and propagate weakly) in one viewpoint and some are hard to express
in the other. The combined model allows the constraints to be expressed in the most con-
venient viewpoint. In this situation, it often happens that the two complete models, one for
each viewpoint, only exist in theory; the only model actually constructed is the combined
model, with a mixture of constraints expressed in each viewpoint.

In the Golomb ruler example, the requirement that the pairwise differences between the
marks on the ruler are all distinct can be expressed in terms of either viewpoint: either as
the 4-ary constraints xj−xi �= xl−xk or as a single global constraint allDifferent(d12, d13,
..., dm−1,m). These are equally correct in ensuring that the solutions meet the condition;
however, they are not equivalent in terms of propagation. [44] shows empirically that the
allDifferent constraint (or a clique of �= constraints) gives much better results than the 4-ary
constraints (if GAC is not maintained on the 4-ary constraints).

For permutation problems, where two viewpoints with variables x 1, x2, ..., xn and
d1, d2, ..., dn can be combined as described earlier, with the channelling constraints x i =
j) ≡ (dj = i), these channelling constraints are sufficient to ensure that the values assigned
to x1, x2, ..., xk (and so also those assigned to d1, d2, ..., dk) are distinct [27]. Hence, the
constraints xi �= xj , 1 ≤ i < j ≤ n or allDifferent(x1, x2, ..., xn), required in the original
model, are no longer needed in the combined model to ensure correct solutions. Main-
taining arc consistency on the binary channelling constraints can prune more values than
binary �= constraints on these variables, though fewer than GAC on the allDifferent con-
straint. Enforcing AC on a set of binary �= constraints, representing an allDifferent con-
straint, removes a value from the domain of a variable if that value is the only one value in
the domain of another variable (e.g. because it has been assigned that value). Enforcing AC
on the channelling constraints does the same pruning as the �= constraints, and in addition
removes all values but one from the domain of a variable (and thereby effectively assigns
the remaining value to the variable) if the remaining value does not appear in the domain
of any other variable in {x1, x2, ..., xk}. Hence, in a combined model of a permutation
problem, binary �= constraints between the variables of either viewpoint are a waste of
effort; an allDifferent constraint on one set of variables is not needed for correctness but
in some problems may do sufficient additional pruning to give a smaller run-time than the
channelling constraints alone.

[40] introduced the idea of a minimal dual model of a permutation problem: this has
both sets of variables, the constraints (excluding the allDifferent constraint) of only one
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model and the channelling constraints. For some permutation problems, the constraints
of one model are strictly stronger than those of the other, so that including both sets of
constraints gives no benefit in terms of reducing search, and incurs an overhead in run-time.
In [40], it is demonstrated empirically that for Langford’s problem (problem 24 in CSPLib),
the minimal dual model generates the same search as a model using all constraints of both
models, but has a much shorter run-time.

Choi, Lee and Stuckey [8] investigate theoretically when some of the constraints in
one viewpoint are propagation redundant in a model which also has the constraints of
another viewpoint and the channelling constraints. A constraint is propagation redundant
if the propagation that it would cause is subsumed by the propagation resulting from other
constraints in the model. Propagation redundant constraints can clearly be removed from
the model, and should be removed since they only add an unnecessary overhead. (Note
that unlike many other changes to a model, removing propagation redundant constraints
does not depend on the search heuristics.) Choi et al. suggest that their approach can be
automated.

1.9.2 Choice of Search Variables

When combining two (or more) viewpoints of a problem, there is a choice of which set of
variables to use to drive the search. Since each viewpoint could be the basis for a model
of the problem, assigning values to either set of variables would be sufficient to solve the
problem. This is obviously true if the combined model contains all the constraints of both
individual models; the combined model could be treated as either of the original models,
together with some extra baggage. It is still true if the combined model does not contain
all the constraints of both models, provided that every condition defining the solutions to
the underlying problem is expressed as a constraint in one or other viewpoint.

For instance, in Langford’s problem the constraints expressed in one viewpoint propa-
gate better than those in the other, but searching on the variables of the second viewpoint,
in a combined model, leads to solutions with less search effort [27].

Another possibility is to use both sets of variables together as search variables. This
makes most sense if the variables are of the same type and if the variable ordering is
dynamic; the next variable can then be chosen from either set, according to the state of the
search (although one could imagine a static ordering which chose alternately from each
set of variables, say). When a variable from either set is assigned a value, the channelling
constraints ensure that the corresponding dual variable is immediately assigned a value too.
Hence, although the number of search variables may appear to be twice as large as it need
be, only half of them will be specifically assigned during the search. This search strategy,
choosing the variable with smallest domain, has been successfully used with problems that
can be modelled as permutation problems, by Hnich, Smith and Walsh [27].

1.9.3 Multiple Viewpoints

Models in which more than two viewpoints are combined are possible. Given that com-
bining mutually redundant models can lead to additional constraint propagation, Cheng et
al. [6] suggested that “it seems reasonable to combine and implement as many mutually
redundant models as one can dream of.” Dotú, del Val and Cebrián [10] investigated this
empirically in solving instances of the quasigroup completion problem, considered as a
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multiple permutation problem. A quasigroup completion instance requires completion of
an n × n Latin square when some entries have already been filled.

The initial model has variables xij , 1 ≤ i, j ≤ n representing the cell in row i, column
j. The domain of every variable is the set {1, ..., n}. Since the values in every row and in
every column of the Latin square must form a permutation of the values 1 to n, two other
models that are duals of this are possible: in one the variables r ik, 1 ≤ i, k ≤ n represent
the column in which the value k appears in row i; in the other, the variables c jk, 1 ≤ j, k ≤
n represent the row in which the value k appears in column j. There are three sets of
channelling constraints that link each pair of models, for instance (x ij = k) ≡ (rik = j).
Dotú et al. found that overall, a model combining three viewpoints linked by three sets of
channelling constraints performed well.

1.10 Symmetry and Modelling

Symmetry in CSPs, and symmetry breaking, is a large topic in its own right and dealt with
in Chapter 10, but some aspects of symmetry and its interaction with modelling are worth
discussing here.

As already mentioned, modelling a problem P as a CSP may introduce symmetry, by
using distinct variables and/or values to represent entities that are indistinguishable in P .

An example is the second viewpoint for the n-queens problem, given earlier, which has
a variable for each queen. This introduces an unnecessary notion of the 1st queen, the 2nd
queen and so on, so that different solutions to the CSP can correspond to exactly the same
layout of the board, but with the queen labelled 1 swapped with the queen labelled 2. Nei-
ther of the other two viewpoints given has this symmetry (although the n-queens problem
has inherent symmetry which does appear in the other viewpoints). This illustrates that
introducing symmetry can sometimes easily be avoided by choosing another viewpoint.

The golfers problem (problem 10 in CSPLib) is another case in which some viewpoints
introduce symmetry. One instance of the problem is stated as: 32 golfers want to play in 8
groups of 4 each week, in such a way that any two golfers play in the same group at most
once. How many weeks can they do this for? The problem can be generalised to different
sizes and numbers of groups. To model the problem of finding a schedule for n weeks,
using integer variables, a possible viewpoint has 0/1 variables x ijkl , where xijkl = 1 if
player i is the jth player in the kth group in week l, and 0 otherwise. However, the players
within each group, the groups within each week, the weeks within the schedule and the
players themselves could all be permuted in any solution to give an equivalent solution.

The first symmetry (the players within the group) can be eliminated by using set vari-
ables to represent the groups: the set variable Gkl represents the kth group in week l, and
the value of this variable represents the set of players forming that group. The constraints
on these variables are that:

• the cardinality of each set is 4;

• the sets in any week do not overlap, i.e. for all l, the sets Gkl, k = 1, ..., 8 have an
empty intersection;

• any two sets in different weeks have at most one member in common.
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Constraint solvers that support set variables provide cardinality constraints, and con-
straints on the intersection of set variables, to allow such constraints to be expressed. Using
set variables rather than integer variables is a common way to avoid introducing symmetry
in this way: where the order of objects within a group is immaterial, the group can be mod-
elled as a set rather than as a sequence, which would introduce symmetrically equivalent
sequences.

The model of the car sequencing problem described by Dincbas, Simonis and van
Hentenryck [9], discussed in section 1.6, is also a reformulation to avoid symmetry. The
statement of the problem asks for a sequence of the cars to be produced, so that one obvious
way to model it would be as a permutation problem, in which the variables are the slots
in the sequence and the values are the cars, or v.v. However, two cars requiring the same
options are effectively identical, so that this model would allow symmetrically equivalent
sequences in which identical cars are swapped. Dincbas et al. avoid this by introducing
classes of identical cars. This requires additional constraints to ensure that the correct
number of cars in each class appear in the sequence.

Both ideas can be useful in other contexts, such as staff rostering. Suppose a crew is
required for each shift. Some or all of the crew can often be treated as a set, e.g. if staff
are not allocated specific roles, and the only requirement is that a minimum number must
be provided, they can be represented as a set. If staff with identical skills can be treated as
interchangeable in constructing a roster, it may only be necessary to count how many staff
within each skill-set have been allocated.

In [41], further models of the golfers problem are given which eliminate more of the
symmetry. The first has an integer variable for each pair of players, i 1, i2: the value as-
signed to the variable pi1,i2 represents the week in which this pair of players plays together,
with a dummy value in case they never play together. This viewpoint does not distinguish
between the players within a group, or between the groups within a week. To allow the
constraints to be expressed concisely, auxiliary set variables were also introduced, for each
player i and each week l, representing the set of players that player i plays with in week l.

A final model presented in [41] also eliminates the symmetry due to the fact that the
weeks of the schedule are interchangeable, although it only deals with the special cases of
the golfers problem in which every player plays every other player at some point during
the schedule. For each pair of players i1, i2, it has a set variable representing the group of
players that the pair plays with, and another representing the other pairs of players that play
together in the week that i1 and i2 play together. Unfortunately, the model has a very large
number of variables, but it proved better than the earlier models for solving small instances.
Note that it still has some of the original symmetry, due to the interchangeability of the
players. This work does demonstrate that designing models with the intention of reducing
the symmetry can sometimes be successful, although the resulting model may become
rather complex.

1.10.1 Symmetry-Breaking Constraints

When there is symmetry in the chosen model of a problem (either symmetry introduced
in modelling, or inherent in the problem), one possible way to eliminate or reduce it is to
add symmetry-breaking constraints. Devising such constraints is beyond the scope of this
chapter, but it is worth pointing out here that as a side-effect, such constraints often allow
implied constraints to be derived that would not otherwise be possible.
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This was observed in the template design problem [33] (problem 2 in CSPLib). The
problem is to design templates for printing large sheets of card with items such as cat-food
boxes. An order quantity is specified for each product, such as different flavours of cat-
food. The overall objective is to minimize the total number of sheets that have to be printed
(and so minimize waste), while fulfilling the order quantities for each product.

The t templates to be used are numbered in the model, but in practice are interchange-
able; constraints are added to the model to eliminate this symmetry. The variable r i rep-
resents the number of sheets of card to be printed from template i, and the symmetry-
breaking constraints specify that ri ≤ ri+1, for 1 ≤ i < t.

The objective is to minimize p =
∑

i ri, i.e. the total number of sheets of card to
be printed, and the number of templates needed, t, is at most 4 in the instances studied.
Implied constraints can be added, derived from the symmetry-breaking constraints. For
instance, if there are two templates, at most half the sheets are printed from one template
and at least half from the other. Because of the symmetry-breaking constraints, we can
add: if t = 2, r1 ≤ p/2 and r2 ≥ p/2; if t = 3, r1 ≤ p/3; r2 ≤ p/2 and r3 ≥ p/3; and so
on.

Deriving implied constraints from symmetry-breaking constraints has been discussed
in more detail by Frisch, Jefferson and Miguel [15]. They show, for instance, that adding
lexicographic ordering constraints on the rows and columns to reduce the symmetry in CSP
representing the Balanced Incomplete Block Design problem (prob28 in CSPLib) allows
powerful implied constraints and a considerable simplification of the other constraints,
giving for some instances a huge reduction in the time to solve the problem. In many
problems, there are several distinct ways of adding constraints to give the same reduction
in the symmetry; Frisch et al. suggest that in some cases the choice could be guided by
considering the implied constraints that can then be derived.

1.11 Optimization Problems

Tsang [45] defines a Constraint Satisfaction Optimization Problem (CSOP) as follows:
A CSOP 〈X, D, C, f〉 is defined as a CSP 〈X, D, C〉 together with an optimization

function f which maps every solution to a numerical value. The task in a CSOP is to find
the solution T such that the value of f(T ) is either maximized or minimized, depending
on the requirements of the problem.

If P is an optimisation problem, and MO = 〈X, D, C, f〉 is a CSOP that models P ,
then every solution of C can be translated into exactly one solution of P and at least one
optimal solution of P can be derived from a solution to C. (There is no requirement in this
case that every optimal solution to P should be found as a solution of C.)

Typically, a CSOP is solved in a branch-and-bound fashion, adding a constraint when-
ever a solution T is found that the value of the optimization function must be better than
f(T ) in any future solution. This constraint provides an increasingly tight bound and can
prune the search for future solutions; eventually, if it is proved that no solution satisfying
the current bound exists, the last solution found has been proved optimal. The adapta-
tion of the branch-and-bound principle from operational research was described by van
Hentenryck [47].

Often, however, an optimization problem is represented and solved as a CSP or as a
sequence of CSPs. This is especially appropriate when the optimization function measures
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some feature of the CSP structure, typically the number of variables. Hnich, Prestwich
and Selensky [25], for instance, describe modelling a problem in software testing in which
the objective is to construct a set of test vectors with specified coverage properties: the
objective is to minimize the number of test vectors required. The CSP has a matrix of
variables to represent the test vectors and hence the optimization function is the number of
rows in the matrix. A sequence of CSPs is constructed, adding a row to the matrix each
time, and the first CSP in the sequence that has a solution represents an optimal solution to
the problem.

Even when the optimization function can easily be represented by an additional vari-
able within the CSP, the problem may be represented as a CSP rather than a CSOP. For
instance, in [43], the objective in the SONET problem described in 1.6 is represented as
a variable, and assigned first during the search. The values of the objective variable are
assigned in ascending order, and hence the first solution found has the smallest possible
value of the objective variable, i.e. is optimal. For the problem described, this was found
(empirically) to be more efficient than a branch-and-bound approach. However, it would
only be feasible if there were only a few values between the smallest value in the domain
of the objective variable, after initial constraint propagation, and the optimal value.

In an optimization problem, a compound assignment that satisfies the constraints can be
forbidden if it can be shown that for any solution that this assignment would lead to, there
must be another solution that is equally good or better. Dominance rules are constraints that
forbid compound assignments that are dominated in this way; they are similar to implied
constraints, in their effect, but are not logical consequences of the constraints C and do not
necessarily preserve the set of optimal solutions. Prestwich and Beck [32], on the other
hand, consider dominance rules as strongly related to conditional symmetry in satisfaction
problems.

Getoor, Ottosson, Fromherz and Carlson [21] describe a scheduling application (opti-
mal on-line scheduling of photo-copiers and similar machines) in which dominance rules
play an important part. (Note that Getoor et al. use the term redundant constraint.) They
classify the types of dominance rule that they found, including lower and upper bounds on
the schedule length for a job, derived by relaxing some of the constraints to give a simpler
problem.

Useful dominance rules can often be very simple and obvious. This can also be true
of implied constraints, but in satisfaction problems, the search heuristics tend to guide the
search away from obviously wrong compound assignments; in optimization problems, the
search at some point has to prove that there is no solution, unless there is a good bound
on the objective that makes the proof trivial. In proving that a problem has no solution by
exhaustive search, every possibility allowed by the constraints has to be explored.

For instance, in the SONET problem, described earlier [43], it is obviously suboptimal
to have a SONET ring with only one node on it, since installing a node on a ring contributes
to the cost, but the only reason to install a node on a ring is to allow it to communicate
with another node on that ring. A constraint that every ring must have at least two nodes
on it, and that there must be traffic between them, rules out these solutions and makes a
significant difference to the search.

Optimization problems arising in scheduling, and the importance of propagating the
value of the objective to prune the search, are discussed in Chapter 22.
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1.12 Supporting modelling & reformulation

As will be clear from this chapter, there can often be many different ways to model a prob-
lem. Ideally, an automatic modelling system should generate the best model; but given the
interaction between the model, the search algorithm and the search heuristics, there is not
likely to be a single best model. We could envisage a system that generates a number of
different models of a problem, and can advise that one is better than another under certain
circumstances. Flener, Pearson and Ågren [13] describe a system that refines a specifica-
tion to a model that uses matrices of Boolean variables. Systems that generate alternative
models from a specification of the problem are described by Hnich [24], and in two related
papers by Frisch, Hnich, Miguel, Smith & Walsh [16] and Frisch, Jefferson, Martinez
Hernandez and Miguel [17]. The system described in the last papers can generate models
with multiple viewpoints, linked by channelling constraints. [17] presents empirical results
based on a number of problems, comparing the models produced with those described in
the literature. For instance, the system generated 27 models of the SONET problem, de-
scribed earlier; even so, this did not include all of those described in [43]. Comparing the
models generated, other than empirically, is still a gap.

A completely different route to formalizing modelling is by identifying common pat-
terns that can be transferred from one problem to another. Flener et al. [12] advocated
a need to “identify, formalise and document these patterns of formulation and solution”.
Walsh [50] relates the idea to design patterns in architecture and software engineering. This
seems the most effective support available for modellers at present; for instance, since the
paper by Cheng et al. [6], the use of multiple viewpoints linked by channelling constraints
has become commonplace, and dual viewpoints of permutation problems in particular have
been thoroughly studied and understood.

Although there is some progress towards identifying a range of possible ways of mod-
elling a problem, there is less progress towards identifying good models, except by trying
them empirically. In the early days of constraint programming, models were sometimes
compared by estimating the sizes of their search spaces, i.e. the product of the domain
sizes. This could be a good indication of the search effort if the search algorithm simply
did generate and test, but it is too simplistic for any more sophisticated search algorithm.
Since the choice of model interacts with the choices of search algorithm and search heuris-
tics, models can only be compared in the context of the other choices. Simonis et al. [38]
describe the use of visualization tools to examine the progress of the search in detail and
to compare the performance of different models; in principle, such tools can also be used
to identify inefficiencies in the search and to guide further improvements to the model.

Some modelling advice has been devised; for instance, Simonis [37] gives ‘30 Golden
Rules’ for modelling. There are a few specific guidelines in the CP folk-lore, e.g. “Avoid
Boolean models”, and more generally, “Reduce the number of variables” or “Reduce the
number of constraints”. These guidelines are worth discussing, because although they have
a grain of truth, they should not be taken too literally:

• Reduce the number of variables. Clearly, reducing the number of variables conflicts
with using multiple viewpoints and/or auxiliary variables, which have been demon-
strated to be a good approach to modelling. Furthermore, increasing the number of
search variables, by assigning values to the extra variables, can reduce search. Even
so, it is likely that a model which requires fewer variable assignments to describe the
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solutions to the problem will be a better model; hence, an integer model is likely to
be better than a Boolean model of the same problem. However, this is only true if
the variables chosen allow the constraints to be expressed in a way that propagates
well; it would be easy, for instance, to artificially reduce the number of variables by
making a single variable in the new model stand for a pair of variables in the old
model, but in general, this will not result in a better model.

• Reduce the number of constraints. Again, this conflicts with introducing implied
constraints, if taken literally. However, rewriting a set of constraints in a more
compact form is likely to be beneficial, if the resulting constraints can propagate
efficiently; this covers, for instance, combining constraints with the same scope or
using a global constraints to replace a set of constraints. As before, however, simply
conjoining constraints for the sake of reducing their number will not result in a better
model if the new constraints cannot propagate efficiently.

One could equally well reverse this advice, to say “Add more variables and constraints”.
New variables (whether auxiliary variables or a complete new viewpoint), and constraints
on these variables, that make explicit knowledge of the underlying problem that was not
hitherto expressed, can allow the problem to be solved more easily.

However, with any changes to the model, whether the changes are adding variables and
constraints or removing them, one caveat should be borne in mind: changes to the model
that reduce search may not always reduce run-time. It may be necessary to test a model
empirically in order to see whether a proposed change will in fact lead to solutions being
found more quickly.

Bearing in mind this caveat (and also the interaction between the model, the search
algorithm and the search heuristics), the best advice at present seems to be to aim for a rich
model, using multiple viewpoints, auxiliary variables and implied constraints, incorporat-
ing as much insight into the problem as possible. The more we understand the problem
and build that understanding into the model, the better we will be able to solve it.
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[4] C. Bessière and J. Régin. Enforcing arc consistency on global constraints by solving
subproblems on the fly. In Proceedings CP’99, pages 103–117, 1999.

[5] J. E. Borrett and E. P. Tsang. A Context for Constraint Satisfaction Problem Formu-
lation Selection. Constraints, 6:299–327, 2001.

[6] B. M. W. Cheng, K. M. F. Choi, J. H. M. Lee, and J. C. K. Wu. Increasing constraint
propagation by redundant modeling: an experience report. Constraints, 4:167–192,
1999.

[7] K. C. K. Cheng and R. H. C. Yap. Applying Ad-hoc Global Constraints with the case
Constraint to Still-Life. Constraints, 11, 2006. (To appear).

[8] C. W. Choi, J. H. M. Lee, and P. J. Stuckey. Removing Propagation Redundant
Constraints in Redundant Modeling. ACM Transactions on Computational Logic,
2006. (To appear).

[9] M. Dincbas, H. Simonis, and P. van Hentenryck. Solving the car-sequencing problem
in constraint logic programming. In Y. Kodratoff, editor, Proceedings ECAI-88, pages
290–295, 1988.
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[35] J.-C. Régin and J.-F. Puget. A Filtering Algorithm for Global Sequencing Constraints.
In G. Smolka, editor, Principles and Practice of Constraint Programming - CP97,
LNCS 1330, pages 32–46. Springer-Verlag, 1997.

[36] F. Rossi, C. Petrie, and V. Dhar. On the Equivalence of Constraint Satisfaction Prob-
lems. In Proceedings of ECAI-90, pages 550–556, 1990.

[37] H. Simonis. Finite Domain Constraint Programming Methodology. Tutorial pre-
sented at the PACT 2000 conference. (Available as a Powerpoint presentation from
the author.), 2000.

[38] H. Simonis, T. Cornelissens, V. Dumortier, G. Fabris, F. Nanni, and A. Tirabosco.
Using Constraint Visualisation Tools. In P. Deransart, M. V. Hermenegildo, and
J. Maluszynski, editors, Analysis and Visualization Tools for Constraint Program-
ming, LNCS 1870, pages 321–356. Springer, 2000.

[39] B. M. Smith. Succeed-first or Fail-first: A Case Study in Variable and Value Ordering
Heuristics. In M. Wallace, editor, Proceedings PACT97, 3rd International Conference
on the Practical Application of Constraint Technology, pages 321–330. The Practical
Application Company, 1997.

[40] B. M. Smith. Modelling a Permutation Problem. Research Report 2000.18, School
of Computer Studies, University of Leeds, 2000.

[41] B. M. Smith. Reducing Symmetry in a Combinatorial Design Problem. In Pro-
ceedings of CP-AI-OR’01, the International Workshop on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems,
2001.

[42] B. M. Smith. A Dual Graph Representation of a Problem in ‘Life’. In P. van Henten-
ryck, editor, Principles and Practice of Constraint Programming - CP 2002, LNCS
2470, pages 402–414. Springer, 2002.

[43] B. M. Smith. Symmetry and Search in a Network Design Problem. In R. Bartak
and M. Milano, editors, Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems, Proceedings of CPAIOR 2005 (2nd
International Conference), LNCS 3524, pages 336–350. Springer, 2005.

[44] B. M. Smith, K. Stergiou, and T. Walsh. Using auxiliary variables and implied con-
straints to model non-binary problems. In Proceedings AAAI-2000 (Conference of
the American Assocation for Artificial Intelligence), pages 182–187, 2000.

[45] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.
[46] P. van Beek and K. Wilken. Fast optimal instruction scheduling for single-issue pro-

cessors with arbitrary latencies. In T. Walsh, editor, Principles and Practice of Con-
straint Programming - CP 2001, LNCS 2239, pages 625–639. Springer, 2001.

[47] P. van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.
[48] P. van Hentenryck and Y. Deville. The Cardinality Operator: A New Logical Connec-

tive and Its Application to Constraint Logic Programming. In Proceedings of the 8th
International Conference on Logic Programming (ICLP-91), pages 745–759, 1991.



34 BIBLIOGRAPHY

[49] T. Walsh. SAT v CSP. In Proceedings CP’2000, pages 441–456, 2000.
[50] T. Walsh. Constraint patterns. In F. Rossi, editor, Principles and Practice of Con-

straint Programming - CP 2003, LNCS 2833, pages 53–64. Springer, 2003. Invited
talk.



Appendices




