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Talk Outline

4 Blocks:

� Purpose and Concept

� UML and OCL

� Modelling Example

� Outlook and Conclusion
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Part 1 – Purpose and Concept
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Project Goals

Goals:

(1) modelling support for constraint problems

(2) suitable reuse of public standards (UML/OCL, . . . )
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Motivation
� little modelling support for (re-) formulating CSPs

� most problems still solved by experts
� constraint engineering

Problem
Description Implementation

model

informal
language

machine-
parseable

� structure information gained in analysis
� varying levels of abstraction
� different degrees of precision
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Classical CSP Definition

1..*Constraint Domain
Variable

value
1..* 1..* 1

CSP:

� variables X := {x1, ..., xn}

� domains D := {d1, ..., dn}

� constraints C ⊆ d1 × d2 × ... × dn−1 × dn

Example:
X = {a, b}; D = {N, N}
C ≡ a < 22 ∧ a ≤ b ∧ b > 12
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Purpose: Why use class models
� objective: complex data in terse format

� constraint (hyper-) graph inappropriate

q1

q2

q3

q4q6

q5

q8

q7

� ⇒ no structural abstraction
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Purpose: Modelling Support
Support In Other Disciplines:

� Semantic Data Models in Database Design

� Semantic Networks in Knowledge Engineering
� Ubiquitous modelling in:

� Software development
� Hardware development
� Engineering in general

Modelling Constraints – p.8/42



Purpose: Modelling Support
Support In Other Disciplines:

� Semantic Data Models in Database Design
� Semantic Networks in Knowledge Engineering

� Ubiquitous modelling in:
� Software development
� Hardware development
� Engineering in general

Modelling Constraints – p.8/42



Purpose: Modelling Support
Support In Other Disciplines:

� Semantic Data Models in Database Design
� Semantic Networks in Knowledge Engineering
� Ubiquitous modelling in:

� Software development
� Hardware development
� Engineering in general

Modelling Constraints – p.8/42



Concept

Conceptual 
Model

Source Code

Problem
Specification
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Part 2a: UML
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The 4+1 view of UML

Vocabulary
Functionality

System Assembly
Configuration 
Management

Scalability
Performance

Distribution
Installation

System Topology

Behaviour

Deployment
ViewProcess View

Design View Implementation
 View

Use Case
View
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Types of UML Diagrams

UML diagrams

static view dynamic view

sequence
diagram

collaboration
diagram

object
diagram

class
diagram

statechart
diagram

interaction
diagrams

activity
diagram

use case
diagram

deployment
diagram

implementation
diagrams

component
diagram
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Types of UML Diagrams

  UML diagrams  

static view

object
diagram

class
diagram
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UML Packaging

 Model Management 

Foundation

Core
Extension
Mechanisms

Data Types

 Behavioral Elements 

Use CasesCollaborations

Common Behavior

State Machines

Activity Graphs
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UML Packaging

Model Management

Foundation

Core

Data Types
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Building Blocks (UML)

. classification Type 1

Type 2

Type 3

Complex Type

. association
A B

C

A B
A B

C
*1..*

1..*

* *1

. aggregation
A

U

Z

B CXWV
310 18 10 .. 1005, 15 *

. attributes
MyType

 time: Date

Account
 c: Money

. ISA
(specialization /
generalization)

A

A1

B

BC

C
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Example IS-A Relation
� properties explained in terms of structural differences

previous
0..*

Begin

Task
 part
 start
 duration
 resource
 tag

MasonryFoundation End

� inheritance of:
� attributes
� associations
� constraints
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Part 2b: OCL
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The Object Constraint Language (OCL)
� textual complement to UML
� first order logic with navigation

Use of Types

� basic types: Real, Integer, Boolean

� container types: Collection, Set, Sequence, Bag

� user-defined: Tuple{}

� e.g. Tuple{ Set(1,3,4), ‘‘Joe Bloggs’’, 1999,
Sequence(Tuple(2,1}, Tuple{2,-1}) }

� UML model: all classes accessible
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Status of the OCL
� fully integrated into UML 1.4
� several implementations (Boldsoft, Argo/UML, ...)
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A Flavour of OCL: N-queens

NQProblem
 numQueens: Integer

Nqueen
 row: Integer
 column: Integer

others*

*

� Attribute access
context Nqueen inv:
column > 0 and column <= N and
row > 0 and row <= N

� Navigation
context Nqueen inv:
nQProblem.numQueens >= 3
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A Flavour of OCL

NQProblem
 numQueens: Integer

Nqueen
 row: Integer
 column: Integer

others*

*

� Pseudo - attributes

--simplifies the other expressions
context Nqueen def:
attr N : Integer = nQProblem.numQueens

� Set expressions

context NQProblem inv:
numQueens = nqueen->size()
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A Flavour of OCL

NQProblem
 numQueens: Integer

Nqueen
 row: Integer
 column: Integer

others*

*

� Quantification
--no two queens attack another:

context NQProblem inv:
nqueen->forAll(q1, q2 : Nqueen |

not q1.attacks(q2) )
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Pseudo - Operations in OCL

NQProblem
 numQueens: Integer

Nqueen
 row: Integer
 column: Integer

others*

*

context Nqueen def:
oper attacks(other: Nqueen) : Boolean =

self.column <> other.column and
self.row <> other.row
and
(self.row - other.row).abs <>
(self.column - other.column).abs
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Part 3 – Modelling Example
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The Bridge - Building Problem

� schedule the setup of a 5 - segment bridge
� Martin Bartusch 1983, Massimo Paltrinieri 1994

Modelling Constraints – p.24/42



Bridge - Building: Constraints
� 11 bridge components, 46 tasks, 7 resources

Number of Constraints:

� Resource Constraints:
� most tasks multiply on n = 2...6 components
�

n(n−1)
2 constraints each ⇒ 77 constraints

� Precedences among tasks: 66 constraints

� Five additional requirements: 25 constraints

Sum: 168 constraints
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Bridge - Building: Constraint Graph
UE

PA

A1

A2

A3

A6

A5

A4

P1

P2

S3

S1

S2

S4

S5

S6

B2

B1

B3

B6

B5

B4

M1

M2

M3

M4

M5

M6

AB1

AB2

AB3

AB4

AB5

AB6

T1

L

T2

T3

T5

T4

UA

V1

V2

K1

K2

PE
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Bridge - Building: generic constraints 1/2
� Disjunction: Unary Resources

previous
0..*

Task
 resource
 start
 duration
 part

context Task inv:
Task.allInstances->forAll(a,b: Task|

a <> b and
a.name() = b.name() and
a.resource = b.resource

implies (
a.start + a.duration <= b.start xor
b.start + b.duration <= a.start ) )
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Bridge - Building: generic constraints 2/2
� Precedence Constraints

previous
0..*

Task
 resource
 start
 duration
 part

context Task inv:
Task.allInstances->forAll(t: Task|

t.previous->forAll(prev: Task|
prev.start +
prev.duration <=
t.start ) )
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Bridge - Building: All Tasks

Stop Positioning ExcavationRemoval Filling Masonry Costing

Setting ErectionDelivery Piles Formwork Foundation

requ1

requ2

requ3

requ4

requ5

previous
0..*

Begin

Task
 resource
 start
 duration
 part

� generic constraints apply to all 14 subtypes
� 2 instead of 143
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requ3: Erection of temporary housing

Stop Positioning ExcavationRemoval Filling Masonry Costing

Setting ErectionDelivery Piles Formwork Foundation

requ1

requ2

requ3

requ4

requ5

previous
0..*

Begin

Task
 resource
 start
 duration
 part

context Erection inv:
start + 6 <= formwork.start
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Part 4 – Outlook and Conclusion
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Outlook: Application Development

Application

CP Code in Host Language
XML & OCL

Parser

class Model {
  ComponentType pc = new Component;
  ...
};

class foo : public baz {
  // ...
};

C++ Definitions

CP Code in Host Language

<XMI.header>
  <XMI.documentation>
     <XMI.exporter>Together</XMI.exporter>
     <XMI.exporterVersion>4.0</XMI.exporterVersion>
  </XMI.documentation>
  <XMI.metamodel xmi.name = ’UML’ 
                 xmi.version = ’1.1’/>
</XMI.header>
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Outlook: Distributed CSPs

constraint
solver

user
agent

constraint
fusing

mediator

user
agent

CSP

XML 

solutions

problem
specification

solutions

XML 

XML 

XML 

Constraint
Repository

Constraint
Repository

Constraint
Repository
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Benefits of using UML & OCL
� simplified, comprehensible knowledge acquisition
� seamless integration:

� constraint-based reasoning
� software development

� open to emerging developments (Semantic Web)

Experiences: UML/OCL in

� Software Architecture Description Languages (ADL)
� excellent experiences for configuration KBS
� Ontology Description
� CommonKADS, Rule-Based Systems
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Problems of UML
� informal notation ↔ informal use

� semantics in ’precise’ English
� conflicting definitions, ambiguities, imprecision

� meta-circular: defines itself by itself
� commercial standard – dependent on OMG politics

� slow adaptation (6-12 months)

� modelling relations is awkward, e.g. R ⊆ A × B:
(∀a ∈ A) (∃b ∈ B) (a, b) ∈ R
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Conclusion
Useful for further work

� intuitively appealing notation
� informal notation as ‘scratch pad’
� abstraction / generalisation / packaging facilities
� translation to XML

What to do next

� define a precise UML subset
� interfacing with eg. Localizer
� explore model transformation
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Fin

Thank you for your attention.
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Configuration Knowledge Base in UML

«RootComponent»
PC

 type = {standard, deLuxe}

«ComponentType»
Floppy

 size = {3.5, 5.25}
«ComponentType»
Motherboard

 clockRate = {800, 2200}

«ComponentType»
MBoard-2

«ComponentType»
CPU

«ComponentType»
486

«ComponentType»
Pentium

«ComponentType»
MBoard-1

floppy->size() > 0
«ComponentType»

HardDrive
 gig = {20, 40, 80}

«requires»

<<incompatible>>

1..4

1

1..5

1..2
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Additional Information: MOF

Hard-wired Meta-metamodel

MetaModel( "RECORD_TYPES",
    MetaClass("RECORD",
         [MetaAttr("name", String),
         [MetaAttr("fields", List<"FIELD">) ])
    MetaClass("FIELD",  [ ... ] )
)

RECORD("StockQuote",
  [ FIELD("company", String)
    FIELD("price", Real) ] 
)

StockQuote("Sunbeam Harvesters", 98.88)
StockQuote("Ilog PA", 118.88)
StockQuote("GreedyDudes", 2.13)
                          . . . . . .

M3: Meta-metamodel

M2: Metamodel

M1: User Model

M0: User Data
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Additional Information: MOF
Meta Object Facility (MOF)

� MOF is a simple language for defining languages
� UML is a MOF-based metamodel

Level MOF Terms Examples
M3 meta-metamodel MOF Model
M2 meta-metadata UML Metamodel
M1 metadata Class Diagram
M0 data User Objects

Modelling Constraints – p.40/42



Additional Information: XMI
� XMI = XML Metadata Interchange (OMG)
� is a way to save UML models in XML

� for any MOF-based metamodel
� ability to move UML models between tools

<XMI.header>
  <XMI.documentation>
     <XMI.exporter>Together</XMI.exporter>
     <XMI.exporterVersion>4.0</XMI.exporterVersion>
  </XMI.documentation>
  <XMI.metamodel xmi.name = ’UML’ xmi.version = ’1.1’/>
</XMI.header>

Modelling Constraints – p.41/42



Additional Information: What’s in XMI?
� Document Type Definition (DTD) rules for

transforming MOF based models into XML DTDs
� XML Document production rules for MOF based data

UML can be regarded as:

� an XML document conforming to a DTD
� an XML DTD to which UML models must conform

Caveat: version differences between XMI and UML

� limits tool-to-tool interchange

� XMI 1.0, 1.1 ⇔ UML1.1, 1.3, 1.4
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