
Modelling Constraints
− by Constraining the Models

Gerrit Renker

RGU Constraints Group

The Robert Gordon University, Aberdeen

Modelling Constraints – p.1/42

Talk Outline

4 Blocks:

� Purpose and Concept

� UML and OCL

� Modelling Example

� Outlook and Conclusion

Modelling Constraints – p.2/42

Part 1 – Purpose and Concept

Modelling Constraints – p.3/42

Project Goals

Goals:

(1) modelling support for constraint problems

(2) suitable reuse of public standards (UML/OCL, . . .)

Modelling Constraints – p.4/42

Motivation
� little modelling support for (re-) formulating CSPs

� most problems still solved by experts
� constraint engineering

Problem
Description Implementation

model

informal
language

machine-
parseable

� structure information gained in analysis
� varying levels of abstraction
� different degrees of precision

Modelling Constraints – p.5/42

Motivation
� little modelling support for (re-) formulating CSPs

� most problems still solved by experts
� constraint engineering

Problem
Description Implementation

model

informal
language

machine-
parseable

� structure information gained in analysis
� varying levels of abstraction
� different degrees of precision

Modelling Constraints – p.5/42

Classical CSP Definition

1..*Constraint Domain
Variable

value
1..* 1..* 1

CSP:

� variables X := {x1, ..., xn}

� domains D := {d1, ..., dn}

� constraints C ⊆ d1 × d2 × ... × dn−1 × dn

Example:
X = {a, b}; D = {N, N}
C ≡ a < 22 ∧ a ≤ b ∧ b > 12

Modelling Constraints – p.6/42

Classical CSP Definition

1..*Constraint Domain
Variable

value
1..* 1..* 1

CSP:

� variables X := {x1, ..., xn}

� domains D := {d1, ..., dn}

� constraints C ⊆ d1 × d2 × ... × dn−1 × dn

Example:
X = {a, b}; D = {N, N}
C ≡ a < 22 ∧ a ≤ b ∧ b > 12

Modelling Constraints – p.6/42

Purpose: Why use class models
� objective: complex data in terse format

� constraint (hyper-) graph inappropriate

q1

q2

q3

q4q6

q5

q8

q7

� ⇒ no structural abstraction

Modelling Constraints – p.7/42

Purpose: Why use class models
� objective: complex data in terse format
� constraint (hyper-) graph inappropriate

q1

q2

q3

q4q6

q5

q8

q7

� ⇒ no structural abstraction

Modelling Constraints – p.7/42

Purpose: Why use class models
� objective: complex data in terse format
� constraint (hyper-) graph inappropriate

q1

q2

q3

q4q6

q5

q8

q7

� ⇒ no structural abstraction Modelling Constraints – p.7/42

Purpose: Modelling Support
Support In Other Disciplines:

� Semantic Data Models in Database Design

� Semantic Networks in Knowledge Engineering
� Ubiquitous modelling in:

� Software development
� Hardware development
� Engineering in general

Modelling Constraints – p.8/42

Purpose: Modelling Support
Support In Other Disciplines:

� Semantic Data Models in Database Design
� Semantic Networks in Knowledge Engineering

� Ubiquitous modelling in:
� Software development
� Hardware development
� Engineering in general

Modelling Constraints – p.8/42

Purpose: Modelling Support
Support In Other Disciplines:

� Semantic Data Models in Database Design
� Semantic Networks in Knowledge Engineering
� Ubiquitous modelling in:

� Software development
� Hardware development
� Engineering in general

Modelling Constraints – p.8/42

Concept

Conceptual
Model

Source Code

Problem
Specification

Modelling Constraints – p.9/42

Concept

Conceptual
Model

Source Code

Problem
Specification

natural
language

Modelling Constraints – p.9/42

Concept

Structural
Model

Conceptual
Model

Source Code

Problem
Specification

Entities

natural
language

UML

Modelling Constraints – p.9/42

Concept

Structural
Model

Conceptual
Model

Algebraic
ModelSource Code

Problem
Specification

code
transformation Constraints

Entities

natural
language

UML

OCL

Modelling Constraints – p.9/42

Part 2a: UML

Modelling Constraints – p.10/42

The 4+1 view of UML

Vocabulary
Functionality

System Assembly
Configuration
Management

Scalability
Performance

Distribution
Installation

System Topology

Behaviour

Deployment
ViewProcess View

Design View Implementation
 View

Use Case
View

Modelling Constraints – p.11/42

The 4+1 view of UML

Vocabulary
Functionality

System Assembly
Configuration
Management

Scalability
Performance

Distribution
Installation

System Topology

Behaviour

Deployment
ViewProcess View

Design View Implementation
 View

Use Case
View

Modelling Constraints – p.11/42

Types of UML Diagrams

UML diagrams

static view dynamic view

sequence
diagram

collaboration
diagram

object
diagram

class
diagram

statechart
diagram

interaction
diagrams

activity
diagram

use case
diagram

deployment
diagram

implementation
diagrams

component
diagram

Modelling Constraints – p.12/42

Types of UML Diagrams

 UML diagrams

static view

object
diagram

class
diagram

Modelling Constraints – p.12/42

UML Packaging

 Model Management

Foundation

Core
Extension
Mechanisms

Data Types

 Behavioral Elements

Use CasesCollaborations

Common Behavior

State Machines

Activity Graphs

Modelling Constraints – p.13/42

UML Packaging

Model Management

Foundation

Core

Data Types

Modelling Constraints – p.13/42

Building Blocks (UML)

. classification Type 1

Type 2

Type 3

Complex Type

. association
A B

C

A B
A B

C
1..

1..*

* *1

. aggregation
A

U

Z

B CXWV
310 18 10 .. 1005, 15 *

. attributes
MyType

 time: Date

Account
 c: Money

. ISA
(specialization /
generalization)

A

A1

B

BC

C

Modelling Constraints – p.14/42

Building Blocks (UML)

. classification Type 1

Type 2

Type 3

Complex Type

. association
A B

C

A B
A B

C
1..

1..*

* *1

. aggregation
A

U

Z

B CXWV
310 18 10 .. 1005, 15 *

. attributes
MyType

 time: Date

Account
 c: Money

. ISA
(specialization /
generalization)

A

A1

B

BC

C

Modelling Constraints – p.14/42

Building Blocks (UML)

. classification Type 1

Type 2

Type 3

Complex Type

. association
A B

C

A B
A B

C
1..

1..*

* *1

. aggregation
A

U

Z

B CXWV
310 18 10 .. 1005, 15 *

. attributes
MyType

 time: Date

Account
 c: Money

. ISA
(specialization /
generalization)

A

A1

B

BC

C

Modelling Constraints – p.14/42

Building Blocks (UML)

. classification Type 1

Type 2

Type 3

Complex Type

. association
A B

C

A B
A B

C
1..

1..*

* *1

. aggregation
A

U

Z

B CXWV
310 18 10 .. 1005, 15 *

. attributes
MyType

 time: Date

Account
 c: Money

. ISA
(specialization /
generalization)

A

A1

B

BC

C

Modelling Constraints – p.14/42

Building Blocks (UML)

. classification Type 1

Type 2

Type 3

Complex Type

. association
A B

C

A B
A B

C
1..

1..*

* *1

. aggregation
A

U

Z

B CXWV
310 18 10 .. 1005, 15 *

. attributes
MyType

 time: Date

Account
 c: Money

. ISA
(specialization /
generalization)

A

A1

B

BC

C

Modelling Constraints – p.14/42

Example IS-A Relation
� properties explained in terms of structural differences

previous
0..*

Begin

Task
 part
 start
 duration
 resource
 tag

MasonryFoundation End

� inheritance of:
� attributes
� associations
� constraints

Modelling Constraints – p.15/42

Part 2b: OCL

Modelling Constraints – p.16/42

The Object Constraint Language (OCL)
� textual complement to UML
� first order logic with navigation

Use of Types

� basic types: Real, Integer, Boolean

� container types: Collection, Set, Sequence, Bag

� user-defined: Tuple{}

� e.g. Tuple{ Set(1,3,4), ‘‘Joe Bloggs’’, 1999,
Sequence(Tuple(2,1}, Tuple{2,-1}) }

� UML model: all classes accessible

Modelling Constraints – p.17/42

The Object Constraint Language (OCL)
� textual complement to UML
� first order logic with navigation

Use of Types

� basic types: Real, Integer, Boolean

� container types: Collection, Set, Sequence, Bag

� user-defined: Tuple{}

� e.g. Tuple{ Set(1,3,4), ‘‘Joe Bloggs’’, 1999,
Sequence(Tuple(2,1}, Tuple{2,-1}) }

� UML model: all classes accessible

Modelling Constraints – p.17/42

The Object Constraint Language (OCL)
� textual complement to UML
� first order logic with navigation

Use of Types

� basic types: Real, Integer, Boolean

� container types: Collection, Set, Sequence, Bag

� user-defined: Tuple{}

� e.g. Tuple{ Set(1,3,4), ‘‘Joe Bloggs’’, 1999,
Sequence(Tuple(2,1}, Tuple{2,-1}) }

� UML model: all classes accessible

Modelling Constraints – p.17/42

Status of the OCL
� fully integrated into UML 1.4
� several implementations (Boldsoft, Argo/UML, ...)

Modelling Constraints – p.18/42

A Flavour of OCL: N-queens

NQProblem
 numQueens: Integer

Nqueen
 row: Integer
 column: Integer

others*

*

� Attribute access
context Nqueen inv:
column > 0 and column <= N and
row > 0 and row <= N

� Navigation
context Nqueen inv:
nQProblem.numQueens >= 3

Modelling Constraints – p.19/42

A Flavour of OCL: N-queens

NQProblem
 numQueens: Integer

Nqueen
 row: Integer
 column: Integer

others*

*

� Attribute access
context Nqueen inv:
column > 0 and column <= N and
row > 0 and row <= N

� Navigation
context Nqueen inv:
nQProblem.numQueens >= 3

Modelling Constraints – p.19/42

A Flavour of OCL: N-queens

NQProblem
 numQueens: Integer

Nqueen
 row: Integer
 column: Integer

others*

*

� Attribute access
context Nqueen inv:
column > 0 and column <= N and
row > 0 and row <= N

� Navigation
context Nqueen inv:
nQProblem.numQueens >= 3

Modelling Constraints – p.19/42

A Flavour of OCL

NQProblem
 numQueens: Integer

Nqueen
 row: Integer
 column: Integer

others*

*

� Pseudo - attributes

--simplifies the other expressions
context Nqueen def:
attr N : Integer = nQProblem.numQueens

� Set expressions

context NQProblem inv:
numQueens = nqueen->size()

Modelling Constraints – p.20/42

A Flavour of OCL

NQProblem
 numQueens: Integer

Nqueen
 row: Integer
 column: Integer

others*

*

� Pseudo - attributes

--simplifies the other expressions
context Nqueen def:
attr N : Integer = nQProblem.numQueens

� Set expressions

context NQProblem inv:
numQueens = nqueen->size()

Modelling Constraints – p.20/42

A Flavour of OCL

NQProblem
 numQueens: Integer

Nqueen
 row: Integer
 column: Integer

others*

*

� Quantification
--no two queens attack another:

context NQProblem inv:
nqueen->forAll(q1, q2 : Nqueen |

not q1.attacks(q2))

Modelling Constraints – p.21/42

Pseudo - Operations in OCL

NQProblem
 numQueens: Integer

Nqueen
 row: Integer
 column: Integer

others*

*

context Nqueen def:
oper attacks(other: Nqueen) : Boolean =

self.column <> other.column and
self.row <> other.row
and
(self.row - other.row).abs <>
(self.column - other.column).abs

Modelling Constraints – p.22/42

Part 3 – Modelling Example

Modelling Constraints – p.23/42

The Bridge - Building Problem

� schedule the setup of a 5 - segment bridge
� Martin Bartusch 1983, Massimo Paltrinieri 1994

Modelling Constraints – p.24/42

Bridge - Building: Constraints
� 11 bridge components, 46 tasks, 7 resources

Number of Constraints:

� Resource Constraints:
� most tasks multiply on n = 2...6 components
�

n(n−1)
2 constraints each ⇒ 77 constraints

� Precedences among tasks: 66 constraints

� Five additional requirements: 25 constraints

Sum: 168 constraints

Modelling Constraints – p.25/42

Bridge - Building: Constraints
� 11 bridge components, 46 tasks, 7 resources

Number of Constraints:

� Resource Constraints:
� most tasks multiply on n = 2...6 components
�

n(n−1)
2 constraints each ⇒ 77 constraints

� Precedences among tasks: 66 constraints

� Five additional requirements: 25 constraints

Sum: 168 constraints

Modelling Constraints – p.25/42

Bridge - Building: Constraints
� 11 bridge components, 46 tasks, 7 resources

Number of Constraints:

� Resource Constraints:
� most tasks multiply on n = 2...6 components
�

n(n−1)
2 constraints each ⇒ 77 constraints

� Precedences among tasks: 66 constraints

� Five additional requirements: 25 constraints

Sum: 168 constraints

Modelling Constraints – p.25/42

Bridge - Building: Constraints
� 11 bridge components, 46 tasks, 7 resources

Number of Constraints:

� Resource Constraints:
� most tasks multiply on n = 2...6 components
�

n(n−1)
2 constraints each ⇒ 77 constraints

� Precedences among tasks: 66 constraints

� Five additional requirements: 25 constraints

Sum: 168 constraints

Modelling Constraints – p.25/42

Bridge - Building: Constraints
� 11 bridge components, 46 tasks, 7 resources

Number of Constraints:

� Resource Constraints:
� most tasks multiply on n = 2...6 components
�

n(n−1)
2 constraints each ⇒ 77 constraints

� Precedences among tasks: 66 constraints

� Five additional requirements: 25 constraints

Sum: 168 constraints

Modelling Constraints – p.25/42

Bridge - Building: Constraint Graph
UE

PA

A1

A2

A3

A6

A5

A4

P1

P2

S3

S1

S2

S4

S5

S6

B2

B1

B3

B6

B5

B4

M1

M2

M3

M4

M5

M6

AB1

AB2

AB3

AB4

AB5

AB6

T1

L

T2

T3

T5

T4

UA

V1

V2

K1

K2

PE

Modelling Constraints – p.26/42

Bridge - Building: Constraint Graph
UE

PA

A1

A2

A3

A6

A5

A4

P1

P2

S3

S1

S2

S4

S5

S6

B2

B1

B3

B6

B5

B4

M1

M2

M3

M4

M5

M6

AB1

AB2

AB3

AB4

AB5

AB6

T1

L

T2

T3

T5

T4

UA

V1

V2

K1

K2

PE

Modelling Constraints – p.26/42

Bridge - Building: generic constraints 1/2
� Disjunction: Unary Resources

previous
0..*

Task
 resource
 start
 duration
 part

context Task inv:
Task.allInstances->forAll(a,b: Task|

a <> b and
a.name() = b.name() and
a.resource = b.resource

implies (
a.start + a.duration <= b.start xor
b.start + b.duration <= a.start))

Modelling Constraints – p.27/42

Bridge - Building: generic constraints 1/2
� Disjunction: Unary Resources

previous
0..*

Task
 resource
 start
 duration
 part

context Task inv:
Task.allInstances->forAll(a,b: Task|

a <> b and
a.name() = b.name() and
a.resource = b.resource

implies (
a.start + a.duration <= b.start xor
b.start + b.duration <= a.start))

Modelling Constraints – p.27/42

Bridge - Building: generic constraints 2/2
� Precedence Constraints

previous
0..*

Task
 resource
 start
 duration
 part

context Task inv:
Task.allInstances->forAll(t: Task|

t.previous->forAll(prev: Task|
prev.start +
prev.duration <=
t.start))

Modelling Constraints – p.28/42

Bridge - Building: All Tasks

Stop Positioning ExcavationRemoval Filling Masonry Costing

Setting ErectionDelivery Piles Formwork Foundation

requ1

requ2

requ3

requ4

requ5

previous
0..*

Begin

Task
 resource
 start
 duration
 part

� generic constraints apply to all 14 subtypes
� 2 instead of 143

Modelling Constraints – p.29/42

requ3: Erection of temporary housing

Stop Positioning ExcavationRemoval Filling Masonry Costing

Setting ErectionDelivery Piles Formwork Foundation

requ1

requ2

requ3

requ4

requ5

previous
0..*

Begin

Task
 resource
 start
 duration
 part

context Erection inv:
start + 6 <= formwork.start

Modelling Constraints – p.30/42

Part 4 – Outlook and Conclusion

Modelling Constraints – p.31/42

Outlook: Application Development

Application

CP Code in Host Language
XML & OCL

Parser

class Model {
 ComponentType pc = new Component;
 ...
};

class foo : public baz {
 // ...
};

C++ Definitions

CP Code in Host Language

<XMI.header>
 <XMI.documentation>
 <XMI.exporter>Together</XMI.exporter>
 <XMI.exporterVersion>4.0</XMI.exporterVersion>
 </XMI.documentation>
 <XMI.metamodel xmi.name = ’UML’
 xmi.version = ’1.1’/>
</XMI.header>

Modelling Constraints – p.32/42

Outlook: Distributed CSPs

constraint
solver

user
agent

constraint
fusing

mediator

user
agent

CSP

XML

solutions

problem
specification

solutions

XML

XML

XML

Constraint
Repository

Constraint
Repository

Constraint
Repository

Modelling Constraints – p.33/42

Benefits of using UML & OCL
� simplified, comprehensible knowledge acquisition
� seamless integration:

� constraint-based reasoning
� software development

� open to emerging developments (Semantic Web)

Experiences: UML/OCL in

� Software Architecture Description Languages (ADL)
� excellent experiences for configuration KBS
� Ontology Description
� CommonKADS, Rule-Based Systems

Modelling Constraints – p.34/42

Benefits of using UML & OCL
� simplified, comprehensible knowledge acquisition
� seamless integration:

� constraint-based reasoning
� software development

� open to emerging developments (Semantic Web)

Experiences: UML/OCL in

� Software Architecture Description Languages (ADL)
� excellent experiences for configuration KBS
� Ontology Description
� CommonKADS, Rule-Based Systems

Modelling Constraints – p.34/42

Problems of UML
� informal notation ↔ informal use

� semantics in ’precise’ English
� conflicting definitions, ambiguities, imprecision

� meta-circular: defines itself by itself
� commercial standard – dependent on OMG politics

� slow adaptation (6-12 months)

� modelling relations is awkward, e.g. R ⊆ A × B:
(∀a ∈ A) (∃b ∈ B) (a, b) ∈ R

Modelling Constraints – p.35/42

Problems of UML
� informal notation ↔ informal use

� semantics in ’precise’ English
� conflicting definitions, ambiguities, imprecision

� meta-circular: defines itself by itself
� commercial standard – dependent on OMG politics

� slow adaptation (6-12 months)

� modelling relations is awkward, e.g. R ⊆ A × B:
(∀a ∈ A) (∃b ∈ B) (a, b) ∈ R

Modelling Constraints – p.35/42

Problems of UML
� informal notation ↔ informal use

� semantics in ’precise’ English
� conflicting definitions, ambiguities, imprecision

� meta-circular: defines itself by itself
� commercial standard – dependent on OMG politics

� slow adaptation (6-12 months)

� modelling relations is awkward, e.g. R ⊆ A × B:
(∀a ∈ A) (∃b ∈ B) (a, b) ∈ R

A B
R(A,B)

Modelling Constraints – p.35/42

Problems of UML
� informal notation ↔ informal use

� semantics in ’precise’ English
� conflicting definitions, ambiguities, imprecision

� meta-circular: defines itself by itself
� commercial standard – dependent on OMG politics

� slow adaptation (6-12 months)

� modelling relations is awkward, e.g. R ⊆ A × B:
(∀a ∈ A) (∃b ∈ B) (a, b) ∈ R

A B
R(A,B)

Modelling Constraints – p.35/42

Conclusion
Useful for further work

� intuitively appealing notation
� informal notation as ‘scratch pad’
� abstraction / generalisation / packaging facilities
� translation to XML

What to do next

� define a precise UML subset
� interfacing with eg. Localizer
� explore model transformation

Modelling Constraints – p.36/42

Fin

Thank you for your attention.

Modelling Constraints – p.37/42

Configuration Knowledge Base in UML

«RootComponent»
PC

 type = {standard, deLuxe}

«ComponentType»
Floppy

 size = {3.5, 5.25}
«ComponentType»
Motherboard

 clockRate = {800, 2200}

«ComponentType»
MBoard-2

«ComponentType»
CPU

«ComponentType»
486

«ComponentType»
Pentium

«ComponentType»
MBoard-1

floppy->size() > 0
«ComponentType»

HardDrive
 gig = {20, 40, 80}

«requires»

<<incompatible>>

1..4

1

1..5

1..2

Modelling Constraints – p.38/42

Additional Information: MOF

Hard-wired Meta-metamodel

MetaModel("RECORD_TYPES",
 MetaClass("RECORD",
 [MetaAttr("name", String),
 [MetaAttr("fields", List<"FIELD">)])
 MetaClass("FIELD", [...])
)

RECORD("StockQuote",
 [FIELD("company", String)
 FIELD("price", Real)]
)

StockQuote("Sunbeam Harvesters", 98.88)
StockQuote("Ilog PA", 118.88)
StockQuote("GreedyDudes", 2.13)

M3: Meta-metamodel

M2: Metamodel

M1: User Model

M0: User Data

Modelling Constraints – p.39/42

Additional Information: MOF
Meta Object Facility (MOF)

� MOF is a simple language for defining languages
� UML is a MOF-based metamodel

Level MOF Terms Examples
M3 meta-metamodel MOF Model
M2 meta-metadata UML Metamodel
M1 metadata Class Diagram
M0 data User Objects

Modelling Constraints – p.40/42

Additional Information: XMI
� XMI = XML Metadata Interchange (OMG)
� is a way to save UML models in XML

� for any MOF-based metamodel
� ability to move UML models between tools

<XMI.header>
 <XMI.documentation>
 <XMI.exporter>Together</XMI.exporter>
 <XMI.exporterVersion>4.0</XMI.exporterVersion>
 </XMI.documentation>
 <XMI.metamodel xmi.name = ’UML’ xmi.version = ’1.1’/>
</XMI.header>

Modelling Constraints – p.41/42

Additional Information: What’s in XMI?
� Document Type Definition (DTD) rules for

transforming MOF based models into XML DTDs
� XML Document production rules for MOF based data

UML can be regarded as:

� an XML document conforming to a DTD
� an XML DTD to which UML models must conform

Caveat: version differences between XMI and UML

� limits tool-to-tool interchange

� XMI 1.0, 1.1 ⇔ UML1.1, 1.3, 1.4

Modelling Constraints – p.42/42

	Talk Outline
	Part 1 -- Purpose and Concept
	Project Goals
	Motivation
	Classical CSP Definition
	Purpose: Why use class models
	Purpose: Modelling Support
	Concept
	Part 2a: UML
	The 4+1 view of UML
	Types of UML Diagrams
	UML Packaging
	Building Blocks
oun {(uml)}
	Example IS-A Relation
	Part 2b: OCL
	The Object Constraint Language (OCL)
	Status of the OCL
	A Flavour of OCL: N-queens
	A Flavour of OCL
	A Flavour of OCL
	Pseudo - Operations in OCL
	Part 3 -- Modelling Example
	The Bridge - Building Problem
	Bridge - Building: Constraints
	Bridge - Building: Constraint Graph
	Bridge - Building: generic constraints 1/2
	Bridge - Building: generic constraints 2/2
	Bridge - Building: All Tasks
	requ3: Erection of temporary housing
	Part 4 -- Outlook and Conclusion
	Outlook: Application Development
	Outlook: Distributed CSPs
	Benefits of using UML & OCL
	Problems of UML
	Conclusion
	Fin
	Configuration Knowledge Base in
oun {uml}
	Additional Information: MOF
	Additional Information: MOF
	Additional Information: XMI
	Additional Information: What's in XMI?

