
Artificial Intelligence 129 (2001) 133–163

Exploiting symmetries
within constraint satisfaction search ✩

Pedro Meseguer a,∗, Carme Torras b

a Institut d’Investigació en Intel.ligència Artificial, CSIC, Campus UAB, 08193 Bellaterra, Spain
b Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Gran Capità 2-4, 08034 Barcelona, Spain

Received 15 February 2000; received in revised form 28 February 2001

Abstract

Symmetry often appears in real-world constraint satisfaction problems, but strategies for exploiting
it are only beginning to be developed. Here, a framework for exploiting symmetry within depth-first
search is proposed, leading to two heuristics for variable selection and a domain pruning procedure.
These strategies are then applied to two highly symmetric combinatorial problems, namely the
Ramsey problem and the generation of balanced incomplete block designs. Experimental results
show that these general-purpose strategies can compete with, and in some cases outperform, previous
more ad hoc procedures. 2001 Elsevier Science B.V. All rights reserved.

Keywords:Symmetry; Constraint satisfaction; Heuristics; Nogoods

1. Introduction

Symmetry is present in many natural and artificial settings. A symmetry is a transforma-
tion of an entity such that the transformed entity is equivalent to and indistinguishable from
the original one. We can see symmetries in nature (a specular reflection of a daisy flower),
in human artifacts (a central rotation of 180 degrees of a chessboard), and in mathematical
theories (inertial changes in classical mechanics). The existence of symmetries in these
systems allows us to generalize the properties detected in one state to all its symmetric
states.

Regarding constraint satisfaction problems (CSPs), many real problems exhibit some
kind of symmetry, embedded in the structure of variables, domains and constraints. This

✩ This paper is an extended and updated version of [16], presented at the IJCAI-99 conference.
* Corresponding author.
E-mail addresses:pedro@iiia.csic.es (P. Meseguer), ctorras@iri.upc.es (C. Torras).

0004-3702/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(01)0 01 04 -7

134 P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163

means that their state space is somehow fictitiously enlarged by the presence of many
symmetric states. From a search viewpoint, it is advisable to visit only one among those
states related by a symmetry, since either all of them lead to a solution or none does. This
may cause a drastic decrease in the size of the search space, which would have a very
positive impact on the efficiency of the constraint solver.

Previous work on symmetric CSPs has been aimed at eradicating symmetries from
either the initial problem state space or the explicit search tree as it is developed. The
former approach, advocated by Puget [19], consists in reducing the initial state space by
adding symmetry-breaking constraints to the problem formulation. The goal is to turn
the symmetric problem into a new problem without symmetries, but keeping the non-
symmetric solutions of the original one. Although this ideal goal is seldom reached,
the reductions attained are substantial enough to turn some hard combinatorial problems
into manageable ones. For generic problem statements, the detection of symmetries
and the formulation of the ad hoc symmetry-breaking constraints is performed by hand
[19]. Alternatively, in the context of propositional logic, existing symmetries and the
corresponding symmetry-breaking predicates can be computed automatically [6], although
with a high computational complexity.

The second approach, namely pruning symmetric states from the search tree as
it develops, entails modifying the constraint solver to take advantage of symmetries.
A modified backtracking algorithm appears in [3], where each expanded node is tested
to assess whether it is an appropriate representative of all the states symmetric to it.
Concerning specific symmetries, neighborhood interchangeable values of a variable are
discussed in [9], while value pruning after failure for strongly permutable variables is
proposed in [20]. This last strategy can be seen as a particular case of the symmetry
exclusion method introduced in [1] for concurrent constraint programming, and applied
to the CSP context in [11].

In this paper, we propose a third approach to exploit symmetries inside CSPs. The idea
is to use symmetries to guide the search. More specifically, the search is directed towards
subspaces with a high density of non-symmetric states, by breaking as many symmetries
as possible with each new variable assignment. This is the rationale for our symmetry-
breakingheuristic for variable selection, which can be theoretically combined with the
popular minimum-domain heuristic. The result of this combination is the new variety-
maximizationheuristic for variable selection, which has been shown more effective than
symmetry-breaking or minimum-domain separatedly, and it has speeded up significantly
the solving process of CSPs with many symmetries. For problems without a solution,
variable selection heuristics can do nothing to avoid revisiting symmetric states along
the search. To cope with this shortcoming, we have developed several value pruning
strategies (in the spirit of the second approach mentioned above), which allow one to
reduce the domain of the current or future variables. These strategies remove symmetric
values, without removing non-symmetric solutions. In particular, there is a strategy based
on nogoods learned in previous search states. Problem symmetries allow us to keep limited
the potentially exponential size of the nogood storage. This strategy has been shown very
effective for hard solvable and unsolvable instances. Results for the Ramsey problem and
for the generation of balanced incomplete block designs (BIBDs) are provided. Once a set
of symmetries is specified, our approach provides a general-purpose mechanism to exploit

P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163 135

them within the search. Moreover, it can be combined with the two previous approaches
and incorporated into any depth-first search procedure.

The paper is structured as follows. In Section 2, we introduce some basic concepts.
Section 3 presents the symmetry-breaking heuristic and its combination with the minimum-
domain one, generating the variety-maximization heuristic. Section 4 details several
strategies for symmetric value pruning along the search, especially those based on nogood
recording. Section 5 is devoted to the Ramsey and BIBD problems. Finally, Section 6 puts
forth some conclusions and prospects for future work.

2. Basic definitions

2.1. Constraint satisfaction

A finite CSP is defined by a triple (X ,D,C), where X = {x1, . . . , xn} is a set of n

variables, D = {D(x1), . . . ,D(xn)} is a collection of domains, D(xi) is the finite set of
possible values for variable xi , and C is a set of constraints among variables. A constraint ci

on the ordered set of variables var(ci) = (xi1, . . . , xir(i)
) specifies the relation rel(ci) of the

allowedcombinations of values for the variables in var(ci). An element of rel(ci) is a tuple
(vi1 , . . . , vir(i)

), vi ∈ D(xi). An element of D(xi1) × · · · × D(xir(i)
) is called a valid tuple

on var(ci). A solutionof the CSP is an assignment of values to variables which satisfies
every constraint. A nogoodis an assignment of values to a subset of variables which does
not belong to any solution. Typically, CSPs are solved by depth-first search algorithms with
backtracking. At a point in search, P is the set of assigned or pastvariables, and F is the
set of unassigned or futurevariables. The variable to be assigned next is called the current
variable.

A classical example of CSP is the n-queens problem. It consists in placing n chess
queens on an n × n chessboard in such a way that no pair of queens is attacking one
another. Constraints come from chess rules: no pair of queens can occur at the same row,
column or diagonal. This problem is taken as running example throughout the paper.

2.2. Symmetries

A symmetryon a CSP is a collection of n + 1 bijective mappings {θ, θ1, . . . , θn} defined
as follows,

• θ is a variable mapping, θ :X →X ,
• {θ1, . . . , θn} are domain mappings, θi : D(xi) → D(θ(xi)),
• constraints are transformed by the adequate combination of variable and domain

mappings; a constraint ci is transformed into cθ
i , with var(cθ

i) = (θ(xi1), . . . , θ(xir(i)
))

and rel(cθ
i) = {(θi1(vi1), . . . , θir(i)

(vir(i)
))},

such that the set C remains invariant by the action of the symmetry, i.e., ∀cj ∈ C , the
transformed constraint cθ

j is in C . There exists always a trivial symmetry, that in which the
variable mapping and the domain mappings are all the identity. The remaining symmetries,
those interesting for our purposes, will be referred to as nontrivial symmetries. Moreover,

136 P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163

Fig. 1. Central rotation of 180 degrees is a symmetry of the 5-queens problem.

when no ambiguity may occur, we will denote a symmetry {θ, θ1, . . . , θn} by its variable
mapping θ .

Note that the above definition of symmetry applies to CSPs, i.e., to problems formulated
in terms of a triple (X ,D,C), and not to problems in general. To make this point clear,
consider the n-queens problem, which admits at least nine different problem formulations
as a CSP [17]. These formulations vary in the number of variables, sizes of the domains,
and constraint set. They specify different CSPs and, as such, it is not surprising that they
have different symmetries.

Let us consider the most widely used formulation, namely that in which variables are
chessboard rows and domains are column indices. Fig. 1 shows an example of a symmetry
using this formulation in the case of 5 queens. It is a central rotation of 180 degrees, which
exchanges variables x1 with x5 and x2 with x4, and maps domains with the function
θi(v) = 6 − v, i = 1, . . . , 5. This transformation is a symmetry because the mappings
on variables and domains are bijective, and the set of constraints is left invariant by the
transformation of variables and values. For example, the transformed constraint cθ

12 is
computed as follows,

var
(
cθ

12

) = (
θ(x1), θ(x2)

) = (x5, x4) = var(c45),

rel
(
cθ

12

) = {
(θ1(1), θ2(3)), (θ1(1), θ2(4)), (θ1(1), θ2(5)), (θ1(2), θ2(4)),

(θ1(2), θ2(5)), (θ1(3), θ2(1)), (θ1(3), θ2(5)), (θ1(4), θ2(1)),

(θ1(4), θ2(2)), (θ1(5), θ2(1)), (θ1(5), θ2(2)), (θ1(5), θ2(3))
}

= {
(5, 3), (5, 2), (5, 1), (4, 2), (4, 1), (3, 5), (3, 1), (2, 5), (2, 4), (1, 5),

(1, 4), (1, 3)
}

= rel(c45).

Thus, cθ
12 = c45. Two other nontrivial symmetries of this CSP formulation of 5-queens are

the reflections about the horizontal and vertical axes, as depicted in Fig. 2. The remaining
four symmetries of the chessboard are not symmetries of this formulation.

Now, let us turn to the formulation of n-queens where each queen is a variable whose
domain contains all the squares of the chessboard. The eight symmetries of the chessboard
and all permutations of queens are symmetries of this particular CSP formulation.

Taken together, the two examples above illustrate the remark we made that our definition
of symmetry applies to CSP formulations and not to problems in general. Such symmetries
can be viewed as mapping a triple (X ,D,C) onto itself, which is needed to stay within

P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163 137

Fig. 2. Two other symmetries of the 5-queens problem. Top-right: reflection about the vertical axis. Bottom-left:
reflection about the horizontal axis.

the formulation. Thus, transformations that change variables into values and vice versa, as
would be required to represent a rotation of 90 degrees under the formulation in Fig. 1, are
not allowed within our framework.

Following [22], we say that two variables xi , xj are symmetricif there exists a
symmetry θ such that θ(xi) = xj . This concept generalizes the previous definition of strong
permutability [20]: xi and xj are strongly permutable if they play exactly the same role in
the problem, i.e., if there exists a symmetry φ such that its only action is exchanging xi

with xj (φ(xi) = xj , φ(xj) = xi , φ(xk) = xk , ∀k = i, j , φk = I , ∀k, I being the identity
function). We say that two values a, b ∈ D(xi) are symmetricif there exists a symmetry θ

such that θ(xi) = xi and θi(a) = b. This concept generalizes previous definition of value
interchangeability [9]: a and b are neighbourhood interchangeable if they are consistent
with the same set of values, i.e., if there exists a symmetry φ such that its only action is
exchanging a with b (φ = I , φi(a) = b, φi(b) = a, φi(c) = c, ∀c = a, b, φk = I , ∀k = i).

The set of symmetries of a problem forms a group with the composition operator
[22]. Because of this, it can be shown that the symmetry relation between variables is
an equivalence relation. The existence of this equivalence relation divides the set X in
equivalence classes, each class grouping symmetric variables. Domains are also divided
into equivalence classes by symmetries acting on values only (with identity variable
mapping). Regarding the 5-queens problem under the formulation of Fig. 1, there are three
equivalence classes of variables: {x1, x5}, {x2, x4} and {x3}. Concerning values, there are
also three equivalence classes: {1, 5}, {2, 4} and {3}. Neither strongly permutable variables
nor neighbourhood interchangeable values exist in this problem.

2.3. Symmetries in search

Symmetries can occur in the initial problem formulation, and also in any search state
s, characterized by an assignment of past variables plus the current domains of future
variables. State s defines a subproblem of the original problem, where the domain of each

138 P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163

past variable is reduced to its assigned value and the relation rel(ci) of each constraint ci

is reduced to its valid tuples with respect to current domains. A symmetry holdsat state s

if it is a symmetry of the subproblem occurring at s. A symmetry holding at s is said to be
local to s if it does not change the assignments of past variables. 1 The set of symmetries
local to s forms a group with the composition operation. A symmetry holding at the initial
state s0 is called a global symmetry of the problem. Any global symmetry is local to s0,
the state where the set of past variables is empty. Symmetries depicted in Figs. 1 and 2 are
global symmetries of the 5-queens problem. An important property of symmetries is that
they are solution-preserving, transforming solutions into solutions.

Let s be a search state with symmetry θ local to it, and s′ a successor state. We say
that the assignment occurring between s and s′ breakssymmetry θ if θ is not local to
s′. Typically, symmetries local to s are global symmetries that have not been broken
by the assignments occurring between s0 and s. However, this is not always the case.
New symmetries may appear in particular states. For the 5-queens problem, some states
with local symmetries appear in Fig. 3. State sa keeps as local the three nontrivial global
symmetries of the problem, since none is broken by the assignment of x3. State sb keeps
as local the reflection about the vertical axis only, since the central rotation and the other
reflection are broken by the assignment of x1. In state sc , all nontrivial global symmetries
are broken by the assignment of x1 but a new symmetry appears: a central rotation of 180
degrees on the 4 × 4 subboard involving variables from x2 to x5 and columns from 2 to 5.
A broken symmetry can be restored by another assignment, as it can be seen in Fig. 4. In

Fig. 3. Three states of the 5-queens problem, with different types of local symmetries.

Fig. 4. The central rotation symmetry is broken in sa and restored in sb .

1 Notice that this definition differs from the one appearing in [16] in that the mapping on past variables is not
required to be the identity.

P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163 139

state sa the assignment of x1 breaks the central rotation symmetry, which is restored after
the assignment of x5 in state sb .

3. Heuristics based on symmetries

3.1. The symmetry-breaking heuristic

We argue that breaking as many symmetries as possible at each stage is a good strategy to
speed up the search. Let us first illustrate some points with a simple example. Consider the
equation x + y2z2 = 2, where all variables take values in {−1, 0, 1}. There are 5 nontrivial
symmetries, derived from combining the permutability of y and z, with the sign irrelevance
of both y and z. They can be briefly indicated as follows:

(1) θ(y) = z, θ(z) = y;
(2) θy = −I ;
(3) θz = −I ;
(4) θy = −I , θz = −I ;
(5) θ(y) = z, θ(z) = y , θy = −I , θz = −I ;

where I is the identity mapping, and all the entries not specified are also the identity.
Symmetry (1) is a permutation of variables, symmetries (2)–(4) interchange values,

whereas symmetry (5) entails changes in both variables and values. Note that variables y

and z are involved in (4) nontrivial symmetries each, while variable x is involved in none.
Fig. 5 displays two search trees for that equation, following the variable orderings x, y, z

and y, z, x . In the upper tree, no symmetry is broken after assigning x , and therefore
all symmetries act inside each subtree at the first level, leading to a low density of

Fig. 5. Search tree generated to solve the equation x + y2z2 = 2 under two variable orderings. Symmetric states
originated by permutable variables are connected by shadowed lines, while those arising from interchangeable
values are joined by broken lines. Solutions are marked with squares.

140 P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163

Fig. 6. Effect of pruning on the search trees in Fig. 5.

distinct final states considered whatever the value assigned to x . This can be more easily
visualized in Fig. 6, where states symmetric to a previously expanded one have been
removed. There are only 3 distinct states among the 9 final states considered in each of
the three subtrees resulting from assigning a value to x . For the leftmost subtree, these are
(x, y, z) = (−1,−1,−1), (−1,−1, 0) and (−1, 0, 0).

Under the second ordering, represented in the lower tree of Fig. 5, symmetries (1), (2),
(4) and (5) are broken after assigning y , and thus only states replicated by symmetry (3)
appear inside subtrees at the first level. Concretely, there are 6 distinct states among the
9 final states considered in each of the three subtrees resulting from assigning a value to
y . For the leftmost subtree, these are (y, z, x) = (−1,−1,−1), (−1,−1, 0), (−1,−1, 1),
(−1, 0,−1), (−1, 0, 0) and (−1, 0, 1). The density of distinct final states in each subtree at
the first level is thus much higher here (2/3) than under the first ordering (1/3). Again note
that this is independent of the value assigned to y . If, in Fig. 6, the subtree corresponding
to y = 0 or y = 1 would have been expanded first, instead of that for y = −1, then the
corresponding subtree would equally have six distinct final states.

When one has no a priori knowledge on the distribution of solutions across the state
space, trying to maximize the density of distinct final states considered at each search
stage looks like a good strategy. This is the rationale for the following variable selection
heuristic.

Symmetry-breaking heuristic. Select for assignment the variable involved in the greatest
number of symmetries local to the current state.

The above greedy heuristic, which tries to break as many symmetries as possible at each
new variable assignment, produces the following benefits:

P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163 141

(1) Wider distribution of solutions. Symmetric solutions will spread out under different
subtrees instead of grouping together under the same subtree. This increases the
likelihood of finding a solution earlier. Take the equation in the example above.
It has four solutions, namely (x = 1, y = −1, z = −1), (x = 1, y = −1, z = 1),
(x = 1, y = 1, z = −1) and (x = 1, y = 1, z = 1). Under the first variable ordering,
they are all grouped below the rightmost subtree, while under the second, they
spread two subtrees.

(2) Lookahead of better quality. A lookahead algorithm prunes future domains taking
into account past assignments. When symmetries on future variables are present,
some of the lookahead effort is unproductive. If there is a symmetry θ such that
θ(xj) = xk , with xj , xk ∈ F , after lookahead on D(xj), lookahead on D(xk)

is obviously redundant because it will produce results equivalent (through θ) to
lookahead on D(xj). If no symmetries are present, no lookahead effort will be
unproductive. Therefore, the more symmetries are broken, the less unproductive
effort lookahead performs. When the number of symmetries is high, savings in
unproductive lookahead effort can be substantial.

(3) More effective pruning. Several techniques to prune symmetric states have been
proposed in the literature, such as those based on neigbourhood interchangeable
values [9] and on permutable variables [20]. The proposed heuristic amplifies the
effect of any pruning technique by moving its operation upwards in the search tree.
Fig. 6 shows the result of applying the two types of pruning mentioned to the search
trees displayed in Fig. 5. The 10 nodes expanded under the variable ordering x, y, z,
are reduced to only 6 nodes when the heuristic is in use. Moving pruning upwards
tends to produce smaller branching factors in the higher levels of the search tree,
resulting in thinner trees.

It is worth noting that points (2) and (3) above apply also to problems without a
solution. Empirical results supporting these claims are provided in Section 3.3 for the
layout problem.

3.2. The variety-maximization heuristic

Let us return to the example in Figs. 5 and 6. The variable ordering y, z, x suggested
by the symmetry-breaking heuristic is the one leading to subtrees with highest density of
distinct final states, and, after pruning, it produces the thinnest tree. This is the effect of the
heuristic on a problem where all domains have equal sizes. Now consider the same problem
but reducing the domain of x to only one value {−1}. Then, under the variable ordering
x, y, z, only the leftmost branch of the upper tree in Fig. 5 would be developed, while under
the ordering y, z, x , the whole lower tree in Fig. 5 would be developed, although only for
the leaves labelled −1. The effect of pruning could likewise be visualized by looking at
Fig. 6. It is clear that, in this case, the best option is the ordering x, y, z since it leads to a
thinner tree to start with (13 nodes against 21 for the other ordering) and also after pruning
(6 nodes against 14). Thus, in this case, the well-known minimum-domain heuristic would
do better than the symmetry-breaking one. And the question arises: When should one or the
other heuristic be applied? Even more useful, is there a way of combining both heuristics
that outperforms the isolated application of each of them?

142 P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163

To try to answer these questions, let us first recall the interpretations provided for the
good performance of the minimum-domain heuristic. The most widespread one is that
the heuristic implements the fail-first principle, and thus minimizes the expected depth of
each search branch [14]. Smith and Grant [23] tested this interpretation experimentally
by comparing the behaviour of several heuristics with increasing fail-first capabilities and
concluded that the success of minimum-domain may not necessarily be due to the fact
that it implements fail first. Often the effect of shallow branches is counteracted by high
branching factors. Thus, another interpretation puts the emphasis on the minimization of
the branching factor at the current node [21]: since the minimum-domain heuristic forces
the search tree to be as narrow as possible in its upper levels, the expected number of
nodes generated is minimized. This holds for problems both with and without a solution.
Further along this line, we may view the minimum-domain heuristic as following a least-
commitment principle, i.e., it chooses the variable that partitions the state space in less
number of subspaces, so that each subspace is larger (contains more states) than if another
variable would have been selected. The resulting search trees are, again, as narrow as
possible in their upper levels, so the aforementioned node minimization still holds. But
now, for problems with a solution, another factor may play a favourable role: in a larger
subspace it is more likely to find a solution. A related interpretation was put forth in
[10] under the rationale of minimizing the constrainedness of the future subproblem:
underconstrained problems tend to have many solutions and be easy to solve.

In dealing with highly symmetric problems, however, the largest subspace does
not necessarily contain more distinct final states than a smaller one. Thus, the least-
commitment principle has here to be applied in terms of distinctfinal states. What is needed
is a strategy that selects the variable leading to consider the highest number of distinct final
states, but what we have is:

• the minimum-domain heuristic, which selects the variable that maximizes the number
of final states considered, and

• the symmetry-breaking heuristic, which chooses the variable that maximizes the
densityof distinctfinal states considered.

In the following, we develop a framework for the combination of both heuristics,
based on the two basic types of symmetry, namely interchangeable values and strongly
permutable variables. As mentioned in Section 2.2, both types of symmetry induce
equivalence classes in the domains and set of variables, respectively. Let x1, . . . , xk be the
representatives of the equivalence classes of future variables at a given search stage, ci be
the size of the equivalence class to which xi belongs, and di be the number of equivalence
classes in D(xi). In other words, ci is the number of original variables strongly permutable
with xi , including itself; and di is the number of non-interchangeable values that can be
assigned to xi .

Let us calculate the number of distinct final states considered at this search stage,
where “distinctiveness” is here taken to mean that no two states can be made equal by
interchanging values or permuting variables. For each equivalence class i , we need to
assign ci variables, each of which can take di values. If variables were not permutable,
the number of joint assignments would be d

ci

i . However, since the variables are strongly
permutable, two assignments related by a permutation are not distinct. Therefore, the
number of distinct joint assignments is given by the combinations with repetition of di

P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163 143

elements taken ci at a time. Describing this as an occupancy problem, we need to place ci

balls into di buckets (i.e., assign ci variables, each to one of the possible di values). The
formula to obtain the number of possible placements (i.e., distinct assignments) is [8] 2:(
di+ci−1

ci

)
.

The total number of distinct final states, considering all the equivalence classes of
variables, is thus given by the product

k∏
i=1

(
di + ci − 1

ci

)
.

If the next assigned variable belongs to the equivalence class represented by xi0 , then

its corresponding term decreases from
(
di0+ci0 −1

ci0

)
to

(di0+ci0 −2
ci0−1

)
, since the equivalence

class i0 loses an element. Thus, the number of distinct final states considered after variable
assignment will be:

(di0+ci0 −2
ci0−1

)
(
di0+ci0 −1

ci0

)
k∏

i=1

(
di + ci − 1

ci

)
.

We like to find the i0 that maximizes this expression, i.e.,

max
i

(
di+ci−2

ci−1

)
(
di+ci−1

ci

) ,

which can be developed as

max
i

(di+ci−2)!
(di−1)! (ci−1)!

(di+ci−1)!
(di−1)! ci !

,

leading to

max
i

ci

di + ci − 1
,

which is the same as

min
i

di − 1

ci

.

By taking the index i0 that realizes this minimum, and assigning a variable in the
equivalence class of xi0 , we attain our purpose of considering a subspace with the
maximum number of distinct final states, i.e., states containing neither interchangeable

2 Feller [8, p. 38] provides an ingenous and elegant proof: Let us represent the balls by stars and indicate the
di buckets by the di spaces between di + 1 bars. Thus, | ∗ ∗ ∗ | ∗ |||| ∗ ∗ ∗ ∗| is used as a symbol for a distribution
of ci = 8 balls in di = 6 buckets with occupancy numbers 3, 1, 0, 0, 0, 4. Such a symbol necessarily starts and
ends with a bar, but the remaining di − 1 bars and ci stars can appear in an arbitrary order. In this way it becomes
apparent that the number of distinguishable distributions equals the number of ways of selecting ci places out of
ci + di − 1, i.e.,

(di+ci−1
ci

)
.

144 P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163

values nor strongly permutable variables. This is what the following variable selection
heuristic does.

Variety-maximization heuristic. Select for assignment a variable belonging to the
equivalence class for which the ratio di−1

ci
is minimum.

When all the equivalence classes of variables are of the same size, then the synthesized
heuristic reduces to the minimum-domain one. On the other hand, when all domains have
the same number of non-interchangeable values, then the heuristic chooses a variable
from the largest equivalence class; this is exactly what the symmetry-breaking heuristic
would do. To show this, let us quantify the symmetries broken by a given assignment.
Since all permutations inside each class of strongly permutable variables lead to local
symmetries, the total number of such symmetries is c1! c2! · · ·ck! If we assign a variable
from equivalence class i , then the number of remaining symmetries after the assignment
will be: c1! c2! · · · (ci − 1)! · · ·ck! Thus, the ratio of remaining symmetries over the total
will be 1/ci . To maximize symmetry-breaking, we have to determine

min
1�i�k

1

ci

which is the same as saying that we have to select a variable from the largest equivalence
class.

In sum, by applying the least-commitment principle in terms of maximizing the number
of distinct final states considered at each search stage, we have come up with a clean way
of combining the minimum-domain and the symmetry-breaking heuristics, so as to extract
the best of both along the search.

3.3. An example: The layout problem

To illustrate variety-maximization and its relation with minimum-domain, let us consider
the layout problem [12] defined as follows: given a grid, we want to place a number of
pieces such that every piece is completely included in the grid and no overlapping occurs
between pieces. An example of this problem appears in Fig. 7, where three pieces have
to be placed inside the proposed grid. As CSP, each piece is represented by one variable
whose domain is the set of allowed positions in the grid. There is a symmetry between
variables y and z, which are strongly permutable. No symmetry between values exists.

Fig. 7 contains two search trees developed by the forward checking algorithm following
two variable ordering heuristics. The left tree corresponds to the minimum-domain
heuristic, which selects x as first variable (|Dx | = 3 while |Dy | = |Dz| = 4), and y

and z as second and third variables in all the branches. The right tree corresponds to
the variety-maximization heuristic. Instead of x , variety-maximization selects y as first
variable because 4−1

2 < 3−1
1 , in agreement with symmetry-breaking. The assignment of y

breaks the problem symmetry, so from this point variety-maximization follows minimum-
domain. This can be seen in the rightmost branch after assigning y . Variable z is selected
as next variable because after forward checking lookahead |Dz| = 2 while |Dx | = 3.
This example shows how variety-maximization combines both symmetry-breaking and

P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163 145

Fig. 7. The layout problem and two search trees developed by forward checking with minimum-domain (left) and
variety-maximization (right) heuristics.

minimum-domain heuristics, following at each point the most advisable option (depending
on the existing symmetries and domain cardinalities).

To test the benefits that symmetry-breaking (embedded in variety-maximization) brings
over minimum-domain, as listed at the end of Section 3.1, we have solved a larger instance
of this problem. In a 6 × 6 square grid, we want to place 4 pieces of size 2 × 2, plus 4
pieces of size 5 × 1. As CSP, each piece corresponds to one variable, with domains of
cardinalities 25 for 2 × 2 pieces and 24 for 5 × 1 pieces. Variables corresponding to equal
pieces are strongly permutable. Therefore, there are two equivalence classes of 4 variables
each. The minimum-domain heuristic selects two 5 × 1 pieces as the first two variables
of the search tree. At the second level, there are 242 = 576 nodes, 24 of which lead to
a solution. The variety-maximization heuristic selects a 5 × 1 piece as the first variable
and a 2 × 2 piece as second variable. At the second level there are 24 × 25 = 600 nodes,
32 of which lead to a solution. The density of nodes leading to a solution at the second
level following minimum-domain is 24

576 = 0.0417, and following variety-maximization is
32
600 = 0.059. Thus, variety-maximization yields a better distribution of solutions in the
search tree than minimum-domain, increasing the likelihood of finding a solution earlier.

We have solved this problem instance using the standard forward checking algorithm,
finding the first solution and all solutions, in successive experiments. Values are selected
randomly. Table 1 shows the results averaged over 100 runs, each with a different random
seed. We observe that, both in finding one and all solutions, variety-maximization visits less
nodes and requires less CPU time than minimum-domain. In addition, Blength records the
average length of branches not leading to a solution. We see that variety-maximization
generates shorter branches than minimum-domain. Given that the branching factor of

146 P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163

Table 1
Results of standard forward checking on the layout problem

One solution All solutions

Heuristic Nodes Blength Time Nodes Blength Time

Min-dom 8,906 5.08 0.296 140,656 5.09 4.49

Var-max 5,613 4.61 0.239 102,078 4.69 4.29

Table 2
Results of forward checking with value pruning of strongly permutable variables on the layout
problem

One solution All solutions

Heuristic Nodes Blength Time Nodes Blength Time

Min-dom 1,343 4.52 0.057 14,546 4.69 0.589

Var-max 791 3.97 0.045 12,218 4.44 0.489

both trees is similar, shorter branches suggest a lookahead of better quality. This is
also supported by the reduction in visited nodes caused by variety-maximization when
finding all solutions. We have repeated both experiments including value pruning between
strongly permutable variables [20] in the forward checking algorithm. Table 2 shows
these results averaged over 100 runs, each with a different random seed. The inclusion
of value pruning between strongly permutable variables improves largely the performance
of both heuristics. This improvement is higher for variety-maximization when finding one
solution. Finding all solutions, the performance of minimum-domain approaches that of
variety-maximization. This is because, no matter which variable is selected, all are strongly
permutable so they get the benefits of value pruning.

4. Value pruning based on symmetries

For problems without a solution, variable selection heuristics can do nothing to avoid
revisiting symmetric states along the search. To cope with this shortcoming, we have
developed several value pruning strategies, which allow one to reduce the domain of the
current and future variables. These strategies remove symmetric values without removing
non-symmetric solutions. In the following, we present these strategies and how they are
combined, in order to get the maximum profit from symmetric value pruning.

4.1. Domain reduction

In the particular case that a symmetry θ local to the current state maps the current
variable xk to itself, we can use θ to reduce a priori the current variable domain. Before

P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163 147

instantiating xk , equivalence classes of symmetric values in D(xk) by θ can be computed,
producing Q1,Q2, . . . ,Qek equivalence classes. A new domain, D′(xk) is defined as

D′(xk) = {w1,w2, . . . ,wek }
such that each wi is a representative for the class Qi . Now, the current variable xk takes
values from D′(xk) in the following form. If xk takes value wi and generates solution S,
there is no reason to test other values of Qi , because they will generate symmetric solutions
to S by θ . On the other hand, if value wi fails, there is no point in testing other values of
Qi because they will fail as well. In this case, all values of Qi are marked as tested. Once
the current variable has been selected, this strategy allows to reduce its domain to non-
symmetric values, provided the adequate symmetry θ exists. When backtracking jumps
over xk , equivalence classes are forgotten and the previous D(xk) is taken as the domain
for xk .

An example of this domain reduction arises in the pigeon-hole problem: locating n

pigeons in n − 1 holes such that each pigeon is in a different hole. This problem is
formulated as a CSP by associating a variable xi to each pigeon, all sharing the domain
{1, . . . , n − 1}, under the constraints xi = xj , 1 � i, j � n, i = j . Among others, this
problem has a collection of symmetries in the domains

∀i, ∀a, a′ ∈ D(xi) a = a′, ∃θ, θ = I, θi(a) = a′, θi(a
′) = a,

where I is the identity mapping. If variables and values are considered lexicographically,
before assigning x1 all values in D(x1) form a single equivalence class. Then, D′(x1) =
{1}. Performing search by forward checking, value 1 is removed from all future domains.
Considering x2, all its values form a single equivalence class, D′(x2) = {2}. Again,
lookahead removes value 2 from all future domains. Considering x3, all its remaining
values form a single equivalence class, D′(x3) = {3}, etc. This process goes on until
assigning (xn−1, n−1), when lookahead finds an empty domain in D(xn), so backtracking
starts. At that point, all domains of past and current variables have been reduced to a single
value, which is currently assigned. Backtracking does not find any other alternative value
to test in any previous variable, so it ends with failure when x1 is reached. Only the leftmost
branch of the search tree is generated, and the rest of the tree is pruned.

4.2. Value pruning through nogood recording

A nogoodis an assignment of values to a subset of variables which does not belong to
any solution. Before search, a set of nogoods is determined by the constraints as the set
of forbidden value tuples. During search, new nogoods are discovered by the resolution of
nogoods responsible of dead-ends. For example, in Fig. 8, the forward checking algorithm
finds a dead-end in the 5-queens problem (D(x4) = ∅). By the resolution of the nogoods
associated with every pruned value of D(x4), we get the new nogood,

(x1, 1)(x2, 5)(x3, 2)

which means that variables x1, x2 and x3 cannot simultaneously take the values 1, 5 and 2,
respectively. Often nogoods are written in oriented form as,

(x1 = 1) ∧ (x2 = 5) ⇒ (x3 = 2)

148 P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163

Fig. 8. Nogood resolution in a dead-end for the 5-queens problem.

where the variable at the right-hand side is the last variable among the variables of
the nogood that has been instantiated. This variable will be the one changed first when
performing backtracking, which is needed to guarantee completeness of tree-search
algorithms (see [2] for a detailed explanation of nogood resolution).

4.2.1. Value pruning due to symmetric nogoods
Let p = (x1, v1)(x2, v2) . . . (xk, vk) be a nogood found during search and θ a global

symmetry of the considered problem. It is easy to see that the tuple θ(p), defined as
(θ(x1), θ1(v1))(θ(x2), θ2(v2)) · · · (θ(xk), θk(vk)), is also a nogood. Let us suppose that
θ(p) is not a nogood, that is, it belongs to a solution S. Given that θ−1 is also a problem
symmetry and problem solutions are invariant through symmetries, θ−1(S) is also a
solution. But θ−1(S) contains p, in contradiction with the first assumption that p is a
nogood. Therefore, θ(p) is a nogood. Intuitively, θ(p) is the nogood that we would obtain
following a search trajectory symmetric by θ to the current trajectory. An example of this
appears in Fig. 9.

Given that we can generate nogoods using previously found nogoods and global
symmetries of the problem, we propose to learn nogoods during search in the following
form:

(1) We store the new nogoods found during search.
(2) At each node, we test if the current assignment satisfies some symmetric nogood,

obtained by applying a global symmetry to a stored nogood. If it does, the value of
the current variable is unfeasible so it can be pruned. Values removed in this way
are restored when backtracking jumps above their corresponding variables.

Nogood recording in search presents two main issues: storage size and overhead [7].
Regarding the storage space required, it may be of exponential size which could render the
strategy inapplicable in practice. The usual way to overcome this drawback is to store not
all but a subset of the nogoods found, following different strategies: storing nogoods of
size lower than some limit, fixing in advance the storage capacity and using some policy
for nogood replacement, etc. However, this important drawback has been shown to be
surmountable in practice due to the following fact: a new nogood is never symmetric to an
already stored nogood. Otherwise, the assignment leading to this new nogood would have
been found unfeasible, because of the existence of a symmetric nogood, and it would have
been pruned before producing the new nogood. If the number of global symmetries is high
enough, this may cause a very significant decrement in the number of stored nogoods.

Regarding the overhead caused by nogood recording, it has two main parts: nogood
recording and testing against symmetric nogoods. Nogood recording is a simple process

P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163 149

Fig. 9. Symmetric nogoods in the 5-queens problem. Left-right symmetry: reflection about the vertical axis.
Up-down symmetry: reflection about the horizontal axis.

performed on a subset of the visited nodes, causing little overhead. However, testing each
node against symmetric nogoods could mean checking an exponential number of nogoods
per node, which would severely degrade performance, eliminating any possible savings
caused by value removal. To prevent this situation, we restrict the number of symmetric
nogoods against which the current node is tested, following two criteria:

(1) A subset of all global symmetries are used for symmetric nogood generation. The
composition of this subset is problem dependent (see Section 5 for further details).

(2) A subset of stored nogoods is considered for symmetric nogood generation. If xi is
the current variable and θ is a global symmetry, only nogoods containing θ(xi) in
its right-hand side are considered.

Nevertheless, there are some particular cases where we can prune values without
checking stored nogoods, as explained in the following subsection.

4.2.2. Symmetric nogoods at the current branch
Let s be a state defined by the assignment of past variables {(xi, vi)}i∈P , θ a symmetry

local to s, and xk the current variable. If after the assignment of xk the nogood p is found:

p =
∧

j∈P ′, P ′⊆P

(xj , vj) ⇒ (xk = vk)

it is easy to see that θ(p) is also a nogood. If p is a nogood, it means that it violates
a constraint c. By the definition of symmetry, θ(p) violates the symmetric constraint cθ .
Therefore, θ(p) is also a nogood. The interesting point is that θ(p) also holds at the current
state. Effectively,

150 P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163

Fig. 10. Symmetric nogoods by central rotation of 180 degrees in the subboard including variables x2 to x5 and
columns 2 to 5.

θ(p) =
∧

j∈P ′, P ′⊆P

(
θ(xj), θj (vj)

) ⇒ (
θk(xk) = θk(vk)

)

=
∧

j∈P ′′, P ′′⊆P

(xj , vj) ⇒ (
θk(xk) = θk(vk)

)

since all variables in the left-hand side of p are past variables, so they are mapped to other
past variables and their assignments are not changed by θ . Therefore, at this point we can
remove θk(vk) (the value symmetric to vk) from D(θ(xk)), because it cannot belong to
any solution including the current assignment of past variables. If all values of xk are tried
without success and the algorithm backtracks, all values removed in this way should be
restored. If xk is involved in several symmetries, this reasoning holds for each of them
separately. Thus, this strategy can be applied to any variable symmetric to xk .

This strategy of value removal after failure provides further support to the symmetry-
breaking heuristic of Section 3.1. The more local symmetries a variable is involved in,
the more opportunities it offers for symmetric value removal in other domains if a failure
occurs. This extra pruning is more effective if it is done at early levels of the search tree,
since each pruned value represents removing a subtree on the level corresponding to the
variable symmetric to the current one.

An example of this pruning capacity appears in Fig. 10: further resolution of the nogoods
of x3 in Fig. 8 produces the nogood (x1 = 1) ⇒ (x2 = 5). The rotation of 180 degrees of
the subboard including variables x2 to x5 and columns 2 to 5, is a symmetry local to the
state after the assignment (x1, 1). Therefore, applying this symmetry to the nogood, a new
nogood is obtained:

(x1 = 1) ⇒ (x5 = 2)

which is a justification to prune value 2 from D(x5).

4.3. Combination of pruning strategies

The three pruning strategies mentioned, namely
(i) domain reduction,

(ii) value pruning due to symmetric nogoods, and

P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163 151

(iii) value pruning due to symmetric nogoods at the current branch,
can be combined to obtain the maximum profit in future domain reduction. The domain of
the current variable is reduced (assuming that the adequate symmetry exists). If, for some
reason (lookahead or symmetric nogood existence), its current value is discarded, all values
of the same equivalence class are also discarded. If the current variable is symmetric with
other future variables, the symmetric images of the discarded values of the current variable
can be removed from the domains of the symmetric future variables. This cascade of value
removal and symmetry chaining has been shown very effective in the problems tackled
(refer to Section 5). In this process, any removed value is labeled with the justification of
its removal, computed by applying the corresponding symmetry operators to the nogood
which started the pruning sequence. In the following, these strategies are generically named
symmetric value pruning, and they are implemented by a single procedure called SVP.

5. Experimental results

5.1. The Ramsey problem

Aside from the pigeonhole and the n-queens problems, it is hard to find a highly
symmetric problem that has been tackled by several researchers following different
approaches. The Ramsey problem is one of the rare exceptions. Puget [19] reported results
on several instances of this problem obtained by adding ad hoc ordering constraints to
its formulation, so as to break symmetries. Gent and Smith [11] followed the alternative
approach of pruning symmetric states from the search tree after failure, and compared their
results with Puget’s. Thus, we think this is a good problem on which to test the efficiency of
our symmetry-breaking heuristic and its further enhancements described in the preceding
section.

5.1.1. Problem formulation
Given a complete graph 3 with n nodes, the problem is to colour its edges with c colours,

without getting any monochromatic triangle. In other words, for any three nodes n1, n2, n3,
the three edges (n1, n2), (n1, n3), (n2, n3) must not have all three the same colour. In the
case of 3 colours, it is well known that there are many solutions for n = 16, but none for
n = 17.

This problem can be formulated as a CSP as follows. The variables xij , 1 � i, j � n,
i < j, are the edges of the complete graph, the domains are all equal to the set of three
colours {c1, c2, c3}, and the constraints can be expressed as follows:

(xij = xik) or (xij = xjk), ∀i, j, k, i < j < k.

All colour permutations and all node permutations are globalsymmetries of the problem.
To break them in the problem formulation, Puget [19] added three ordering constraints, one
based on values and the remaining two based on cardinalities, as detailed in [11]. Later,

3 A graph in which each node is connected to every other node.

152 P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163

Gent and Smith [11] replaced the constraint on values by their procedure of value pruning
after failure. A comparison of their results with ours can be found in the next subsection.

Our heuristic does not make use of global symmetries, instead it exploits symmetries
local to each search state. The latter are determined by the automorphisms of the coloured
graph developed so far. Since automorphisms derived from composing colour permutations
and general node permutations are very expensive to detect, and we need a simple test that
can be applied repeatedly at node expansion, we concentrate on a particular type of node
permutation that leaves unchanged the coloured graph developed so far, as described below.

When can two nodes i and j be interchanged without altering the colour graph developed
so far? The necessary and sufficient condition is that 4 xik = xjk,∀k, which can be easily
assessed by checking the equality of rows i and j of the adjacency matrix for the graph.
Note that this condition requires that xik and xjk are both either past variables or future
variables and, in the former case, they must have the same colour assigned.

Every pair of node interchanges (transpositions) of the type mentioned above defines a
symmetry. For instance, if we can interchange nodes i and j , and also nodes k and l, then
we have the following symmetry local to the current state:

φ(xij) = xij , φ(xkl) = xkl,

φ(xik) = xjl, φ(xjl) = xik, φ(xil) = xjk, φ(xjk) = xil,

φ(xir) = xjr , φ(xjr) = xir , φ(xkr) = xlr , φ(xlr) = xkr,

∀r, r = i, r = j, r = k, r = l,

φ(xqr) = xqr, ∀q, r, q, r = i q, r = j q, r = k q, r = l,

φqr = I, ∀q, r.

We restrict our analysis and experimentation to symmetries resulting from the combina-
tion of such node interchanges. They are easy to detect and constitute an important subset
of all automorphisms of the coloured graph developed so far. Of course, conditions for
progressively more complex subgraph interchangeability, such as those sketched in [20],
could be developed for the Ramsey problem, but it is not clear that the effort required to
detect more complex symmetries would pay off in terms of search efficiency.

Let us calculate the number of local symmetries of the type mentioned. First note that
interchangeability of nodes is an equivalence relation leading to a partition of the set of
nodes into equivalence classes. Suppose e1, e2, . . . , ek are the sizes of such classes at the
current state. Then, since all permutations inside each class lead to local symmetries, the
total number of such symmetries is e1! e2! · · ·ek!.

If we assign a variable xij , with i and j belonging to the same equivalence class, say p,
then the number of remaining symmetries after the assignment will be: e1! e2! · · ·2(ep −
2)! · · ·ek!, because i and j will now belong to a new class. If, on the contrary, i belongs to
class p, and j belongs to class q , p = q , then the number of remaining symmetries after
assigning xij will be: e1! e2! · · · (ep − 1)! · · · (eq − 1)! · · ·ek! Thus, the ratio of remaining

4 For each pair of nodes (i, j), i = j , there is only one variable, either xij or xji , depending on whether i < j

or j < i. To ease the notation, in what follows, we will not distinguish between the two cases, and thus both xij

and xji will refer to the same, unique variable.

P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163 153

symmetries over the total will be 2/(ep(ep − 1)) in the former case, and 1/(epeq) in the
latter one.

To maximize symmetry-breaking, we have to determine

min
1�p,q�k, p =q

{
2

ep(ep − 1)
,

1

epeq

}
.

Now, note that the equivalence relation over nodes induces an equivalence relation over
edges, which are the variables of our problem. Two variables xik and xjl are symmetric
if and only if either (i ≡ j and k ≡ l) or (i ≡ l and k ≡ j), where ≡ denotes node
interchangeability. The size cij of the equivalence class to which xij belongs is

cij =
{

ep(ep − 1)/2, if i and j belong to the same node class p,
epeq, if i belongs to class p, and j belongs to class q .

Therefore, to maximize symmetry-breaking we have to select a variable xij from the
largest equivalence class, in perfect agreement with the case in which we had strongly
permutable variables.

5.1.2. Results and discussion
We aimed at solving the Ramsey problem with 3 colours using the same algorithm

and heuristics for solvable and unsolvable cases. As reference algorithm, we take forward
checking with conflict-directed backjumping (FC-CBJ) [18], adapted to deal with ternary
constraints.

Regarding variable selection heuristics, we tried the following ones (criteria ordering
indicates priority):

• DG: minimum-domain, maximum-degree, 5 breaking ties randomly.
• DGS: minimum-domain, maximum-degree, largest equivalence class, breaking ties

randomly.
• VM′: we tried the variety-maximization heuristic (VM), which combines minimum-

domain and symmetry-breaking. Since VM does not include the degree, which has
proved to be quite important for variable selection in this problem, we combined them
both in the following way:
– if the variable selected by VM has a two-valued domain (i.e., minimum-domain

dominates symmetry-breaking), use the DG heuristic;
– if the variable selected by VM has a three-valued domain (i.e., symmetry-

breaking dominates minimum-domain), use the following heuristic: maximum-
degree, largest equivalence class, breaking ties randomly.

Notice that local symmetries induced by node interchanges do not generate equiva-
lence classes of strongly permutable variables, so the justification for the VM heuristic
does not strictly hold in this case. Nevertheless, we take VM as an approximation for
the combination of minimum-domain and symmetry-breaking heuristics.

The value selection heuristic is as follows: for variable xij , select the colour with
less occurrences in all triangles including xij with only one coloured edge, breaking ties
randomly.

5 In this problem, we take as degree of variable xij (edge from node i to node j) the number of triangles
including xij with only one edge coloured.

154 P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163

Table 3
Performance results for the Ramsey problem

FC-CBJ-SVP

DG DGS VM′

n Sol Nodes Fails Time Sol Nodes Fails Time Sol Nodes Fails Time

14 99 4494 1009 3.03 100 2167 384 0.69 100 201 15 0.20

15 59 20673 6627 19.46 100 20706 6168 19.50 100 1732 237 0.57

16 100 17172 5290 13.01 100 17027 5247 13.01 100 906 114 0.35

17 100 7418 3232 1.41 100 7485 3175 1.86 100 2952 1132 0.75

Table 4
Performance results of previous approaches on the
Ramsey problem (from [11])

Gent and Smith Puget

n Fails Time Fails Time

16 2030 1.61 2437 1.40

17 161 0.26 636 0.27

The FC-CBJ algorithm was unable to find that no solution exists for n = 17 within
1 CPU hour, for any of the considered heuristics. Then, we added the symmetric value
pruning procedure SVP, 6 obtaining the FC-CBJ-SVP algorithm, which has been able to
solve the Ramsey problem for n from 14 to 17 with the proposed heuristics. Given that
several decisions are taken randomly, we repeated the execution for each dimension 100
times, each with a different random seed. Execution of a single instance was aborted if the
algorithm visited more than 100,000 nodes.

Experimental results appear in Table 3, where for each n and heuristic, we give the
number of solved instances within the node limit, and for those instances, the average
number of visited nodes, the average number of fails and the average CPU time.

We compare the three variable selection heuristics DG, DGS and VM′, within the FC-
CBJ-SVP algorithm. Of the 400 runs, FC-CBJ-SVP with DG solved 358 instances within the
node limit, while it was able to solve all instances with DGS or VM′. Considering instances
solved within the node limit, there is little difference between DG and DGS, except for
n = 14 where DGS improves significantly over DG. A main improvement in performance
occurs when passing from DGS to VM′. For solvable cases, we observe a decrement of
one order of magnitude in visited nodes and number of fails, and of almost two orders
of magnitude in CPU time. For n = 17, the improvement is not so strong but it is still
important.

6 If xij is the current variable, the subset of symmetries used for symmetric nogood generation is formed by
the symmetries exchanging one node (node i or node j) while the other (node j or node i) is kept fixed.

P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163 155

These results show clearly the importance of exploiting symmetries in the solving
process. The SVP procedure allowed us to achieve an efficient solution for n = 17.
The symmetry-breaking heuristic permitted to solve all instances within the node limit,
preventing the search process from getting lost in large subspaces without solution.
VM′ uses the same information as DGS but in a more suitable way, leading to a very
substantial improvement for solvable dimensions. Thus, results substantiate the dominance
of VM′ over DGS, providing experimental support to the theoretically-developed variety-
maximization heuristic.

We compare these results with those of Puget [19] and Gent and Smith [11], which
are given in Table 4. For n = 16, the number of fails for the DGS is higher than Puget’s,
and Gent and Smith’s numbers, while the number of fails for the VM′ heuristic is one
order of magnitude lower than Puget’s, and Gent and Smith’s numbers. For dimension
17, results from DGS and VM′ are worse than previous approaches. This is not surprising,
because our variable selection heuristics have been devised for solvable problems. CPU
time cannot be compared because these results come from different machines. From this
comparison, we can affirm that our approach, based on a new variable ordering and a
pruning procedure, remains competitive with more sophisticated approaches based on a
careful problem formulation [19] plus the inclusion of new constraints during search [11],
and it is even able to outperform them for solvable dimensions.

5.2. BIBD generation

Block designs are combinatorial objects satisfying a set of integer constraints [4,13].
Introduced in the thirties by statisticians working on experiment planning, nowadays they
are used in many other fields, such as coding theory, network reliability, and cryptography.
The most widely used designs are the Balanced Incomplete Block Designs (BIBDs).
Although up to our knowledge, BIBD generation has not been tackled from the CSP
viewpoint, it appears to be a wonderful instance of highly symmetric CSP, thus offering
the possibility to assess the benefits of different search strategies on such problems.

5.2.1. Problem formulation
Formally, a (v, b, r, k, λ)-BIBD is a family of b sets (called blocks) of size k, whose

elements are from a set of cardinality v, k < v, such that every element belongs exactly to
r blocks and every pair of elements occurs exactly in λ blocks. v, b, r, k, and λ are called
the parameters of the design. Computationally, designs can be represented by a v×b binary
matrix, with exactly r ones per row, k ones per column, and the scalar product of every pair
of rows is equal to λ. An example of BIBD appears in Fig. 11.

There are three necessary conditions for the existence of a BIBD:
(1) rv = bk,
(2) λ(v − 1) = r(k − 1), and
(3) b � v.
However, these are not sufficient conditions. The situation is summarized in [15], that

lists all parameter sets obeying these conditions, with r � 41 and 3 � k � v/2 (cases
with k � 2 are trivial, while cases with k > v/2 are represented by their corresponding
complementaries, which are also block designs). For some parameter sets satisfying the

156 P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163

Fig. 11. An instance of (7,7,3,3,1)-BIBD.

above conditions, it has been established that the corresponding design does not exist;
for others, the currently known bound on the number of non-isomorphicsolutions is
provided; and finally, some listed cases remain unsettled. The smallest such case is that
with parameters (22, 33, 12, 8, 4), to whose solution many efforts have been devoted [24,
Chapter 11].

Some (infinite) families of block designs (designs whose parameters satisfy particular
properties) can be constructed analytically, by direct or recursive methods [13, Chapter 15],
and the state of the art in computational methods for design generation is described
in [4,24]. The aforementioned unsettled case, with vb = 726 binary entries, shows that
exhaustive search is still intractable for designs of this size. In the general case, the
algorithmic generation of block designs is an NP problem [5].

Computational methods for BIBD generation, either based on systematic or randomized
search procedures, suffer from combinatorial explosion which is partially due to the
large number of isomorphic configurations present in the search space. The use of group
actions goes precisely in the direction of reducing this isomorphism [24, Chapter 3]. Thus,
BIBD generation can be viewed as a large family of highly symmetric CSPs and, as
such, constitutes a good testbed on which to test strategies to exploit symmetries within
constraint satisfaction search.

The problem of generating a (v, b, r, k, λ)-BIBD admits several CSP formulations. The
most direct one would be representing each matrix entry by a binary variable. Then, there
would be three types of constraints:

(i) v b-ary constraints ensuring that the number of ones per row is exactly r ,
(ii) b v-ary constraints ensuring that the number of ones per column is exactly k, and

(iii) v(v − 1)/2 2b-ary constraints ensuring that the scalar product of each pair of rows
is exactly λ.

All are high-arity constraints, but especially the last type is very costly to deal with, because
of its highest arity and its large number of instances.

We have opted for an alternative formulation that avoids constraints of type (iii), as
follows. Two rows i and j of the BIBD should have exactly λ ones in the same columns.
We represent this by λ variables xijp, 1 � p � λ, where xijp contains the column of the
pth one common to rows i and j . There are v(v − 1)/2 row pairs, so there are λv(v − 1)/2
variables, all sharing the domain {1, . . . , b}. From these variables, the BIBD v × b binary
matrix T is computed as follows:

T [i, c] =
{

1, if ∃j,p such that xijp = c or xjip = c,
0, otherwise.

P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163 157

Constraints are expressed in the following terms,

xijp = xijp′ ;
b∑

c=1

T [i, c] = r;
v∑

i=1

T [i, c] = k,

where 1 � p,p′ � λ, 1 � i, j � v, 1 � c � b. Note that the last two types of constraints
are exactly the same as the former two in the previous formulation, while we have replaced
the costly type (iii) constraints by binary inequality constraints. This reduces considerably
the pruning effort.

Turning to symmetries, all row and column permutations are global symmetries of the
problem, which are retained in both formulations above. Note, however, that each of
these symmetries involves interchanging many variables at once, i.e., they do not yield
strongly permutable variables in neither of the two formulations. Moreover, as variables
are assigned, many of these global symmetries disappear, because they involve changing
past variables. Since we are interested in local symmetries that can be easily detected, we
consider the following ones relating future variables:

(1) Variable mapping exchanges xijp and xijp′ , domain mappings are the identity; this
symmetry occurs among variables of the same row pair.

(2) Variable mapping is the identity, one domain mapping exchanges values c1 and c2;
this symmetry occurs when T [l, c1] = T [l, c2] for l = 1, . . . , v.

(3) Variable mapping exchanges xijp and xi′j ′p′ , domain mappings are the identity; this
symmetry occurs when T [i, c] = T [i ′, c] and T [j, c] = T [j ′, c] for c = 1, . . . , b.

(4) Variable mapping exchanges xij1p and xij2p′ , the domain mappings corresponding
to these variables exchange values c1 and c2; this symmetry occurs when,

T [j1, c1] = T [j2, c2] = 1, T [j1, c2] = T [j2, c1] = 0,

T [j1, c] = T [j2, c], c = 1, . . . , b, c = c1, c = c2,

T [j, c1] = T [j, c2], j = 1, . . . , v, j = j1, j = j2.

(5) Variable mapping exchanges xij1p and xij2p′ , the domain mappings corresponding
to these variables exchange values c1 and c2, and c3 and c4; this symmetry occurs
when,

T [j1, c1] = T [j2, c2] = 1, T [j1, c2] = T [j2, c1] = 0,

T [j1, c3] = T [j2, c4] = 1, T [j1, c4] = T [j2, c3] = 0,

T [j1, c] = T [j2, c], c = 1, . . . , b, c = c1, c = c2, c = c3, c = c4,

T [j, c1] = T [j, c2], j = 1, . . . , v, j = j1, j = j2,

T [j, c3] = T [j, c4], j = 1, . . . , v, j = j1, j = j2.

These symmetries have a clear interpretation. Symmetry (1) is inherent to the formulation.
Symmetry (2) is the local version of column permutability: assigned values must be equal
in columns c1 and c2, for the values c1 and c2 of a variable to be interchangeable. Symmetry
(3) is the local version of two pairs of simultaneous row permutations: rows i and i ′
(respectively, rows j and j ′) must have the same assigned values for variables xijp and
xi′j ′p′ to be permutable. The next two symmetries are generalizations of the preceding

158 P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163

one. Symmetry (4) relates variables sharing row i , and rows j1 and j2 that are equal
but for two columns c1 and c2. These columns are also equal but for rows j1 and j2.
Exchanging rows j1 and j2, and columns c1 and c2, matrix T remains invariant. Symmetry
(5) develops the same idea in the case where i is not shared, and thus two rows i1 and i2

need to be considered. It occurs when exchanging rows i1 and i2, and columns c1 and c2,
and c3 and c4, matrix T remains invariant. It is worth noting that these symmetries keep
invariant matrix T because they are local to the current state, that is, they do not change
past variables.

Concerning the way symmetries act on variables, symmetry (1) is the only one defining
strongly permutable variables. Symmetries (3), (4) and (5) are induced by exchanging
rows and columns within the BIBD matrix, leading to equivalence relations of the same
type as in the Ramsey problem. Taken together, the symmetries of the latter three types
form a subgroup, leading to equivalence classes in which the variables are related by one
symmetry type only. In other words, if two variables within a class are related by a given
symmetry, all other variables in the class are related by symmetries of the same type.
Let us consider a variable xijp which is strongly permutable with cr − 1 other variables
through symmetry (1), and which belongs to a class of size c′

s when the subgroup formed
by symmetries (3), (4) and (5) is considered. Then, xijp belongs to a class of size crc

′
s when

the four variable symmetries are considered together. Now, by combining the reasonings
in Sections 3.2 and 5.1.1, we can deduce that, after assigning xijp , the ratio of remaining
symmetries over those before the assignment would be:

min
r,s

1

crc′
s

.

Therefore, in the case of BIBDs, in order to maximize symmetry-breaking, we also have
to select a variable belonging to the largest equivalence class.

5.2.2. Results and discussion
BIBD generation is a non-binary CSP. We use a forward checking algorithm with

conflict-directed backjumping (FC-CBJ [18]) adapted to deal with non-binary constraints
as reference algorithm.

Regarding variable selection heuristics, we tried the following ones (criteria ordering
indicates priority),

• DG: minimum-domain, maximum-degree, 7 breaking ties randomly.
• SDG: symmetry-breaking, minimum-domain, maximum-degree, breaking ties ran-

domly.
• VM: variety-maximization heuristic, maximum-degree, breaking ties randomly.
Equivalence classes for variables are computed using symmetries (1), (3), (4) and (5),

defined in the preceding subsection. Only symmetry (1) generates strongly permutable
variables, so justification for the VM heuristic does not strictly hold in this case.
Nevertheless, we take VM as an approximation for the combination of minimum-domain

7 The degree of variable xijp is the number of future variables xklp′ such that i = k and j = l, or i = k and
j = l.

P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163 159

and symmetry-breaking heuristics. Equivalence classes for values are computed using
symmetry (2). Values are selected as follows:

• if λ = 1, a value within the largest equivalence class;
• if λ > 1, randomly.
We compare the performance of these heuristics generating all BIBDs with vb < 1400

and k = 3, all having solution. Since the performance of the proposed algorithm depends
on random choices, we have repeated the generation of each BIBD 50 times, each with a
different random seed. Execution of a single instance was aborted if the algorithm visited
more than 50,000 nodes.

Empirical results appear in Table 5, where for each heuristic and BIBD, we give the
number of solved instances within the node limit, the average number of visited nodes of
solved instances, and the average CPU time in seconds for the 50 instances. Of the 2400
instances executed, FC-CBJ with DG solves 940, with SDG solves 2393 and with VM solves
2394. FC-CBJ with DG does not solve any instance for 5 specific BIBDs, while FC-CBJ

with both SDG and VM provide solution for all BIBDs tested. Regarding CPU time, SDG

dominates DG in 45 classes, and VM dominates SDG in 46 classes, out of the 48 BIBD
classes considered. These results show clearly that the inclusion of the symmetry-breaking
heuristic is a very significative improvement for BIBD generation, allowing the solution of
almost the whole benchmark, while the DG heuristic solved slightly more than one third of
it. The VM heuristic means a refinement of SDG: it can solve one more instance, and CPU
time decreases for most of the classes tested.

Adding the symmetric value pruning procedure 8 to FC-CBJ, we get the FC-CBJ-SVP

algorithm, on which we have tested the heuristics SDG and VM. Empirical results appear
in Table 6. FC-CBJ-SVP with SDG can solve 4 more instances than in the previous case,
while FC-CBJ-SVP with VM increases in 3 the number of solved instances. In terms of
CPU time, the dominance of VM over SDG remains in 42 cases. From this assessment, we
conclude that symmetric value pruning does not play an important role in this problem: it
produces certain benefits but the main advantage is provided by the inclusion of symmetries
in variable selection, either in the form of symmetry-breaking or in the more elaborated
variety-maximization heuristic.

6. Conclusions

In this paper we have analysed how to take symmetry into account to reduce search
effort. Two variable selection heuristics and a value pruning procedure have been devised to
exploit symmetries inside a depth-first search scheme. We have shown how our symmetry-
breaking heuristic can be combined with the minimum-domain one to yield a new
variable selection heuristic that outperforms them both. This is called variety-maximization
heuristic because it selects for assignment the variable leading to a search subspace with
the greatest number of distinct final states. Moreover, our value pruning procedure based on
nogood recording has proven effective in both solvable and unsolvable problem instances.

8 Given that FC-CBJ with SDG or VM solved most of the problem instances, we included a SVP procedure
allowing a single form of symmetric value pruning: the one due to symmetric nogoods at the current branch.
Therefore, nogoods are not explicitly recorded in this case.

160 P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163

Table 5
Performance results of BIBD generation using FC-CBJ with three different variable selection heuristics, on a Sun
Ultra 60, 360 MHz

FC-CBJ

BIBD DG SDG VM

(v, b, r, k, λ) Sol Nodes Time Sol Nodes Time Sol Nodes Time

7,7,3,3,1 50 21 1.4e−3 50 22 1.4e−3 50 21 2.6e−3
6,10,5,3,2 50 60 3.6e−3 50 31 6.6e−3 50 30 4.6e−3
7,14,6,3,2 50 2152 1.3e−1 50 60 1.9e−2 50 43 1.1e−2
9,12,4,3,1 50 40 1.8e−3 50 80 2.0e−2 50 48 1.0e−2
6,20,10,3,4 18 435 3.7e+0 50 77 5.7e−2 50 61 3.3e−2
7,21,9,3,3 16 2877 4.3e+0 50 65 6.7e−2 50 75 4.5e−2
6,30,15,3,6 6 196 9.9e+0 50 117 2.4e−1 50 95 1.4e−1
7,28,12,3,4 11 195 7.6e+0 50 146 2.2e−1 50 86 1.2e−1
9,24,8,3,2 44 763 1.2e+0 50 75 1.2e−1 50 77 8.2e−2
6,40,20,3,8 3 156 1.7e+1 50 124 6.5e−1 50 128 3.9e−1
7,35,15,3,5 6 230 1.5e+1 50 111 4.3e−1 50 109 2.7e−1
7,42,18,3,6 6 141 1.9e+1 50 131 8.0e−1 50 139 4.8e−1
10,30,9,3,2 38 181 3.4e+0 50 100 2.7e−1 50 120 2.0e−1

6,50,25,3,10 1 1057 3.1e+1 50 467 1.8e+0 50 155 8.1e−1
9,36,12,3,3 29 478 6.8e+0 48 116 2.5e+0 50 202 3.8e−1
13,26,6,3,1 50 1076 3.5e−1 50 151 2.2e−1 50 151 1.7e−1
7,49,21,3,7 2 151 3.3e+1 50 651 2.0e+0 50 164 8.0e−1

6,60,30,3,12 2 139 4.6e+1 50 184 2.7e+0 50 189 1.5e+0
7,56,24,3,8 1 36401 4.6e+1 50 258 2.3e+0 50 179 1.2e+0

6,70,35,3,14 0 0 5.4e+1 50 216 4.9e+0 50 215 2.3e+0
9,48,16,3,4 19 685 1.6e+1 50 151 1.2e+0 50 153 7.3e−1
7,63,27,3,9 0 0 6.0e+1 50 240 3.4e+0 50 196 1.7e+0
8,56,21,3,6 5 285 3.7e+1 49 188 3.9e+0 50 498 1.7e+0
6,80,40,3,6 0 0 7.2e+1 50 243 8.6e+0 50 245 3.6e+0

7,70,30,3,10 1 235 6.7e+1 50 215 5.1e+0 50 215 2.4e+0
15,35,7,3,1 48 395 9.8e−1 50 219 5.3e−1 50 219 4.2e−1

12,44,11,3,2 41 591 5.1e+0 50 166 9.6e−1 50 191 6.5e−1
7,77,33,3,11 0 0 9.3e+1 50 243 7.7e+0 50 246 3.2e+0
9,60,20,3,5 12 386 2.9e+1 49 188 4.8e+0 50 256 1.7e+0

7,84,36,3,12 1 1027 9.2e+1 50 316 1.1e+1 50 254 4.2e+0
10,60,18,3,4 12 613 2.6e+1 50 244 2.8e+0 50 189 1.5e+0
11,55,15,3,3 33 680 1.2e+1 50 180 2.0e+0 50 234 1.2e+0
7,91,39,3,13 0 0 1.3e+2 50 274 1.5e+1 50 280 5.4e+0
9,72,24,3,6 8 671 4.2e+1 49 221 8.4e+0 50 252 2.7e+0

13,52,12,3,2 43 298 4.6e+0 50 583 2.4e+0 49 218 2.9e+0
9,84,28,3,7 8 2054 5.4e+1 50 662 1.5e+1 50 257 4.2e+0
9,96,32,3,8 9 3997 6.6e+1 50 558 2.0e+1 50 296 6.3e+0

10,90,27,3,6 8 3131 5.6e+1 50 279 1.4e+1 50 289 5.3e+0
9,108,36,3,9 3 1193 9.6e+1 50 335 3.0e+1 49 365 1.4e+1
13,78,18,3,3 37 1392 1.6e+1 50 274 7.7e+0 50 282 3.5e+0
15,70,14,3,2 36 1647 2.3e+1 50 615 6.1e+0 49 383 5.5e+0
12,88,22,3,4 33 1271 2.8e+1 50 292 1.3e+1 50 296 5.1e+0
9,120,40,3,10 6 10429 1.1e+2 50 386 4.8e+1 50 268 1.4e+1
19,57,9,3,1 46 778 4.8e+0 48 802 9.1e+0 48 802 8.2e+0

10,120,36,3,8 4 9927 1.1e+2 50 422 5.1e+1 50 377 1.3e+1
11,110,30,3,6 24 2491 4.9e+1 50 353 3.6e+1 49 366 1.6e+1
16,80,15,3,2 40 2275 2.3e+1 50 795 1.1e+1 50 485 4.7e+0
13,104,24,3,4 30 1076 4.9e+1 50 402 2.7e+1 50 344 8.7e+0

P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163 161

Table 6
Performance results of BIBD generation using FC-CBJ-SVP with two different variable selection heuristics, on a
Sun Ultra 60, 360 MHz

FC-CBJ-SVP

BIBD SDG VM

(v, b, r, k, λ) Sol Nodes Time Sol Nodes Time

7,7,3,3,1 50 22 3.0e−3 50 21 4.2e−3
6,10,5,3,2 50 31 7.2e−3 50 30 5.6e−3
7,14,6,3,2 50 53 1.9e−2 50 44 1.2e−2
9,12,4,3,1 50 78 1.9e−2 50 48 1.0e−2
6,20,10,3,4 50 62 5.4e−2 50 62 3.5e−2
7,21,9,3,3 50 65 6.8e−2 50 69 4.4e−2
6,30,15,3,6 50 103 2.4e−1 50 95 1.4e−1
7,28,12,3,4 50 111 2.1e−1 50 86 1.2e−1
9,24,8,3,2 50 75 1.2e−1 50 77 8.4e−2
6,40,20,3,8 50 123 6.6e−1 50 126 3.9e−1
7,35,15,3,5 50 111 4.3e−1 50 109 2.7e−1
7,42,18,3,6 50 130 7.9e−1 50 133 4.8e−1
10,30,9,3,2 50 99 2.7e−1 50 123 2.0e−1

6,50,25,3,10 50 239 1.7e+0 50 156 8.3e−1
9,36,12,3,3 50 1896 1.0e+1 50 173 3.8e−1
13,26,6,3,1 50 145 2.1e−1 50 145 1.7e−1
7,49,21,3,7 50 321 1.8e+0 50 163 7.9e−1

6,60,30,3,12 50 184 2.7e+0 50 185 1.5e+0
7,56,24,3,8 50 219 2.2e+0 50 173 1.2e+0

6,70,35,3,14 50 213 4.9e+0 50 217 2.3e+0
9,48,16,3,4 50 152 1.2e+0 50 152 7.3e−1
7,63,27,3,9 50 220 3.3e+0 50 193 1.7e+0
8,56,21,3,6 49 179 1.3e+1 50 323 2.0e+0
6,80,40,3,6 50 242 8.5e+0 50 246 3.6e+0

7,70,30,3,10 50 213 5.0e+0 50 216 2.4e+0
15,35,7,3,1 50 193 5.0e−1 50 193 3.9e−1

12,44,11,3,2 50 166 9.5e−1 50 204 6.7e−1
7,77,33,3,11 50 242 7.6e+0 50 240 3.3e+0
9,60,20,3,5 49 188 1.3e+1 50 238 1.6e+0

7,84,36,3,12 50 270 1.1e+1 50 254 4.2e+0
10,60,18,3,4 50 232 2.8e+0 50 188 1.5e+0
11,55,15,3,3 50 180 2.0e+0 50 229 1.3e+0
7,91,39,3,13 50 274 1.5e+1 50 277 5.4e+0
9,72,24,3,6 50 979 1.4e+1 50 309 3.0e+0

13,52,12,3,2 50 541 2.5e+0 50 1008 3.4e+0
9,84,28,3,7 50 440 1.2e+1 50 257 4.2e+0
9,96,32,3,8 50 418 2.0e+1 50 295 6.4e+0

10,90,27,3,6 50 279 1.4e+1 50 286 5.3e+0
9,108,36,3,9 50 335 3.0e+1 49 341 4.0e+1
13,78,18,3,3 50 273 7.7e+0 50 280 3.5e+0
15,70,14,3,2 50 573 6.1e+0 50 1058 5.7e+0
12,88,22,3,4 50 290 1.3e+1 50 296 5.0e+0
9,120,40,3,10 50 381 4.8e+1 50 461 1.4e+1
19,57,9,3,1 49 745 7.7e+0 49 745 6.9e+0

10,120,36,3,8 50 417 5.1e+1 50 377 1.3e+1
11,110,30,3,6 50 352 3.5e+1 49 366 3.6e+1
16,80,15,3,2 50 643 1.0e+1 50 490 4.7e+0
13,104,24,3,4 50 397 2.8e+1 50 344 8.5e+0

162 P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163

These strategies have been tested on two highly symmetric combinatorial problems,
namely the Ramsey problem and the generation of BIBDs. For the former, we have
compared our results with those obtained in previous works. In the case of solvable
instances, i.e., for n � 16, our general-purpose strategies have been able to outperform
the alternative approach of reformulating the original problem by adding new constraints
to break problem symmetries. For n = 17, our strategies can still compete, although it must
be noted that the variable selection heuristics are oriented towards finding solutions nor to
prove their inexistence.

BIBD generation is an NP problem that has triggered a considerable amount of research
on analytic and computational procedures. Its wide variability in size and difficulty makes
it a very appropriate benchmark for algorithms aimed at exploiting symmetries in CSPs.
We believe that systematic search procedures are more likely to shed light on the solution
of difficult instances of the problem, although randomized algorithms may be quicker
at finding solutions in easier cases. The present work has not been aimed at solving
a particular such instance, but instead at proposing and evaluating tools to deal with
symmetries. In this respect, the proposed strategies have been shown to be effective in
reducing search effort.

It is worth mentioning that there is always a trade−off between the effort spent
in looking for and exploiting symmetries, and the savings attained. Thus, instead of
considering all possible symmetries, it is advisable to establish a hierarchy of them and
try to detect the simplest first, as we have done.

Concerning future work, we would like to study whether other variable selection
heuristics (such as degree-maximization) can also be integrated with symmetry-breaking
and minimum-domain, under a single decision criterion. Along the same line, we would
like to extend the variety-maximization heuristic to other variable relations, beyond
strong permutability. Moreover, we will try to identify criteria for value selection which
complement our heuristics for variable selection. Finally, it would be interesting to assess
up to what extent our approach depends on the type and number of symmetries occurring
in a particular problem.

Acknowledgements

This work has been partially supported by the Spanish Science and Technology Commis-
sion (CICYT) under contract TAP99-1086-C03 (project “Constraint-based computation in
robotics and resource allocation”). We thank Thierry Petit, who provided us reference [12].
We also thank Javier Larrosa, Lluìs Ros and three anonymous reviewers for their useful
criticisms.

References

[1] R. Backofen, S. Will, Excluding symmetries in constraint based search, in: Proc. CP-99, Alexandria, VA,
1999, pp. 73–87.

[2] A. Baker, The hazards of fancy backtracking, in: Proc. AAAI-94, Seattle, WA, 1994, pp. 288–293.

P. Meseguer, C. Torras / Artificial Intelligence 129 (2001) 133–163 163

[3] C.A. Brown, L. Finkelstein, P.W. Purdom, Backtrack searching in the presence of symmetry, in: Proc. 6th
Internat. Conference on Applied Algebra, Algebraic Algorithms and Error Correcting Codes, 1988, pp. 99–
110.

[4] C.H. Colbourn, J.H. Dinitz (Eds.), The CRC Handbook of Combinatorial Designs, CRC Press, Rockville,
MD, 1996.

[5] D.G. Corneil, R.A. Mathon, Algorithmic techniques for the generation analysis of strongly regular graphs
and other combinatorial configurations, Ann. Discrete Math. 2 (1978) 1–32.

[6] J. Crawford, M. Ginsberg, E. Luks, A. Roy, Symmetry-breaking predicates for search problems, in: Proc.
KR-96, Cambridge, MA, 1996.

[7] R. Dechter, Enhancement schemes for constraint processing backjumping, learning and cutset decomposi-
tion, Artificial Intelligence 41 (1990) 273–312.

[8] W. Feller, An Introduction to Probability Theory its Applications, Vol. I, 3rd edn., Wiley, New York, 1968.
[9] E.G. Freuder, Eliminating interchangeable values in constraint satisfaction problems, in: Proc. AAAI-91,

Anaheim, CA, 1991, pp. 227–233.
[10] I.P. Gent, E. MacIntyre, P. Prosser, B. Smith, T. Walsh, An empirical study of dynamic variable ordering

heuristics for the constraint satisfaction problem, in: Proc. CP-96, Lecture Notes in Computer Science,
Vol. 1118, Springer, Berlin, 1996, pp. 179–193.

[11] I.P. Gent, B. Smith, Symmetry breaking in constraint programming, in: Proc. ECAI-2000, Berlin, 2000,
pp. 599–603.

[12] ILOG, Ilog Solver User’s Manual 3.1, 1996.
[13] M. Hall, Combinatorial Theory, 2nd edn., Wiley, New York, 1986.
[14] R.M. Haralick, G.L. Elliott, Increasing tree search efficiency for constraint satisfaction problems, Artificial

Intelligence 14 (1980) 263–313.
[15] R. Mathon, A. Rosa, Tables of parameters of BIBD with r � 41 including existence enumeration and

resolvability results: An update, Ars Combinatoria 30 (1990).
[16] P. Meseguer, C. Torras, Solving strategies for highly-symmetric CSPs, in: Proc. IJCAI-99, Stockholm,

Sweden, 1999, pp. 400–405.
[17] B. Nadel, Representation selection for constraint satisfaction: A case study using n-queens, IEEE Expert

(June 1990) 16–23.
[18] P. Prosser, Hybrid algorithmics for the constraint satisfaction problem, Computational Intelligence 9 (3)

(1993) 268–299.
[19] J.F. Puget, On the satisfiability of symmetrical constrained satisfaction problems, in: Proc. ISMIS-93,

Norway, 1993, pp. 350–361.
[20] P. Roy, F. Pachet, Using symmetry of global constraints to speed up the resolution of constraint satisfaction

problems, in: Proc. ECAI-88 Workshop on Non-binary Constraints, Brighton, UK, 1998, pp. 27–33.
[21] S.J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, Englewood Cliffs, NJ,

1995.
[22] A. San Miguel, Symmetries the cardinality operator, in: Proc. ECAI-92, Vienna, Austria, 1992, pp. 18–22.
[23] B.M. Smith, S.A. Grant, Trying harder to fail first, in: Proc. ECAI-98, Brighton, UK, 1998, pp. 249–253.
[24] W.D. Wallis, Computational Constructive Design Theory, Kluwer Academic, Dordrecht, 1996.

