
Balanced Incomplete Block Design as Satis�abilitySteven PrestwichDepartment of Computer ScienceNational University of Ireland at Corktel. +353 21 490 3165s.prestwich@cs.ucc.ieAbstractBalanced incomplete block design generation is a standard combinatorial problem fromdesign theory. Constraint programming has recently been applied to the problem using amixture of binary and non-binary constraints, with special techniques for symmetry break-ing. We describe a new binary constraint model and apply search algorithms indirectly viasatis�ability encoding. The encoded problems turn out to be hard for current algorithms,and symmetry breaking sometimes makes them harder, but the results suggest a promisingdirect approach.1 IntroductionBalanced incomplete block design (BIBD) generation is a standard combinatorial problemfrom design theory, originally used in the design of statistical experiments but since �ndingother applications such as cryptography. It is a special case of block design, which also includessuch problems as latin squares. A constraint programming approach to BIBD generation wasrecently described by Meseguer & Torras [15]. They exploit symmetries to improve variableselection and domain pruning in backtracking search (forward checking with conict-directedbackjumping), reducing the time to �nd all solutions. This paper proposes a new constraintmodel for BIBD generation, and investigates the application of backtracking, local search andhybrid algorithms to the problem via satis�ability (SAT) encoding.We are particularly interested in the use of symmetry breaking techniques to partiallyor wholly eliminate symmetries from constraint satisfaction problems (CSPs). Many CSPscontain symmetries. An example is the N-queens problem, which has 8 symmetries: eachsolution may be rotated through 90 degrees and reected about an axis. Other problemshave many more symmetries that make it very hard to �nd all solutions, including the specialcase where there are no solutions and we wish to prove unsatis�ability. Symmetry breakingtechniques may be broadly divided into two camps. Probably the most popular is to addsymmetry breaking constraints to the problem formulation, so that each equivalence class ofsolutions to the original problem corresponds to a single solution in the new problem. It is

rarely possible to achieve this goal completely but results are often good, and symmetriesmay be detected in SAT encodings [3] or lifted (quanti�ed) versions of CSPs [11]. A formalframework for this approach is given in [18]. The other approach is to detect and exploitsymmetries dynamically during search. An ordering can be de�ned on solutions, and thesearch restricted to the �rst solutions under this ordering within each equivalence class [2].Constraints may be posted at each branch point in the search tree [7]. The search may beguided towards subspaces with many non-symmetric states [15].Symmetry breaking techniques are usually applied when generating all solutions or provingunsolvability, and a popular benchmark is the unsolvable pigeonhole problem. However, itis hard to �nd reported results for their e�ects on single-solution search, an exception beinga remark in [10] that they do not always improve the performance of the Oz system. Fromconversations with other researchers this appears to be common knowledge, but it seemsworth investigating further because symmetry breaking is widely used. For the commonsituation in which we simply wish to �nd a solution, any guidelines on when to use symmetrybreaking would be valuable. For example, might symmetry breaking hinder the search for asolution? Does the answer depend on the type of algorithm used? This paper provides sometentative answers.2 Balanced incomplete block designA BIBD is de�ned as an arrangement of v distinct objects into b blocks such that each blockcontains exactly k distinct objects, each object occurs in exactly r di�erent blocks, and everytwo distinct objects occur together in exactly � blocks. Another way of de�ning a BIBD isin terms of its incidence matrix , which is a v � b binary matrix with exactly r ones per row,k ones per column, and with scalar product � between any pair of distinct rows. A BIBD istherefore speci�ed by its parameters (v; b; r; k; �).It can be proved that for a BIBD to exist its parameters must satisfy the conditionsrv = bk, �(v � 1) = r(k � 1) and b � v, but these are not su�cient conditions. Constructivemethods can be used to design BIBDs of special forms, but the general case is very challengingand there are surprisingly small open problems, the smallest being (22,33,12,8,4) [14]. Onesource of intractability is the large number of symmetries: given any solution, any two rowsor columns may be exchanged to obtain another solution.2.1 Binary CSP modelA wide variety of problems encountered in arti�cial intelligence can be expressed as CSPs.A CSP consists of a set of variables, and a set of constraints (relations) de�ned on subsetsof the variables. Each variable has a domain of possible values. The problem is to assign avalue to each variable from its domain without violating any constraints.The most direct CSP model for BIBD, as described in [15], would be to represent eachmatrix entry by a boolean variable. There are then three types of constraint: (i) v b-aryconstraints for the r ones per row, (ii) b v-ary constraints for the k ones per column, and (iii)v(v� 1)=2 2b-ary constraints for the � matching ones in each pair of rows. These constraintsare expensive to process and not very useful for propagation. This direct model is modi�ed

in [15] to avoid the most expensive constraints (iii), using �v(v� 1)=2 variables to denote thecolumn number of each shared one between each pair of rows. However, this still leaves thefairly expensive constraints (i) and (ii).There are standard techniques for transforming a non-binary constraint problem into abinary one (the dual graph [6] and hidden variable [5] methods). Alternatively, we can obtaina binary constraint model directly, via the same trick of using integer variables to representpositions. To do this we de�ne variables denoting the positions of the ones and zeroes in eachrow and column, giving �ve sets of variables:R1i;j (1 � i � v; 1 � j � r)R0i;j (1 � i � v; 1 � j � b� r)C1i;j (1 � i � b; 1 � j � k)C0i;j (1 � i � b; 1 � j � v � k)S1i;j;p (1 � i < j � v; 1 � p � �)The R1i;j denote the positions in row i of the r ones, and the R0i;j those of the b� r zeroes.Similarly the Cf0; 1gi;j denote the positions of the k ones and v � k zeroes in column i. TheS1i;j;p denote the shared positions of the � ones in rows i and j. The Rf0; 1gi;j and S1i;j;phave domain f1 : : : bg and the Cf0; 1gi;j have domain f1 : : : vg.The constraints are as follows. No zero can be placed in the same place as a oneR1i;j 6= R0i;j0 C1i;j 6= C0i;j0The row values must agree with the column values. That is, if a one (or zero) is placed ina given row (or column) position, then no zero (or one) can be placed in the correspondingcolumn (or row) position.R1i;j 6= p _ C0p;q 6= i R0i;j 6= p _ C1p;q 6= iEach S1i;j;p must agree with one of the R1i;j0 and one of the R1i0;j, but to state this directlywould involve non-binary constraints. Instead we state it indirectly as: no two rows can sharea one at a given position if a zero is placed there in either row.S1i;j;p 6= R0i;q S1i;j;p 6= R0j;q (i < j)The positions of the ones and zeroes must be di�erent in both rows and columns, to ensurethat no location contains more than one entry. Because there are exactly b variables for eachrow and v for each column, this also ensures that every row and column position is assignedeither a one or a zero. We consider three ways of enforcing this condition, which we shallrefer to as three levels of symmetry breaking. At level 1 we use constraintsR1i;j < R1i;j+1 R0i;j < R0i;j+1 C1i;j < C1i;j+1 C0i;j < C0i;j+1S1i;j;p < S1i;j;p+1 (i < j)at level 2 we add implied constraintsR1i;j < R1i;j0 R0i;j < R0i;j0 C1i;j < C1i;j0 C0i;j < C0i;j0 (j < j0)S1i;j;p < S1i;j;q (i < j; p < q)

and at level 3 we add further implied constraintsR1i;j + d < R1i;j0 R0i;j + d < R0i;j0 (j < j0; d = j0 � j � 1)C1i;j + d < C1i;j0 C0i;j + d < C0i;j0 (j < j0; d = j0 � j � 1)S1i;j;p + d < S1i;j;q (i < j; p < q; d = q � p� 1)We also consider the e�ect of applying no symmetry breaking, referred to as level 0. Thiswill obviously be counter-productive when searching for all solutions, or proving unsolvability,but its e�ect on �nding the �rst solution is worth investigating. Instead of constraining thevariables to be ordered, we merely constrain them to take di�erent values.R1i;j 6= R1i;j0 R0i;j 6= R0i;j0 C1i;j 6= C1i;j0 C0i;j 6= C0i;j0 (j < j0)S1i;j;p 6= S1i;j;q (i < j; p < q)Our model has a total of �v(v � 1)=2 + 2vb integer variables, whereas Meseguer & Torras'smodel has �v(v � 1)=2 integer variables and vb boolean variables.2.2 SAT modelOur experiments are all performed on propositional satis�ability models of these CSPs, whichallows a rapid comparison of commonly available algorithms. SAT is the archetypal NP-hardproblem. It has applications such as planning and VLSI design, has well-known algorithmsand benchmarks, and has been the subject of a great deal of recent research. The SAT problemis to determine whether a boolean expression has a satisfying assignment. The expression isusually in conjunctive normal form: a conjunction of clauses C1 ^ : : :^Cm where each clauseCi is a disjunction of literals l1 _ : : : _ ln and each literal is either a boolean variable vi or itsnegation :vi. A boolean variable takes values from the domain fT; Fg.The �rst systematic algorithm for SAT was the Davis-Putnam procedure in Loveland'sform [4] which used static variable ordering; modern implementations use dynamic variable or-dering schemes. The version we use in this paper is SATZ [13], or more precisely SATZ-RAND[8] because the original SATZ is deterministic and cannot be used to average performanceover several runs. SATZ-RAND allows repeated restarts with slight randomisation of theheuristics, which improves its scalability at the cost of completeness, but we do not use thisfeature for our experiments. We also use the WSAT local search algorithm [19]. Local searchis incomplete but often scales to larger problems. Pioneering SAT algorithms of this typewere Selman, Levesque & Mitchell's GSAT [20] and Gu's algorithms [9], and WSAT is oneof the fastest available implementations. Finally, we apply the CLS hybrid algorithm [16].CLS is a Davis-Putnam-style algorithm with a randomised form of backtracking, which isincomplete but has been shown to scale comparably to WSAT on standard SAT benchmarks[17].CSPs can be encoded as SAT problems and vice-versa in more than one way. We use thesimple direct encoding . For each variable V with domain D we use SAT variables denotedby V x (x 2 D). Each CSP variable must take a value from its domain, a fact expressed byclauses V x1i _ : : : _ V xni (xj 2 D). No CSP variable may take more than one value from itsdomain, expressed by clauses :V xi _ :V yi (x; y 2 D; x < y). To express constraints such asVi + d < Vj we enumerate the forbidden cases: :V xi _ :V yj (x; y 2 D; x+ d � y).

problem v b r k � S V C0 C1 C2 C3bibd1 7 7 3 3 1 1 833 7028 8106 9674 10080bibd2 6 10 5 3 2 1 1260 13650 16245 20625 21745bibd3 7 14 6 3 2 4 2646 40418 48013 72366 79093bibd4 9 12 4 3 1 1 2700 36756 41940 64728 71865bibd5 8 14 7 4 3 4 3640 58520 70280 101444 109284Figure 1: BIBD instances as SAT problems3 Experimental resultsBIBD instances yield rather large SAT problems with b2v + v2b + �bv(v � 1)=2 variables,for example the smallest unsolved instance (22,33,12,8,4) has 70; 422 boolean variables. Wetherefore limit our attention to the smallest instances listed in [14]. However, these are stillinteresting problems with few solutions (modulo isomorphism induced by the symmetries).Figure 1 shows the �rst few instances with their parameters, number of non-isomorphicsolutions S, and number of SAT variables V , with the number of clauses at level i denotedby Ci.Figure 2 shows the results of experiments on these problems using SATZ, WSAT andCLS. For all problems WSAT used the default (SKC) heuristic and noise level 10%, andCLS used noise level 3, parameter settings that give roughly optimal results. The notationbibdxi denotes problem bibdx with symmetry breaking level i. All �gures are means over 20runs. We were unable to solve in a reasonable time the bibd5 problem with any algorithmor encoding, showing the surprising hardness of these problems. Table entries \|" indicatethat the algorithm failed to terminate even once, in a time at least an order of magnitudegreater than other times for the same problem. All experiments were performed on a 300MHz DEC Alphaserver 1000A 5/300 under Unix.We now attempt to answer the questions raised in Section 1 regarding the e�ects ofsymmetry breaking. SATZ is improved by symmetry breaking, and implied constraints helpfurther (though level 2 seems slightly better than level 3). WSAT is worse with symmetrybreaking, but with level 3 implied constraints appears to scale better. CLS is much worsewith symmetry breaking, and only slightly improved by implied constraints. In summary, thee�ects of symmetry breaking on single-solution search can be strongly positive or negative,depending on both the search algorithm and the constraints used to enforce it.Another aim of the experiment was to determine what type of algorithm might best beapplied directly to the CSP model of BIBD generation, though the SAT results will notnecessarily carry across. SATZ scales poorly on these problems with all levels of symmetrybreaking. WSAT is the most robust algorithm tested, solving more instances than eitherSATZ or CLS. Moreover, in terms of CPU time the best WSAT results (with level 3) are afew times faster than the best CLS results (with level 0), and with levels 1 and 2 WSAT ismuch faster. However, WSAT has a more mature and optimised implementation than CLS,and in terms of search steps the best CLS results beat the best WSAT results. Thus a promis-ing approach for large instances is CLS-style hybrid search without symmetry breaking, and

problem/ SATZ WSAT CLSlevel back. sec ips sec back. secbibd10 | | 51412 0.88 43961 6.63bibd20 | | 121259 2.53 69704 15.1bibd30 | | 2028247 65.0 620790 264bibd40 | | 6382697 163 313356 140bibd11 57.1 0.90 589010 6.44 4569058 745bibd21 14523 32.6 | | | |bibd31 | | | | | |bibd41 | | | | | |bibd12 16.2 0.82 107279 1.89 347079 61.0bibd22 313 1.60 633589 16.0 1967046 575bibd32 | | 11138495 499 | |bibd42 | | 18387011 644 | |bibd13 459 1.57 113879 1.34 248697 42.3bibd23 553 2.22 400273 8.48 1531026 392bibd33 | | 3319906 129 | |bibd43 | | 3681702 115 | |Figure 2: Experimental resultsthe next step in this work is an implementation. Note that an alternative hybrid approachis that of [8], in which a systematic backtracker is frequently restarted with slightly ran-domised heuristics. SATZ-RAND uses this method and we applied it to the instance bibd10using several parameter settings (the parameters control the restart interval and heuristicrandomisation), but it was unable to solve it in a reasonable time.4 ConclusionGiven a new constraint problem, it is in general unknown whether SAT encoding will makeit easier or harder to solve. For example SAT-based planning has out-performed direct ap-proaches [12], though recent direct approaches are more competitive [1]. We have shown thateven small BIBD instances yield hard SAT problems, at least under one constraint model. Wepropose them as new benchmarks that challenge SAT algorithms to emulate the performanceof direct approaches.We used a new binary constraint model for BIBD generation. Binary constraints havebeen studied in more detail and allow cheaper propagation than non-binary constraints, andwe hope that the new model will give good results when used directly rather than via SATencoding. This will be tested in future work using the most promising approach: a hybridsearch algorithm with no symmetry breaking.

AcknowledgementsThanks to Toby Walsh for suggesting BIBD generation as an interesting problem.References[1] R. I. Brafman, H. H. Hoos. To Encode or Not to Encode | I: Linear Planning. Proceed-ings of the Sixteenth International Joint Conference on Arti�cial Intelligence, MorganKaufmann 1999, pp. 988{993.[2] C. A. Brown, L. Finkenstein, P. W. Purdom Jr. Backtrack Searching in the Presence ofSymmetry. T. Mora (ed.), Applied Algebra, Algebraic Algorithms and Error-CorrectingCodes. Lecture Notes in Computer Science vol. 357, Springer-Verlag 1988, pp. 99{110.[3] M. Crawford, M. Ginsberg, E. Luks, A. Roy. Symmetry Breaking Predicates for SearchProblems. Proceedings of the Fifth International Conference on Principles of KnowledgeRepresentation and Reasoning , 1996, pp. 148{159.[4] M. Davis, G. Logemann, D. Loveland. A Machine Program for Theorem Proving. Com-munications of the ACM vol. 5, 1962, pp. 394{397.[5] R. Dechter. On the Expressiveness of Networks with Hidden Variables. Proceedings of theEighth National Conference on Arti�cial Intelligence, Boston, Mass., 1990, pp. 556{562.[6] R. Dechter, J. Pearl. Tree Clustering for Constraint Networks. Arti�cial Intelligence vol.38, 1989, pp. 353{366.[7] I. P. Gent, B. Smith. Symmetry Breaking During Search in Constraint Programming.Proceedings of the Fourteenth European Conference on Arti�cial Intelligence, 2000, pp.599{603.[8] C. Gomes, B. Selman, H, Kautz. Boosting Combinatorial Search Through Random-ization. Proceedings of the Fifteenth National Conference on Arti�cial Intelligence andTenth Innovative Applications of Arti�cial Intelligence Conference, AAAI Press / TheMIT Press 1998, pp. 431{437.[9] J. Gu. E�cient Local Search for Very Large-Scale Satis�ability Problems. SIGART Bul-letin vol. 3, no. 1, January 1992, pp. 8{12.[10] M. Henz. Constraint Programming | An Oz Perspective. Tutorial at the Fifth Paci�cRim International Conferences on Arti�cial Intelligence, 1998, NUS, Singapore, Novem-ber 1998.[11] D. Joslin, A. Roy. Exploiting Symmetry in Lifted CSPs. Proceedings of the FourteenthNational Conference on Arti�cial Intelligence, American Association for Arti�cial Intel-ligence 1997, pp 197{203.[12] H. Kautz, B. Selman. Pushing the Envelope: Planning, Propositional Logic and Stochas-tic Search. Proceedings of the Thirteenth National Conference on Arti�cial Intelligencevol. 2, MIT Press, 1996, pp. 1194{1201.[13] C. M. Li, Anbulagan. Look-Ahead Versus Look-Back for Satis�ability Problems. Pro-ceedings of the Third International Conference on Principles and Practice of Constraint

Programming, Lecture Notes in Computer Science vol. 1330, Springer-Verlag 1997, pp.341{355.[14] R. Mathon, A. Rosa. Tables of Parameters of BIBDs with r � 41 Including Existence,Enumeration, and Resolvability Results, Annals of Discrete Mathematics vol. 26, 1985,pp. 275{308.[15] P. Meseguer, C. Torras. Exploiting Symmetries Within Constraint Satisfaction Search.Arti�cial Intelligence vol. 129 no. 1{2, 2001, pp. 133{163.[16] S. D. Prestwich. Stochastic Local Search in Constrained Spaces. Proceedings of PracticalApplications of Constraint Technology and Logic Programming , Practical ApplicationsCompany 2000, pp. 27{39.[17] S. D. Prestwich. A Hybrid Search Architecture Applied to Hard Random 3-SAT and Low-Autocorrelation Binary Sequences. Proceedings of the Sixth International Conference onPrinciples and Practice of Constraint Programming, Lecture Notes in Computer Sciencevol. 1894, Springer-Verlag 2000, pp. 337{352.[18] J.-F. Puget. On the Satis�ability of Symmetrical Constrained Satisfaction Problems. J.Komorowski, Z. W. Ras (eds.), Methodologies for Intelligent Systems, Proceedings ofthe International Symposium on Methodologies for Intelligent Systems, Lecture Notes inComputer Science vol. 689, Springer-Verlag 1993, pp. 350{361.[19] B. Selman, H. Kautz, B. Cohen. Noise Strategies for Improving Local Search. Proceedingsof the Twelfth National Conference on Arti�cial Intelligence, AAAI Press 1994, pp. 337{343.[20] B. Selman, H. Levesque, D. Mitchell. A New Method for Solving Hard Satis�abilityProblems. Proceedings of the Tenth National Conference on Arti�cial Intelligence, MITPress 1992, pp. 440{446.

