University of Leeds
SCHOOL OF COMPUTER STUDIES
RESEARCH REPORT SERIES
Report 96.26

Succeed-first or Fail-first:
A Case Study in Variable and Value Ordering!

by
Barbara M. Smith

Division of Artificial Intelligence

September 1996

' A revised version of a paper presented at the ILOG Solver and ILOG Schedule 2nd International Users’
Conference, Paris, July 1996

Abstract

It is well known that appropriate variable and value ordering heuristics are often
crucial when solving constraint satisfaction problems. A variable ordering heuristic
which is often recommended, and is often successful, is based on the ‘fail-first’ principle:
choose next the variable with the smallest remaining domain. General-purpose value
ordering heuristics are less common, but it has been argued that a value which has least
effect on future choices should be chosen, a kind of ‘succeed-first’ strategy.

This paper considers variable and value ordering heuristics for the car sequencing
problem. A number of cars are to be made on a production line: each of them may
require one or more options which are installed at different stations on the line. The
option stations have lower capacity than the rest of the production line, e.g. a station
may be able to cope with at most one car out of every two. The cars are to be arranged
in sequence so that these capacities are not exceeded.

The choice of variable and value ordering heuristics has a dramatic effect on solution
time for this problem. However, the fail-first variable ordering heuristic does not give
good results: and in fact it is shown that dynamic variable ordering is unsuitable for
this problem. Similarly, succeed-first value ordering does not work, and an ordering
based on fail-first is a better choice. Reasons why conventional wisdom fails in this
case, and could be expected to fail in similar cases, are identified.

1 Introduction

Many scheduling and similar problems can be expressed as constraint satisfaction problems
(CSPs), in which there is a set of variables, each with a finite set of possible values, (its
domain), and a set of constraints. Each constraint affects a subset of the variables and
restricts the values that those variables can simultaneously take. A solution to a CSP is an
assignment of a value to each variable such that every constraint is satisfied.

Constraint programming tools such as CHIP [12] and 1LOG Solver [10] use a search
algorithm based on forward checking [6] to solve CSPs. Such an algorithm maintains a
partial solution (initially empty) which satisfies all the constraints, and attempts to extend
it. The algorithm chooses a variable which is not currently assigned, and chooses a value
from its domain to assign to it. The constraints are then used to propagate the effects of
this assignment, and the previous assignments, to those variables which are still unassigned:
any inconsistent values are removed from their domains. If the domain of an unassigned
variable becomes empty, the current assignment is undone, the previous state of the domains
is restored and an alternative assignment is tried, if necessary backtracking to a previous
variable. The algorithm proceeds in this fashion until a complete solution is found or all
possible assignments have been tried unsuccessfully, in which case there is no solution to
the problem.

This algorithm involves two choices at each iteration: the next variable to assign, and
the value to assign to it. How these choices are to be made is not specified in the algorithm;
it is up to the programmer to decide. The order in which the variables and their values are
considered can be decided in advance (a static ordering) or dynamically, using information
available at the time that the choice is made. These choices can have a dramatic effect
on the time taken to find a solution to a CSP: if the problem is large, so that a complete

search is impracticable, they can determine whether or not a solution can be found at all.
The choice of variable affects the extent to which the domains of the remaining variables
are pruned, and hence how many branches remain to be explored; the choice of value will
determine whether or not an unsuccessful branch has to be explored before backtracking to
this variable to try again, if not all of the values of the current variable lead to a solution.

In choosing the next variable, we want to minimize the size of the search tree and to
ensure that any branch that does not lead to a solution is pruned as early as possible. This
was termed the ‘fail-first’ principle by Haralick and Elliott [6], described as “To succeed,
try first where you are most likely to fail.” In forward checking, one way of expressing this
is as a dynamic variable ordering heuristic which chooses next the variable with smallest
remaining domain. This is cheap to implement, and often very successful. The ‘fail-first’
principle is, however, more general than this heuristic, and can be applied in more problem-
specific ways. For instance, we can (perhaps as a tie-breaker) choose a variable which has
the greatest pruning effect on the domains of the future variables, because it is involved in
many constraints and/or some of the constraints are relatively hard to satisfy.

In choosing the value to assign to the chosen variable, a good general strategy is to
choose, if possible, a value which is likely to lead to a solution, and so reduce the risk of
having to backtrack to this variable and try an alternative value. In practice, of course,
the best we can normally do is to choose the value which seems least likely to lead to an
immediate failure. This principle, which might be termed ‘succeed-first’, has not lead to
widely-applicable value ordering heuristics comparable to the smallest-domain-first heuris-
tic, but can give good heuristics tailored to individual problems, or types of problem.

In spite of the importance of variable and value ordering heuristics, little advice is
available on how to choose them, beyond the summary just given. Finding good heuristics
for a particular problem is often a matter of intuition, or trial-and-error. Furthermore, as
will be seen from the case study which follows, even the basic principles, i.e. fail-first for
variable ordering, succeed-first for value ordering, do not always apply.

2 The Car Sequencing Problem

The car sequencing problem arises from the manufacture of cars on an assembly line; the
following description is based on that given by Parrello, Kabat and Wos [9]. A number of
cars are to be produced; they are not identical, because different options are available as
variants on the basic model. The assembly line has different stations which install the var-
ious options (air-conditioning, sun-roof, etc.). These stations have been designed to handle
at most a certain percentage of the cars passing along the assembly line. Furthermore, the
cars requiring a certain option must not be bunched together, otherwise the station will
not be able to cope. Consequently, the cars must be arranged in a sequence so that the
capacity of each station is never exceeded. For instance, if a particular station can only
cope with at most half of the cars passing along the line, the sequence must be built so that
at most 1 car in any 2 requires that option.

From the description of the car production scheduling at Renault given in [1], it seems
that this is a simplification of the real problem. Nevertheless, it is hopefully not too far

distant from reality, and presents some interesting features which may be relevant to other
contexts.

The problem described by Parrello et al. was subsequently considered by Dincbas,
Simonis and van Hentenryck [4] who showed that it could be formulated as a constraint
satisfaction problem, using CHIP. Their basic formulation is described below. The example
assembly line has 5 possible options, with the capacity of the corresponding station ranging
from 1 car in any 5 to 2 cars in any 3. Given the specifications (in terms of options
required) for N cars, we have to arrange these into a sequence such that none of the
capacity constraints is violated.

Class
Option | Constraint |1 2 3 4 5 6 7 8 9 10 11 12
1 1/2 . . .
2 2/3 . o o o . o o
3 1/3 . . e o o
4 2/5
5 1/5 o .
no. ofcars|3 1 2 4 3 3 2 1 1 2 2 1

Table 1: A sample problem with 25 cars and 5 options (e indicates that the class of car
requires the option).

Class
Option|7 4 8 5 3 10 12 4 2 1 3 10 4 4 9 5 1 6 7 1 6 11 5 6 11
1
2 o o o o o o o o o o o o o o o o
3
4 o o o o o o . . .
5}

Table 2: A valid sequence for the sample problem.

3 Formulation

Following Dincbas et al., the first step is to group the cars into classes (as in Table 1), such
that the cars in each class all require the same options. Then we create N constrained
variables S(7), corresponding to the N slots in the sequence, and allocate a class to each
slot. If there are M classes, the domain of each variable is {1,...M}.
We also need additional constrained variables O(z, j), with domains {0, 1}, to represent
whether or not the car in slot ¢ requires option j.
The constraints of the problem are:
e the number of slots allocated a particular value (i.e. class) is at most the number of
cars in that class.
e for all ¢, j: if S(¢) is assigned the value k, then O(z,j) = 1 if class k requires option
J, 0 otherwise. (These constraints link the two sets of variables.)

3

e for all j: if option j has a capacity of M; cars out of N;, then the sum of any set
of O(t, j) variables corresponding to N; consecutive slots in the sequence must be at
most M;.

These constraints can be easily expressed in constraint pogramming tools such as ILOG
Solver or CHIP. Table 2 shows a sequence for the 25 cars shown in Table 1 which satisfies
the constraints.

4 An Alternative Formulation

An alternative way of formulating the problem would be to use the variables to represent
the cars, with their values being the slots in the sequence. A disadvantage of this for-
mulation is that cars of the same class would give rise to symmetrical solutions, i.e. in
any solution, cars requiring the same options can be exchanged without violating the con-
straints. Symmetries of this kind can lead to wasted search, considering infeasible partial
solutions which are essentially the same, and should be avoided. Furthermore, the number
of possible assignments would be NV rather than MY when the cars are grouped into
M classes. However, if there were more options the advantages of grouping the cars into
classes might disappear, since cars requiring the same set of options would be less likely to
occur; with only 5 options, there are only 32 possible classes, so that duplication is certain
if there are more than 32 cars.

The constraints would be more difficult to express in this formulation, and would give
rise to a large number of individual constraints: in particular the ‘2 out of 3’ and ‘2 out
of 5’ options would each give rise to a set of ternary constraints, one for every three cars
requiring the option.

5 Implied Constraints

Although the constraints already stated are sufficient to express the problem, [4] suggests
adding implied constraints in order to allow failures to be detected earlier than would
otherwise be possible.? The constraints given above suggest that the only important thing
about the option capacities is not to exceed them, and going below capacity does not matter.
This is not true, because of the fact that a certain number of cars requiring each option
have to be fitted into the sequence, so that going below capacity in one part of the sequence
may make it impossible to avoid exceeding the capacity elsewhere. Hence, there are implied
constraints which have not yet been expressed.

For instance, suppose there are 30 cars, and 12 of them require option 1, which has
capacity 1 car in any 2. Then at least one of cars 1 to 8 must require option 1; otherwise
12 of cars 9 to 30 will require option 1, which violates the capacity constraint. Similarly,

“Dincbas et al. call these redundant constraints, but in Operational Research redundant constraints mean
constraints which can be removed without affecting the search in any way, and the term implied constraints
is a better term for what is meant here.

cars 1 to 10 must include at least two option 1 cars, ... , and cars 1 to 28 must include at
least 11 of the option 1 cars.

With these implied constraints, it is claimed in [4] that up to 100 cars can be sequenced
in an average of less than a minute, when the average utilization of the options is about
70%, and 200 cars in an average of about 5 minutes, with average utilization up to 80%.
(These results were based on randomly-generated problems, using the same 5 options as

before.)

6 Variable Ordering

Dincbas et al. do not mention variable or value ordering heuristics, although as discussed
in section 1, they can have a great effect on the time taken to solve a CSP. In this case, if
no ordering heuristics are specified, so that the slots in the sequence are filled in numerical
order (i.e. the variables are assigned in the order in which they are defined), and the values
are assigned in the order in which they appear in the data (essentially in a random order),
solving problems with 50 cars or more is very slow, requiring a great deal of backtracking,
unlike the performance found in [4].

Given the discussion in section 1, it is natural to try the smallest-domain-first variable
ordering heuristic on any CSP, and this is recommended for the car sequencing problem in
a later paper by van Hentenryck, Simonis and Dincbas [13]. In fact, it may not obvious
why this heuristic would not choose the variables consecutively, since if the first variable is
assigned a value first, the capacity constraints will reduce the domains only of the next few
variables, depending on the options required by the selected car. It might be expected that
the second variable will then have the smallest domain (or one of the smallest) and will
be assigned next, and so on. However, the implied constraints can lead to variables being
considered in a different order. Suppose we consider an extreme case, in which the ‘1 out
of 37 option is 100% utilized, so that every third slot in the sequence must be assigned a
car requiring this option. If one of these cars is assigned to the first slot, then the implied
constraints will show that the 4th variable must also be assigned a car with this option;
this variable will thus have the smallest domain. So the 4th variable will be assigned next,
then the 7th and so on.

In experiments, the fail-first heuristic gave poor results, despite the experience reported
in [13]. Intuitively, leaving gaps, in the fashion just described, seems likely to cause difficul-
ties in completing the sequence. The cars to be fitted into the gaps have to be compatible
with the cars already placed before and after them, which is less likely to be possible than
if car has only to be compatible with the preceding cars.

These considerations suggest that the variables should be assigned consecutively.® Any
kind of dynamic variable ordering, which will leave gaps in the sequence, is likely to make
finding a solution more difficult rather than less.

Moreover, the implied constraints, as defined in section 5, only make sense if the vari-
ables are to be considered in numerical order. There are many other implied constraints

#This would not preclude, for instance, starting in the middle of the sequence, and working backwards
and forwards alternately, as long as no gaps are left.

that could be derived: for instance, in the example discussed, any set of 8 consecutive cars
must have at least one requiring option 1, not just the first 8. If the variables are considered
in numerical order, only those implied constraints discussed in [4] make a difference to the
search. (The others are redundant in the O.R. sense.) On the other hand, if the variables
were considered in a different order, a different set of implied constraints would be needed.
Hence, there is an interaction between the implied constraints chosen, and the variable
ordering: they cannot be chosen independently.

In summary, the default variable ordering which considers the slots in the sequence
in numerical order, if not optimal, is at least better than any ordering that leaves gaps
to be filled later, and is the one which fits the implied constraints. For improvements in
performance, we therefore need to consider the value ordering.

7 Value Ordering

A static value ordering heuristic can be implemented simply by ordering the domains of the
variables; having selected a variable for assignment, the algorithm will choose the first value
in the domain, and only consider an alternative if the first assignment fails. As already
mentioned, the default is simply to assign values in the order in which the domains happen
to be defined, which in the car sequencing problem is essentially a random ordering of the
car classes.

As discussed in section 1, it is often a good strategy to apply the ‘succeed-first’ principle
to value ordering, and to choose a value which will have the least impact on future variables,
and so seems most likely to lead ultimately to a solution. In this problem, the succeed-first
principle would lead us to choose first the cars requiring the smallest number of options.

The basis of the succeed-first principle for value ordering is that since we need only
choose one value for the current variable, it is a good idea to ignore values which look likely
to cause difficulties, and go for a more promising value: with luck, we will never need to
return to this variable and consider an alternative value for it. However, this argument does
not apply in this problem, and in similar types of problem, where any possible solution is
a permutation of a fixed set of values (the classes of the N cars) and the only question is
which variable gets which value. In these circumstances, choosing the easy-to-assign classes
first only postpones the assignment of the difficult classes: it would be better to assign the
difficult classes first. Hence, rather than a succeed-first strategy, we should adopt a fail-first
strategy.

Parrello et al. similarly cautioned against ‘cherry picking’ the easiest cars first, and
advised scheduling the difficult cars as early as possible in the sequence (although the
method they used was very different from constraint programming). The question remains
of how to assess the difficulty of assigning the different classes of car. Parrello et al
suggested assigning a ‘difficulty factor’ to each option, and then measuring the difficulty of
each car by the sum of the difficulty factors of the options it requires. This method has the
disadvantage that the difficulty factor does not appear to take into account the number of
cars requiring each option; the ‘1 in 5 option would be judged more difficult than the ‘1
in 27 option, but if there are very few cars requiring the former and many cars requiring

the latter, then the cars requiring the ‘1 in 2’ option may be more difficult to fit into the
sequence.

It should be noted that in the alternative formulation discussed in section 4, since the
variables represent the cars, the order in which the cars are assigned to slots in the sequence
is a variable ordering. From that point of view, using the fail-first principle to order the
cars is in line with advice given in section 1. From now on, the ordering of the cars will be
discussed in terms of the formulation in which they are the variables.

Two intuitively plausible heuristics have been tried. Both use the utilization of each
option, i.e. the proportion of cars that require that option as a percentage of the maximum
capacity of the station. The first heuristic chooses first the cars that require the option
with highest utilization, breaks ties by choosing cars that require the option with second
highest utilization, and so on. The second sorts the cars first according to the number of
options that they require and uses the option utilizations to break ties. Both heuristics
choose cars which require most or all of the options first, and can be viewed as estimating
the number of constraints involving each car variable.

A third heuristic has also been developed, which is based on the tightness of the option
constraints as well as how many constraints there are. For instance, if we consider the
binary constraints between the car variables that would arise in the alternative formulation
from the ‘1 out of 2’ and the ‘1 out of 5’ options, it is clear that the ‘1 out of 5’ constraint
would be tighter than the ‘1 out of 2’ constraint. Since the tightness of the constraints that
a variable is involved in, as well as their number, clearly has an influence on the difficulty
of assigning a value to it, this should also be taken into account.

The theory on which this heuristic was based was developed from an investigation
of variable ordering heuristics, described in [5]. A number of heuristics which take into
account the tightness of the constraints that a variable is involved in were proposed; in the
particular case when all variables have the same domain size (which is true in this case,
if we are looking for an initial ordering of the cars), several of these heuristics simplify to
considering variables in ascending order of [].cc. (1 — p.) where C; is the set of constraints
that involves variable 2, and p. is the tightness of constraint ¢, the tightness being the
proportion of variable tuples not allowed by the constraint. The value of this measure
depends on both the tightness of the constraints (the tighter the constraints, the smaller
each term in the product) and the number of constraints (the more constraints a variable
is involved in, the more terms there are in the product); the number of constraints on a
particular car depends on both the options required and their utilization. The constraint
tightness can be estimated for the ternary and binary constraints resulting from the 5
options used in [4], corresponding to the ‘2 out of n” and ‘1 out of n’ options, respectively,
and the number of each type of constraint can be calculated; from these, it is possible to
find an ordering of the cars based on this heuristic.

8 Results

The three value ordering heuristics just described were implemented by sorting the cars
appropriately before presenting them to the ILOG Solver program. They have been applied

to several sets of randomly-generated problems (all using the same set of options as in [4]).
The problems were produced by two problem generators, one developed at the University
of Leeds, and one at the University of Essex, where GENET [2], a system based on a neural
network approach, has been applied to the car sequencing problem.

Problems with up to 200 cars and average option utilization up to 90% have been tried.
In most cases, all three heuristics can produce a solution in a few seconds, with very little
backtracking. Occasionally, one or more of the heuristics fails to solve the problem within
a few minutes. None of the three heuristics dominates the others: on average, the first
heuristic (considering just the option utilizations) is worse than the second (considering
the number of options as well), but on occasions it does better. As an example of their
overall performance, they were applied to a set of 20 problems, each with 200 cars and
average option utilization between 80 and 90%. In every case but one, at least one heuristic
produced a solution in fewer than 15 backtracks, taking just a few seconds. The one problem
which was not solved by any of the three was subsequently shown to have no solution: the
utilization of the ‘1 out of 2" and ‘1 out of 3” options was extremely high (97% and 100%
respectively) and there were not enough cars requiring both options to allow a feasible
sequence to be built.

It should be stressed that for problems of this size, unless the utilization of the options
is very low, so that the problems are very easy to solve, it is extremely unlikely that a
random ordering of the cars will result in a solution to the problem in any reasonable time.

These results using the three heuristics are remarkably good, especially considering
that they produce a initial ordering of the cars which is then fixed. During search, the
characteristics of the subproblem consisting of the future variables and their remaining
domains will change, and the cars which were originally most difficult to assign may no
longer be. A dynamic ordering heuristic, which could reassess the problem at each iteration
and choose the next car to place in the sequence accordingly, might do still better.

9 Related Work

A number of techniques other than constraint programming have been applied to the car
sequencing problem described here, or variants of it. The original paper by Parrello, Kabat
& Wos [9] used automated reasoning, incorporating inference rules and a special-purpose
solution strategy.

David and Chew [1, 3] describe a number of problems arising from production plan-
ning for Renault; they describe a more complex type of car sequencing problem, involving
approximately 750 cars per day, in which some of the constraints conflict. They found
that simulated annealing gave good results and compare this approach favourably with
constraint satisfaction.

Warwick and Tsang [14] used a genetic algorithm to solve car sequencing problems,
including unsolvable problems (where the utilization of at least one option is greater than
the capacity of the option): in this case the requirement is to find as good a solution as
possible. This situation can be modelled as a partial constraint satisfaction problem, in
which the capacity constraint violations are minimized and the cars requiring a particular

option are spaced as evenly as possible.

A neural network approach is described by Smith, Palaniswami and Krishnamoorthy
[11], and compared with more traditional methods (a local improvement steepest-descent
heuristic and simulated annealing). They found that a stochastic Hopfield network gave
performance comparable with simulated annealing, and better performance for large prob-
lems.

Hindi and Ploszajski [7] describe a one-pass heuristic method for the car sequencing
problem. The heuristic repeatedly chooses a car to go into the next position in the sequence.
The ideal spacing of the different options, given the option capacities and utilisations, is
determined, and the car which minimises the deviation from the ideal spacing, without
violating any of the constraints, is chosen. If none of the remaining cars can fit into this
position, it is left vacant; it is claimed that this is realistic, since it tends to happen only
towards the end of the sequence, when the schedule is more likely to be modified before
being executed. This is similar to the method described here, except for the treatment of
failures. In both cases, when the utilization is high, the car placed next in the sequence
will tend to be one requiring most options, amongst those which can be placed next.

10 Discussion and Conclusions

Although the work described in the last section suggests that solving the car sequencing
problem as a constraint satisfaction problem is not necessarily the best approach, constraint
programming has successfully solved problems of reasonable size very quickly. Some lessons
with application to other constraint satisfaction problems can be drawn from this case study.

For many problems, there may be valid alternative CSP formulations with the roles of
variables and values reversed. Although one formulation may be clearly preferable to the
other, it should be remembered that the conventional wisdom of fail-first for variable or-
dering, succeed-first for value ordering cannot apply in both. A succeed-first value ordering
in one formulation is incompatible with a fail-first variable ordering in the other.

Keng and Yun [8] suggest that if the variables can be thought of as tasks and their
values as resources, the most constrained task should be assigned first, i.e. the fail-first
principle should apply. In the car sequencing problem, the cars should be thought of as the
tasks and the slots as resources, since it is more appropriate to think of the cars competing
for the slots in the sequence rather than the other way round. This leads to the fail-first
value ordering of the cars, as discussed above.

It is also suggested in [8] that the resource whose assignment will have least impact
on future assignments should be chosen next; however, it is difficult to see how this would
apply this case. Since the capacity constraints (both original and implied) concern sets of
consecutive slots in the sequence, the slots should be considered consecutively, as shown
earlier. Furthermore, the specific implied constraints included in the formulation expect
that the slots will be assigned in numerical order. As a general principle, the variable
ordering must be compatible with the problem constraints, and their interaction should be
considered carefully.

The case study of the car sequencing problem has shown that general principles apply

to the choice of variable and value ordering heuristics, even when the conventional wisdom,
that fail-first is a good strategy for variable ordering, has been overturned. The third value
ordering heuristic discussed in section 7, which was based on calculating both the tightness
of the constraints and their number, suggests that it may be be possible eventually to derive
good variable and value ordering heuristics theoretically, rather than relying on trial and
error combined with intuition, as at present.

Acknowledgement

I should like to thank James Borrett and Andrew Davenport of the University of Essex for the car
sequencing problems produced by their random problem generator.

References

[1] T.-L. Chew, J.-M. David, A. Nguyen, and Y. Tourbier. Solving Constraint Satisfaction
Problems with Simulated Annealing: The Car Sequencing Problem Revisited. In
Proceedings 12th Avignon Conference, pages 405-416, 1992.

[2] A. Davenport, E. Tsang, K. Zhu, and C. J. Wang. GENET: A Connectionist Ar-
chitecture for Solving Constraint Satisfaction Problems by Iterative Improvement. In
Proceedings AAAT’94, pages 325-330, 1994.

[3] J.-M. David and T.-L. Chew. Constraint-based applications in production planning:
examples from the automotive industry. In Proceedings of PACT’95: Practical Appli-
cations of Constraint Technology, pages 37-51, Apr. 1995.

[4] M. Dincbas, H. Simonis, and P. van Hentenryck. Solving the car-sequencing problem
in constraint logic programming. In Proceedings FCAI-88, pages 290-295, 1988.

[5] 1. Gent, E. MacIntyre, P. Prosser, B. Smith, and T. Walsh. An empirical study of
dynamic variable ordering heuristics for the constraint satisfaction problem. In Pro-
ceedings of CP’96, pages 179-193, Aug. 1996.

[6] R. Haralick and G. Elliott. Increasing tree search efficiency for constraint satisfaction
problems. Artificial Intelligence, 14:263-313, 1980.

[7] K. S. Hindi and G. Ploszajski. Formulation and Solution of a Sequencing Problem in
Car Manufacture. Computers & Industrial Engineering, 26:203-211, 1994.

[8] N. Keng and D. Y. Yun. A Planning/Scheduling Methodology for the Constrained
Resource Problem. In Proceedings IJCAI’89, pages 998-1003, 1989.

[9] B. D. Parrello, W. C. Kabat, and L. Wos. Job-shop scheduling using automated rea-
soning: A case study of the car-sequencing problem. Journal of Automated reasoning,
2:1-42, 1986.

[10] J.-F. Puget. A C4++ Implementation of CLP. In Proceedings of SPICIS9 (Singapore
International Conference on Intelligent Systems), 1994.

10

[11] K. Smith, M. Palaniswami, and M. Krishnamoorthy. Traditional Heuristic versus
Hopfield Neural Network Approaches to a Car Sequencing Problem. To appear in
Furopean J. of O.R., 1996.

[12] P. van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.

[13] P. van Hentenryck, H. Simonis, and M. Dincbas. Constraint Satisfaction using Con-
straint Logic Programming. Artificial Intelligence, 58:113-159, 1992.

[14] T. Warwick and E. P. K. Tsang. Tackling car sequencing problems using a generic
genetic algorithm. Fvolutionary Computation, 3:267-298, 1995.

11

