
University of LeedsSCHOOL OF COMPUTER STUDIESRESEARCH REPORT SERIESReport 96.26
Succeed-�rst or Fail-�rst:A Case Study in Variable and Value Ordering1byBarbara M. SmithDivision of Arti�cial IntelligenceSeptember 1996

1A revised version of a paper presented at the ILOG Solver and ILOG Schedule 2nd International Users'Conference, Paris, July 1996



AbstractIt is well known that appropriate variable and value ordering heuristics are oftencrucial when solving constraint satisfaction problems. A variable ordering heuristicwhich is often recommended, and is often successful, is based on the `fail-�rst' principle:choose next the variable with the smallest remaining domain. General-purpose valueordering heuristics are less common, but it has been argued that a value which has leaste�ect on future choices should be chosen, a kind of `succeed-�rst' strategy.This paper considers variable and value ordering heuristics for the car sequencingproblem. A number of cars are to be made on a production line: each of them mayrequire one or more options which are installed at di�erent stations on the line. Theoption stations have lower capacity than the rest of the production line, e.g. a stationmay be able to cope with at most one car out of every two. The cars are to be arrangedin sequence so that these capacities are not exceeded.The choice of variable and value ordering heuristics has a dramatic e�ect on solutiontime for this problem. However, the fail-�rst variable ordering heuristic does not givegood results: and in fact it is shown that dynamic variable ordering is unsuitable forthis problem. Similarly, succeed-�rst value ordering does not work, and an orderingbased on fail-�rst is a better choice. Reasons why conventional wisdom fails in thiscase, and could be expected to fail in similar cases, are identi�ed.1 IntroductionMany scheduling and similar problems can be expressed as constraint satisfaction problems(CSPs), in which there is a set of variables, each with a �nite set of possible values, (itsdomain), and a set of constraints. Each constraint a�ects a subset of the variables andrestricts the values that those variables can simultaneously take. A solution to a CSP is anassignment of a value to each variable such that every constraint is satis�ed.Constraint programming tools such as CHIP [12] and ILOG Solver [10] use a searchalgorithm based on forward checking [6] to solve CSPs. Such an algorithm maintains apartial solution (initially empty) which satis�es all the constraints, and attempts to extendit. The algorithm chooses a variable which is not currently assigned, and chooses a valuefrom its domain to assign to it. The constraints are then used to propagate the e�ects ofthis assignment, and the previous assignments, to those variables which are still unassigned:any inconsistent values are removed from their domains. If the domain of an unassignedvariable becomes empty, the current assignment is undone, the previous state of the domainsis restored and an alternative assignment is tried, if necessary backtracking to a previousvariable. The algorithm proceeds in this fashion until a complete solution is found or allpossible assignments have been tried unsuccessfully, in which case there is no solution tothe problem.This algorithm involves two choices at each iteration: the next variable to assign, andthe value to assign to it. How these choices are to be made is not speci�ed in the algorithm;it is up to the programmer to decide. The order in which the variables and their values areconsidered can be decided in advance (a static ordering) or dynamically, using informationavailable at the time that the choice is made. These choices can have a dramatic e�ecton the time taken to �nd a solution to a CSP: if the problem is large, so that a complete1



search is impracticable, they can determine whether or not a solution can be found at all.The choice of variable a�ects the extent to which the domains of the remaining variablesare pruned, and hence how many branches remain to be explored; the choice of value willdetermine whether or not an unsuccessful branch has to be explored before backtracking tothis variable to try again, if not all of the values of the current variable lead to a solution.In choosing the next variable, we want to minimize the size of the search tree and toensure that any branch that does not lead to a solution is pruned as early as possible. Thiswas termed the `fail-�rst' principle by Haralick and Elliott [6], described as \To succeed,try �rst where you are most likely to fail." In forward checking, one way of expressing thisis as a dynamic variable ordering heuristic which chooses next the variable with smallestremaining domain. This is cheap to implement, and often very successful. The `fail-�rst'principle is, however, more general than this heuristic, and can be applied in more problem-speci�c ways. For instance, we can (perhaps as a tie-breaker) choose a variable which hasthe greatest pruning e�ect on the domains of the future variables, because it is involved inmany constraints and/or some of the constraints are relatively hard to satisfy.In choosing the value to assign to the chosen variable, a good general strategy is tochoose, if possible, a value which is likely to lead to a solution, and so reduce the risk ofhaving to backtrack to this variable and try an alternative value. In practice, of course,the best we can normally do is to choose the value which seems least likely to lead to animmediate failure. This principle, which might be termed `succeed-�rst', has not lead towidely-applicable value ordering heuristics comparable to the smallest-domain-�rst heuris-tic, but can give good heuristics tailored to individual problems, or types of problem.In spite of the importance of variable and value ordering heuristics, little advice isavailable on how to choose them, beyond the summary just given. Finding good heuristicsfor a particular problem is often a matter of intuition, or trial-and-error. Furthermore, aswill be seen from the case study which follows, even the basic principles, i.e. fail-�rst forvariable ordering, succeed-�rst for value ordering, do not always apply.2 The Car Sequencing ProblemThe car sequencing problem arises from the manufacture of cars on an assembly line; thefollowing description is based on that given by Parrello, Kabat and Wos [9]. A number ofcars are to be produced; they are not identical, because di�erent options are available asvariants on the basic model. The assembly line has di�erent stations which install the var-ious options (air-conditioning, sun-roof, etc.). These stations have been designed to handleat most a certain percentage of the cars passing along the assembly line. Furthermore, thecars requiring a certain option must not be bunched together, otherwise the station willnot be able to cope. Consequently, the cars must be arranged in a sequence so that thecapacity of each station is never exceeded. For instance, if a particular station can onlycope with at most half of the cars passing along the line, the sequence must be built so thatat most 1 car in any 2 requires that option.From the description of the car production scheduling at Renault given in [1], it seemsthat this is a simpli�cation of the real problem. Nevertheless, it is hopefully not too far2



distant from reality, and presents some interesting features which may be relevant to othercontexts.The problem described by Parrello et al. was subsequently considered by Dincbas,Simonis and van Hentenryck [4] who showed that it could be formulated as a constraintsatisfaction problem, using CHIP. Their basic formulation is described below. The exampleassembly line has 5 possible options, with the capacity of the corresponding station rangingfrom 1 car in any 5 to 2 cars in any 3. Given the speci�cations (in terms of optionsrequired) for N cars, we have to arrange these into a sequence such that none of thecapacity constraints is violated. ClassOption Constraint 1 2 3 4 5 6 7 8 9 10 11 121 1/2 � � � � � �2 2/3 � � � � � � �3 1/3 � � � � �4 2/5 � � � �5 1/5 � �no. of cars 3 1 2 4 3 3 2 1 1 2 2 1Table 1: A sample problem with 25 cars and 5 options (� indicates that the class of carrequires the option). ClassOption 7 4 8 5 3 10 12 4 2 1 3 10 4 4 9 5 1 6 7 1 6 11 5 6 111 � � � � � � � �2 � � � � � � � � � � � � � � � � �3 � � � � � � � �4 � � � � � � � � �5 � � � �Table 2: A valid sequence for the sample problem.3 FormulationFollowing Dincbas et al., the �rst step is to group the cars into classes (as in Table 1), suchthat the cars in each class all require the same options. Then we create N constrainedvariables S(i), corresponding to the N slots in the sequence, and allocate a class to eachslot. If there are M classes, the domain of each variable is f1; :::Mg.We also need additional constrained variables O(i; j), with domains f0; 1g, to representwhether or not the car in slot i requires option j.The constraints of the problem are:� the number of slots allocated a particular value (i.e. class) is at most the number ofcars in that class.� for all i; j: if S(i) is assigned the value k, then O(i; j) = 1 if class k requires optionj, 0 otherwise. (These constraints link the two sets of variables.)3



� for all j: if option j has a capacity of Mj cars out of Nj , then the sum of any setof O(i; j) variables corresponding to Nj consecutive slots in the sequence must be atmost Mj .These constraints can be easily expressed in constraint pogramming tools such as ILOGSolver or CHIP. Table 2 shows a sequence for the 25 cars shown in Table 1 which satis�esthe constraints.4 An Alternative FormulationAn alternative way of formulating the problem would be to use the variables to representthe cars, with their values being the slots in the sequence. A disadvantage of this for-mulation is that cars of the same class would give rise to symmetrical solutions, i.e. inany solution, cars requiring the same options can be exchanged without violating the con-straints. Symmetries of this kind can lead to wasted search, considering infeasible partialsolutions which are essentially the same, and should be avoided. Furthermore, the numberof possible assignments would be NN , rather than MN when the cars are grouped intoM classes. However, if there were more options the advantages of grouping the cars intoclasses might disappear, since cars requiring the same set of options would be less likely tooccur; with only 5 options, there are only 32 possible classes, so that duplication is certainif there are more than 32 cars.The constraints would be more di�cult to express in this formulation, and would giverise to a large number of individual constraints: in particular the `2 out of 3' and `2 outof 5' options would each give rise to a set of ternary constraints, one for every three carsrequiring the option.5 Implied ConstraintsAlthough the constraints already stated are su�cient to express the problem, [4] suggestsadding implied constraints in order to allow failures to be detected earlier than wouldotherwise be possible.2 The constraints given above suggest that the only important thingabout the option capacities is not to exceed them, and going below capacity does not matter.This is not true, because of the fact that a certain number of cars requiring each optionhave to be �tted into the sequence, so that going below capacity in one part of the sequencemay make it impossible to avoid exceeding the capacity elsewhere. Hence, there are impliedconstraints which have not yet been expressed.For instance, suppose there are 30 cars, and 12 of them require option 1, which hascapacity 1 car in any 2. Then at least one of cars 1 to 8 must require option 1; otherwise12 of cars 9 to 30 will require option 1, which violates the capacity constraint. Similarly,2Dincbas et al. call these redundant constraints, but in Operational Research redundant constraints meanconstraints which can be removed without a�ecting the search in any way, and the term implied constraintsis a better term for what is meant here. 4



cars 1 to 10 must include at least two option 1 cars, ... , and cars 1 to 28 must include atleast 11 of the option 1 cars.With these implied constraints, it is claimed in [4] that up to 100 cars can be sequencedin an average of less than a minute, when the average utilization of the options is about70%, and 200 cars in an average of about 5 minutes, with average utilization up to 80%.(These results were based on randomly-generated problems, using the same 5 options asbefore.)6 Variable OrderingDincbas et al. do not mention variable or value ordering heuristics, although as discussedin section 1, they can have a great e�ect on the time taken to solve a CSP. In this case, ifno ordering heuristics are speci�ed, so that the slots in the sequence are �lled in numericalorder (i.e. the variables are assigned in the order in which they are de�ned), and the valuesare assigned in the order in which they appear in the data (essentially in a random order),solving problems with 50 cars or more is very slow, requiring a great deal of backtracking,unlike the performance found in [4].Given the discussion in section 1, it is natural to try the smallest-domain-�rst variableordering heuristic on any CSP, and this is recommended for the car sequencing problem ina later paper by van Hentenryck, Simonis and Dincbas [13]. In fact, it may not obviouswhy this heuristic would not choose the variables consecutively, since if the �rst variable isassigned a value �rst, the capacity constraints will reduce the domains only of the next fewvariables, depending on the options required by the selected car. It might be expected thatthe second variable will then have the smallest domain (or one of the smallest) and willbe assigned next, and so on. However, the implied constraints can lead to variables beingconsidered in a di�erent order. Suppose we consider an extreme case, in which the `1 outof 3' option is 100% utilized, so that every third slot in the sequence must be assigned acar requiring this option. If one of these cars is assigned to the �rst slot, then the impliedconstraints will show that the 4th variable must also be assigned a car with this option;this variable will thus have the smallest domain. So the 4th variable will be assigned next,then the 7th and so on.In experiments, the fail-�rst heuristic gave poor results, despite the experience reportedin [13]. Intuitively, leaving gaps, in the fashion just described, seems likely to cause di�cul-ties in completing the sequence. The cars to be �tted into the gaps have to be compatiblewith the cars already placed before and after them, which is less likely to be possible thanif car has only to be compatible with the preceding cars.These considerations suggest that the variables should be assigned consecutively.3 Anykind of dynamic variable ordering, which will leave gaps in the sequence, is likely to make�nding a solution more di�cult rather than less.Moreover, the implied constraints, as de�ned in section 5, only make sense if the vari-ables are to be considered in numerical order. There are many other implied constraints3This would not preclude, for instance, starting in the middle of the sequence, and working backwardsand forwards alternately, as long as no gaps are left. 5



that could be derived: for instance, in the example discussed, any set of 8 consecutive carsmust have at least one requiring option 1, not just the �rst 8. If the variables are consideredin numerical order, only those implied constraints discussed in [4] make a di�erence to thesearch. (The others are redundant in the O.R. sense.) On the other hand, if the variableswere considered in a di�erent order, a di�erent set of implied constraints would be needed.Hence, there is an interaction between the implied constraints chosen, and the variableordering: they cannot be chosen independently.In summary, the default variable ordering which considers the slots in the sequencein numerical order, if not optimal, is at least better than any ordering that leaves gapsto be �lled later, and is the one which �ts the implied constraints. For improvements inperformance, we therefore need to consider the value ordering.7 Value OrderingA static value ordering heuristic can be implemented simply by ordering the domains of thevariables; having selected a variable for assignment, the algorithm will choose the �rst valuein the domain, and only consider an alternative if the �rst assignment fails. As alreadymentioned, the default is simply to assign values in the order in which the domains happento be de�ned, which in the car sequencing problem is essentially a random ordering of thecar classes.As discussed in section 1, it is often a good strategy to apply the `succeed-�rst' principleto value ordering, and to choose a value which will have the least impact on future variables,and so seems most likely to lead ultimately to a solution. In this problem, the succeed-�rstprinciple would lead us to choose �rst the cars requiring the smallest number of options.The basis of the succeed-�rst principle for value ordering is that since we need onlychoose one value for the current variable, it is a good idea to ignore values which look likelyto cause di�culties, and go for a more promising value: with luck, we will never need toreturn to this variable and consider an alternative value for it. However, this argument doesnot apply in this problem, and in similar types of problem, where any possible solution isa permutation of a �xed set of values (the classes of the N cars) and the only question iswhich variable gets which value. In these circumstances, choosing the easy-to-assign classes�rst only postpones the assignment of the di�cult classes: it would be better to assign thedi�cult classes �rst. Hence, rather than a succeed-�rst strategy, we should adopt a fail-�rststrategy.Parrello et al. similarly cautioned against `cherry picking' the easiest cars �rst, andadvised scheduling the di�cult cars as early as possible in the sequence (although themethod they used was very di�erent from constraint programming). The question remainsof how to assess the di�culty of assigning the di�erent classes of car. Parrello et al.suggested assigning a `di�culty factor' to each option, and then measuring the di�culty ofeach car by the sum of the di�culty factors of the options it requires. This method has thedisadvantage that the di�culty factor does not appear to take into account the number ofcars requiring each option; the `1 in 5' option would be judged more di�cult than the `1in 2' option, but if there are very few cars requiring the former and many cars requiring6



the latter, then the cars requiring the `1 in 2' option may be more di�cult to �t into thesequence.It should be noted that in the alternative formulation discussed in section 4, since thevariables represent the cars, the order in which the cars are assigned to slots in the sequenceis a variable ordering. From that point of view, using the fail-�rst principle to order thecars is in line with advice given in section 1. From now on, the ordering of the cars will bediscussed in terms of the formulation in which they are the variables.Two intuitively plausible heuristics have been tried. Both use the utilization of eachoption, i.e. the proportion of cars that require that option as a percentage of the maximumcapacity of the station. The �rst heuristic chooses �rst the cars that require the optionwith highest utilization, breaks ties by choosing cars that require the option with secondhighest utilization, and so on. The second sorts the cars �rst according to the number ofoptions that they require and uses the option utilizations to break ties. Both heuristicschoose cars which require most or all of the options �rst, and can be viewed as estimatingthe number of constraints involving each car variable.A third heuristic has also been developed, which is based on the tightness of the optionconstraints as well as how many constraints there are. For instance, if we consider thebinary constraints between the car variables that would arise in the alternative formulationfrom the `1 out of 2' and the `1 out of 5' options, it is clear that the `1 out of 5' constraintwould be tighter than the `1 out of 2' constraint. Since the tightness of the constraints thata variable is involved in, as well as their number, clearly has an inuence on the di�cultyof assigning a value to it, this should also be taken into account.The theory on which this heuristic was based was developed from an investigationof variable ordering heuristics, described in [5]. A number of heuristics which take intoaccount the tightness of the constraints that a variable is involved in were proposed; in theparticular case when all variables have the same domain size (which is true in this case,if we are looking for an initial ordering of the cars), several of these heuristics simplify toconsidering variables in ascending order of Qc2Ci(1� pc) where Ci is the set of constraintsthat involves variable i, and pc is the tightness of constraint c, the tightness being theproportion of variable tuples not allowed by the constraint. The value of this measuredepends on both the tightness of the constraints (the tighter the constraints, the smallereach term in the product) and the number of constraints (the more constraints a variableis involved in, the more terms there are in the product); the number of constraints on aparticular car depends on both the options required and their utilization. The constrainttightness can be estimated for the ternary and binary constraints resulting from the 5options used in [4], corresponding to the `2 out of n' and `1 out of n' options, respectively,and the number of each type of constraint can be calculated; from these, it is possible to�nd an ordering of the cars based on this heuristic.8 ResultsThe three value ordering heuristics just described were implemented by sorting the carsappropriately before presenting them to the ILOG Solver program. They have been applied7



to several sets of randomly-generated problems (all using the same set of options as in [4]).The problems were produced by two problem generators, one developed at the Universityof Leeds, and one at the University of Essex, where GENET [2], a system based on a neuralnetwork approach, has been applied to the car sequencing problem.Problems with up to 200 cars and average option utilization up to 90% have been tried.In most cases, all three heuristics can produce a solution in a few seconds, with very littlebacktracking. Occasionally, one or more of the heuristics fails to solve the problem withina few minutes. None of the three heuristics dominates the others: on average, the �rstheuristic (considering just the option utilizations) is worse than the second (consideringthe number of options as well), but on occasions it does better. As an example of theiroverall performance, they were applied to a set of 20 problems, each with 200 cars andaverage option utilization between 80 and 90%. In every case but one, at least one heuristicproduced a solution in fewer than 15 backtracks, taking just a few seconds. The one problemwhich was not solved by any of the three was subsequently shown to have no solution: theutilization of the `1 out of 2' and `1 out of 3' options was extremely high (97% and 100%respectively) and there were not enough cars requiring both options to allow a feasiblesequence to be built.It should be stressed that for problems of this size, unless the utilization of the optionsis very low, so that the problems are very easy to solve, it is extremely unlikely that arandom ordering of the cars will result in a solution to the problem in any reasonable time.These results using the three heuristics are remarkably good, especially consideringthat they produce a initial ordering of the cars which is then �xed. During search, thecharacteristics of the subproblem consisting of the future variables and their remainingdomains will change, and the cars which were originally most di�cult to assign may nolonger be. A dynamic ordering heuristic, which could reassess the problem at each iterationand choose the next car to place in the sequence accordingly, might do still better.9 Related WorkA number of techniques other than constraint programming have been applied to the carsequencing problem described here, or variants of it. The original paper by Parrello, Kabat& Wos [9] used automated reasoning, incorporating inference rules and a special-purposesolution strategy.David and Chew [1, 3] describe a number of problems arising from production plan-ning for Renault; they describe a more complex type of car sequencing problem, involvingapproximately 750 cars per day, in which some of the constraints conict. They foundthat simulated annealing gave good results and compare this approach favourably withconstraint satisfaction.Warwick and Tsang [14] used a genetic algorithm to solve car sequencing problems,including unsolvable problems (where the utilization of at least one option is greater thanthe capacity of the option): in this case the requirement is to �nd as good a solution aspossible. This situation can be modelled as a partial constraint satisfaction problem, inwhich the capacity constraint violations are minimized and the cars requiring a particular8



option are spaced as evenly as possible.A neural network approach is described by Smith, Palaniswami and Krishnamoorthy[11], and compared with more traditional methods (a local improvement steepest-descentheuristic and simulated annealing). They found that a stochastic Hop�eld network gaveperformance comparable with simulated annealing, and better performance for large prob-lems.Hindi and Ploszajski [7] describe a one-pass heuristic method for the car sequencingproblem. The heuristic repeatedly chooses a car to go into the next position in the sequence.The ideal spacing of the di�erent options, given the option capacities and utilisations, isdetermined, and the car which minimises the deviation from the ideal spacing, withoutviolating any of the constraints, is chosen. If none of the remaining cars can �t into thisposition, it is left vacant; it is claimed that this is realistic, since it tends to happen onlytowards the end of the sequence, when the schedule is more likely to be modi�ed beforebeing executed. This is similar to the method described here, except for the treatment offailures. In both cases, when the utilization is high, the car placed next in the sequencewill tend to be one requiring most options, amongst those which can be placed next.10 Discussion and ConclusionsAlthough the work described in the last section suggests that solving the car sequencingproblem as a constraint satisfaction problem is not necessarily the best approach, constraintprogramming has successfully solved problems of reasonable size very quickly. Some lessonswith application to other constraint satisfaction problems can be drawn from this case study.For many problems, there may be valid alternative CSP formulations with the roles ofvariables and values reversed. Although one formulation may be clearly preferable to theother, it should be remembered that the conventional wisdom of fail-�rst for variable or-dering, succeed-�rst for value ordering cannot apply in both. A succeed-�rst value orderingin one formulation is incompatible with a fail-�rst variable ordering in the other.Keng and Yun [8] suggest that if the variables can be thought of as tasks and theirvalues as resources, the most constrained task should be assigned �rst, i.e. the fail-�rstprinciple should apply. In the car sequencing problem, the cars should be thought of as thetasks and the slots as resources, since it is more appropriate to think of the cars competingfor the slots in the sequence rather than the other way round. This leads to the fail-�rstvalue ordering of the cars, as discussed above.It is also suggested in [8] that the resource whose assignment will have least impacton future assignments should be chosen next; however, it is di�cult to see how this wouldapply this case. Since the capacity constraints (both original and implied) concern sets ofconsecutive slots in the sequence, the slots should be considered consecutively, as shownearlier. Furthermore, the speci�c implied constraints included in the formulation expectthat the slots will be assigned in numerical order. As a general principle, the variableordering must be compatible with the problem constraints, and their interaction should beconsidered carefully.The case study of the car sequencing problem has shown that general principles apply9



to the choice of variable and value ordering heuristics, even when the conventional wisdom,that fail-�rst is a good strategy for variable ordering, has been overturned. The third valueordering heuristic discussed in section 7, which was based on calculating both the tightnessof the constraints and their number, suggests that it may be be possible eventually to derivegood variable and value ordering heuristics theoretically, rather than relying on trial anderror combined with intuition, as at present.AcknowledgementI should like to thank James Borrett and Andrew Davenport of the University of Essex for the carsequencing problems produced by their random problem generator.References[1] T.-L. Chew, J.-M. David, A. Nguyen, and Y. Tourbier. Solving Constraint SatisfactionProblems with Simulated Annealing: The Car Sequencing Problem Revisited. InProceedings 12th Avignon Conference, pages 405{416, 1992.[2] A. Davenport, E. Tsang, K. Zhu, and C. J. Wang. GENET: A Connectionist Ar-chitecture for Solving Constraint Satisfaction Problems by Iterative Improvement. InProceedings AAAI'94, pages 325{330, 1994.[3] J.-M. David and T.-L. Chew. Constraint-based applications in production planning:examples from the automotive industry. In Proceedings of PACT'95: Practical Appli-cations of Constraint Technology, pages 37{51, Apr. 1995.[4] M. Dincbas, H. Simonis, and P. van Hentenryck. Solving the car-sequencing problemin constraint logic programming. In Proceedings ECAI-88, pages 290{295, 1988.[5] I. Gent, E. MacIntyre, P. Prosser, B. Smith, and T. Walsh. An empirical study ofdynamic variable ordering heuristics for the constraint satisfaction problem. In Pro-ceedings of CP'96, pages 179{193, Aug. 1996.[6] R. Haralick and G. Elliott. Increasing tree search e�ciency for constraint satisfactionproblems. Arti�cial Intelligence, 14:263{313, 1980.[7] K. S. Hindi and G. Ploszajski. Formulation and Solution of a Sequencing Problem inCar Manufacture. Computers & Industrial Engineering, 26:203{211, 1994.[8] N. Keng and D. Y. Yun. A Planning/Scheduling Methodology for the ConstrainedResource Problem. In Proceedings IJCAI'89, pages 998{1003, 1989.[9] B. D. Parrello, W. C. Kabat, and L. Wos. Job-shop scheduling using automated rea-soning: A case study of the car-sequencing problem. Journal of Automated reasoning,2:1{42, 1986.[10] J.-F. Puget. A C++ Implementation of CLP. In Proceedings of SPICIS94 (SingaporeInternational Conference on Intelligent Systems), 1994.10



[11] K. Smith, M. Palaniswami, and M. Krishnamoorthy. Traditional Heuristic versusHop�eld Neural Network Approaches to a Car Sequencing Problem. To appear inEuropean J. of O.R., 1996.[12] P. van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.[13] P. van Hentenryck, H. Simonis, and M. Dincbas. Constraint Satisfaction using Con-straint Logic Programming. Arti�cial Intelligence, 58:113{159, 1992.[14] T. Warwick and E. P. K. Tsang. Tackling car sequencing problems using a genericgenetic algorithm. Evolutionary Computation, 3:267{298, 1995.

11


