
The Car-Sequencing Problem as n-Ary
CSP – Sequential and Parallel Solving

Mihaela Butaru and Zineb Habbas

LITA, Université de Metz,
UFR M.I.M., Ile du Saulcy, F-57045 Metz Cedex 1, France

{butaru, zineb.habbas}@univ-metz.fr

Abstract. The car-sequencing problem arises from the manufacture of
cars on an assembly line (based on [1]). A number of cars are to be
produced; they are not identical, because different options are avail-
able as variants on the basic model. The assembly line has different
stations (designed to handle at most a certain percentage of the cars
passing along the assembly line) which install the various options. Fur-
thermore, the cars requiring a certain option must not be bunched to-
gether, otherwise the station will not be able to cope. Consequently, the
cars must be arranged in a sequence so that the capacity of each station
is never exceeded. The solving methods for constraint satisfaction prob-
lems (CSPs) [2], [3], [4] represent good alternatives for certain instances
of the problem. Constraint programming tools [5], [6] use a search algo-
rithm based on Forward Checking (FC) [7] to solve CSPs, with different
variable or value ordering heuristics. In this article, we undertake an
experimental study for the instances of the car-sequencing problem in
CSPLib, encoded as an n-ary CSP using an implementation with con-
straints of fixed arity 5. By applying value ordering heuristics based on
fail-first principle, a great number of these instances can be solved in little
time. Moreover, the parallel solving using a shared memory model based
on OpenMP makes it possible to increase the number of solved problems.

Keywords: Constraint satisfaction, heuristics, problem solving,
scheduling.

1 The Car-Sequencing Problem Encoded as a CSP

The car-sequencing problem can be encoded as a CSP (see [2]) in which slots
in the sequence are variables, cars to be built are their values. Following [8],
the first step is to group the cars into classes, such that the cars in each class
all require the same option. A matrix of binary elements of size the number of
classes multiplied by the number of options specifies the present options in each
class. We have to arrange the cars to produce into a sequence such that none
of the capacity constraint is violated. These constraints are formalized qi/pi (i.e.
the unit is able to produce at most qi cars with the option i out of each sequence
of pi cars; this should be read qi outof pi). The constraints already stated are
sufficient to express the problem; it seems that the only important thing about
the options capacities is not to exceed them, and going below the capacity does

S. Zhang and R. Jarvis (Eds.): AI 2005, LNAI 3809, pp. 875–878, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

876 M. Butaru and Z. Habbas

not matter. This is not true: a certain number of cars requiring each option have
to be fitted into the sequence, so that going below the capacity in one part of
the sequence could make it impossible to avoid exceeding the capacity elsewhere.
In [8], the authors suggest adding implied constraints in order to allow failures
to be detected earlier than it would otherwise be possible.

2 Value Ordering Heuristics for Car-Sequencing Problem

The ordering of variables and values was studied by Smith [2]. More specifically,
the effects of the fail-first and the succeed-first were tested for the car-sequencing
problem. The fail-first principle consists in choosing a variable or a value which
has the greatest pruning effect on the domains of the future variables, while
the succeed-first principle consists in choosing the variable or the value that is
likely to lead to a solution, and so reduces the risk of having to backtrack to
this variable and try an alternative value. In [2] the author suggests that for the
car-sequencing problem the variables should be assigned consecutively. In [9] we
describe seven value ordering heuristics for this problem: MaxUtil, MinCars,
MaxOpt, MaxPQ based on fail-first priciple and MinUtil, MaxCars, MinOpt
based on succeed-first one.

3 Implementation Framework and Experimental Results

In our implementation, we generate the car-sequencing problem as an n-ary
CSP with n variables (the slots in the sequence), d values (the cars to be built)
and m = n − 4 constraints of fixed arity 5 are posted on any 5 consecutive
variables. The relations corresponding to the constraints are explicitly built as
valid tuples, generated respecting the capacity constraints for the options and
the total production for each car. We implemented [10] five versions of n-ary FC
algorithms (i.e. nFC0, nFC2, nFC3, nFC4, nFC5) which differ between them
in the extent of look-ahead they perform after each variable assignment [4].
Due to our implementation, we can apply any of the developed algorithms, not
only some algorithms specific to car-sequencing problem. Of course, we take
into account the presence of the implied constraints in the problem. We present
here the results corresponding to nFC2 algorithm, noticed as the best one. The
heuristics in Section 2 are evaluated on two groups of instances of car-sequencing
problem in the CSPLib1: the first group includes 70 instances of 200 cars, the
second one contains 9 instances of 100 cars.

We also present in this paper our first results (see the full paper [9]) of parallel
solving for car-sequencing problem, using the search tree distribution approach
within a shared memory model (see [11] for details) based on OpenMP.

Our solver has been developed in C++ using a Unix CC compiler and ex-
ecuted on a SGI3800 machine of 768 R1400 processors 500 MHz. In the tables
below, Tmax is either the necessary time to solve the problem or, in the case of
1 http://4c.ucc.ie/~tw/csplib/prob/prob001/data.txt

The Car-Sequencing Problem as n-Ary CSP 877

a unsolved problem, the maximum time spent to seek a solution (restricted to
900 seconds); D is the number of positions in the sequence which it was possible
to affect; tD is the necessary time to reach this depth; #nodes, #ccks and #BT
counts respectively the number of visited nodes, constraint checks and backtrack-
ing to reach D; #OK is the number of solved problems solved; Y/N indicates if
the problem was solved; Tg is the time CPU corresponding to the guided tasks
allocation in the parallel execution (within the OpenMP environment, there is
a static, dynamic or guided tasks allocation [12]; we present here only the last
one, which performs better, even if with small differences, than the two others).

Tables 1, 2 give the results for the first group, while Tables 3, 4 give the
results for the second group.

Table 1. Sequential results of MaxUtil and MaxPQ for the first group

MaxUtil MaxP Q

Pb. Tmax D tD #nodes #ccks #BT #OK Pb. Tmax D tD #nodes #ccks #BT #OK
60 3.15 200 3.15 200 525705 0 10 60 3.37 200 3.37 300 527670 100 10
65 3.97 200 3.97 200 805918 0 10 65 4.44 200 4.44 302 806229 102 10
70 4.70 200 4.70 200 1029707 0 10 70 4.91 200 4.91 268 1021358 68 10
75 5.65 200 5.65 200 1326867 0 10 75 5.75 200 5.75 257 1281343 57 10
80 6.82 200 6.82 200 1682611 0 10 80 6.91 200 6.91 239 1705391 39 10
85 8.35 200 8.35 200 2292852 0 10 85 8.24 200 8.24 226 2205163 26 10
90 10.73 200 10.73 200 3078951 0 10 90 10.93 200 10.93 240 3034675 40 10

Avg: 6.20 200 6.20 200 1534659 0 70 Avg: 6.36 200 6.36 261 1511647 61 70

Table 2. Parallel results of nFC2, MinCars and MaxOpt for the first group

nF C2 MinCars MaxOpt

Serial Parallel Serial Parallel Serial ParallelPb.
Tmax #OK Tg #OK

Pb.
Tmax #OK Tg #OK

Pb.
Tmax #OK Tg #OK

60 721.84 2 524.1 7 60 451.43 5 119.86 9 60 349.15 8 97.87 9
65 722.98 2 401.27 6 65 272.5 7 110.10 9 65 276.74 7 19.87 10
70 734.36 2 423.16 6 70 284.55 7 12.36 10 70 364.67 6 102.43 9
75 816.75 1 590.43 5 75 183.98 8 5.04 10 75 214.84 8 21.39 10
80 900 0 773.27 3 80 116.69 9 22.63 10 80 301.17 7 92.09 10
85 900 0 724.63 3 85 810.72 1 364.51 6 85 186.4 8 98.72 9
90 811.2 1 772.03 2 90 723.25 2 297.15 7 90 23.11 10 9.06 10

Avg: 800 8 Avg: 601 32 Avg: 406 39 Avg: 133 61 Avg: 245 54 Avg: 63 67

Table 3. Serial results of MaxUtil and MaxPQ for the second group

MaxUtil MaxPQ

Pb. Tmax D tD #nodes #ccks #BT Y/N Pb. Tmax D tD #nodes #ccks #BT Y/N
4 72 900 90 1 152 732450 62 N 4 72 900 91 320 41124 48467390 41033 N
6 76 900 70 2 398 652343 328 N 6 76 900 58 0 74 434567 16 N
10 93 900 75 6 406 2565764 331 N 10 93 900 76 34 2662 98008555 2586 N
16 81 155 100 155 35966 15391983 35866 Y 16 81 900 95 12 1664 2077529 1570 N
19 71 900 91 29 6559 3577762 6468 N 19 71 900 90 71 9162 12538120 9072 N
21 90 900 91 3 874 641208 783 N 21 90 900 88 7 1532 1133881 1444 N
36 92 900 70 2 387 682380 317 N 36 92 900 75 23 3653 3922874 3578 N
41 66 0.903 100 0.903 101 310180 1 Y 41 66 1.22 100 1.225 179 355985 79 Y
26 82 900 95 20 6412 2284875 6317 N 26 82 900 85 764 108937 110949640 108852 N

Avg: 717 87 24 5632 2982105 5545 2 Avg: 800 84 148 18775 21076505 18691 1

The results obtained showed the superiority of the fail-first strategy against
a succeed-first one. Moreover, MaxUtil and MaxPQ solved all the instances of
200 variables. The same heuristics in [13] solved 12 respectively 51 instances.
These problems were solved in little time (6 seconds on average), which can
be justified by our encoding. The longest time (13 seconds) was spent for the

878 M. Butaru and Z. Habbas

Table 4. Parallel results of MaxUtil, MaxOpt and MaxPQ for the second group

MaxUtil MaxOpt MaxP Q

Serial Parallel Serial Parallel Serial ParallelPb.
Tmax Y/N Tg Y/N

Pb.
Tmax Y/N Tg Y/N

Pb.
Tmax Y/N Tg Y/N

4 72 900 N 2.009 Y 4 72 900 N 4.253 Y 4 72 900 N 2.324 Y
16 81 155.085 Y 65.241 Y 16 81 900 N 900 N 16 81 900 N 900 N
41 66 0.903 Y 0.9 Y 41 66 900 N 900 N 41 66 1.255 Y 1.2 Y
26 82 900 N 862.24 Y 26 82 900 N 900 N 26 82 900 N 900 N

instance 90 09, whereas with ILOG Solver the least powerful time exceeds 1
minute. For the second group, MaxUtil solves the problems 16 81 and 41 66,
while MaxPQ solves the problem 41 66. For this group, [13] did not solve any
instance. The parallel execution using a shared memory model based on OpenMP
increased the number of solved problems for the first group, and all the problems
known as satisfiable in the second one using MaxUtil, which remains the best
heuristic because it is surprisingly backtrack-free.

References

1. Parrello, B.D., Kabat, W.C., Wos, L.: Job-shop schedulind using automated reason-
ing: a case study of the car-sequencing problem. Journal of Automated Reasoning
2 (1986) 1–42

2. Smith, B.M.: Succeed-first or fail-first: A case study in variable and value ordering.
Report 96.26, University of Leeds (1996)

3. Régin, J.C., Puget, J.F.: A filtering algorithm for global sequencing constraints.
Constraint Programming (1997) 32–46

4. Bessière, C., Meseguer, P., Freuder, C., Larossa, J.: On forward checking for non
binary constraint satisfaction. Artificial Intelligence 141 (2002) 205–224

5. van Hentenryck, P.: Constraint Satisfaction in Logic Programming. MIT Press,
Cambridge (1989)

6. Puget, J.F.: A c++ implementation of clp. In: Proceedings of SPICIS94 (Singapore
International Conference on Intelligent Systems). (1994)

7. Haralick, R.M., Elliot, G.L.: Increasing the search efficiency for constraint satis-
faction problems. Artificial Intelligence 14 (1980) 263–313

8. Dincbas, M., Simonis, H., van Hentenryck, P.: Solving the car-sequencing problem
in constraint logic programming. In: Proceedings ECAI-88. (1988) 290–295

9. Butaru, M., Habbas, Z.: Sequential and parallel solving for the car-sequencing prob-
lem. Rapport interne 2005–101, Université de Metz, Laboratoire d’Informatique
Théorique et Appliquée (2005)

10. Butaru, M., Habbas, Z.: Problèmes de satisfaction de contraintes n-aire: une étude
expérimentale. In: Actes des Premières Journées Francophones de Programmation
par Contraintes (JFPC05), Lens, France (8-10 Juin, 2005)

11. Butaru, M., Habbas, Z.: Parallel solving with n-ary forward checking: A shared
memory implementation. In: Proceedings of the First International Workshop on
OpenMP (IWOMP05), Eugene, Oregon, USA (June 1-4, 2005) to appear.

12. OpenMP Architecture Review Board: OpenMP Application Program Interface.
(2005) http://www.openmp.org.

13. Boivin, S., Gravel, M., Krajecki, M., Gagné, C.: Résolution du problème de car-
sequencing à l’aide d’une approche de type fc. In: Actes des Premières Journées
Francophones de Programmation par Contraintes (JFPC05), Lens, France (8-10
Juin, 2005)

	The Car-Sequencing Problem Encoded as a CSP
	Value Ordering Heuristics for Car-Sequencing Problem
	Implementation Framework and Experimental Results

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

