
Maintaining Singleton Arc-Consistency

Christophe Lecoutre1 and Patrick Prosser2

1CRIL-CNRS FRE 2499, 2Department of Computing Science
Universit́e d’Artois University of Glasgow

Lens, France Scotland
lecoutre@cril.univ-artois.fr pat@cs.gla.ac.uk

Abstract. Singleton Arc-Consistency (SAC) [8] is a simple and strong level of
consistency but is costly to enforce. To date, research has focused on improving
the performance of algorithms that achieve SAC, and comparing algorithms as a
preprocessing step before actually solving a problem. Here, we show for the first
time how a basic SAC algorithm can be readily incorporated into an open source
constraint programming toolkit and then used within the search process i.e. the
search process maintains SAC. We also present three new levels of SAC: Bound-
SAC where the first and last values in domains are SAC, First-SAC where only the
first value is SAC, and Existential-SAC where some value in the domain is SAC.
Again, we show how these levels of SAC can be maintained by the search process,
and present the first empirical study of their behaviours. This leads us to the point
where we can investigate the effect of maintaining different levels of consistency
on different sets of variables within a problem. We show experimentally that it
can result in significant performance improvements.

1 Introduction

In 1997, Debruyne and Bessière introduced Singleton Arc-Consistency (SAC) [8]. In a
constraint networkP , a valuea in the domain of a variablex is SAC if the variablex can
be assigned the valuea andP can then be made arc-consistent.P is SAC if all values
in the domains of all variables are SAC. This gives a stronger level of consistency than
AC but at a substantially higher cost. The complexity of achieving AC isO(ed2) [17]
whereas the optimal cost of SAC isO(end3) [3], wheree is the number of constraints,
d is the size of the largest domain, andn is the number of variables. In [2], it was proved
that SAC is a non-local property, unlike AC. Consequently, we should expect that it will
be non-trivial to achieve practically efficient algorithms for this consistency. There have
been three notable attempts at proposing practical algorithms. The first one [1] aims at
avoiding some useless singleton checks by recording supports while the two others [3,
13] exploit the incrementality of arc-consistency. However, except for SAC3 [13], all
proposed algorithms either require large data structures or are non-trivial to implement.

To date, SAC has been studied only as a preprocessing step prior to actually solving
a problem, and has been typically applied to random instances, frequency assignment
problems and problems of distance [8, 19, 1, 3, 13]. The study in [19] showed that SAC,
as a preprocess, was rarely cost effective on random instances, but on structured prob-
lems such as networks with small-world graphs or Golomb rulers, SAC was often ben-
eficial. Therefore it appears, so far, that although SAC may be promising it has not yet



2

been exploited inside search in the same way AC has [20], and that it has not yet been
practically tested1.

In this paper, we go some way towards putting this right. First, we go back to the
basic SAC algorithm proposed in [8] and incorporate it into a constraint programming
toolkit. We do this showing the actual code, demonstrating just how easily this can
be engineered. This then allows us to investigate, for the first time, the behaviour of
SAC inside search whilst exploiting all of the features of the constraint toolkit. That
is, we maintain SAC within the search process and compare this to the gold standard
of constraint programming, namely MAC [20].2 We then take a pragmatic approach in
our quest for performance improvements and restrict SAC such that only some of the
variables in the problem are made SAC, and further, that only some of the values in the
domains are SAC.

Therefore, we present three partial forms of SAC. The first is Bound-SAC where the
first and last values in the domains of variables are SAC, and all other domain values
are arc-consistent. The second level of SAC follows on immediately and we call it First-
SAC, where the first value in the domain of a variable is SAC and all other values are
AC. Finally we present Existential-SAC (∃-SAC), where we guarantee that some value
in the domain is SAC and all others are AC. These different levels of consistency can
then be maintained on different sets of variables within a problem. For example when
modelling a problem we might maintain SAC on one set of variables, Bound-SAC on
another set of variables, and AC on the remaining variables. That is, we might use
varying levels of consistency across different parts of a problem, attempting to find a
good balance between inference and exploration. It is related to what is calledmixed-
consistencyin [10] andhybrid-consistencyin [4]. We then show how such a feature
might be engineered into a solver so that a constraint programmer can control the mix
of consistency and we present an empirical study that shows how this can be put to good
effect.

The paper is organized as follows. We start by introducing some partial forms of
Singleton Arc-Consistency and show their relations. We then show how to incorpo-
rate SAC, and its partial forms, into an object-oriented constraint programming toolkit.
Next, we present the analysis and results of empirical studies on random, scheduling
and Golomb ruler problems. A new algorithm (using a greedy approach) that checks if
a constraint network is Existential-SAC is then presented along with an empirical study.
Finally we conclude.

1 However, one exception is the Quick Shaving approach of Lhomme [16]. The Quick Shaving
principle is to test when backtracking occurs at depthk the consistency of values that were
shavable (i.e. singleton arc inconsistent) at depthk + 1. Filtering is operational (i.e. a feature
of the search algorithm) and does not correspond to a property of the constraint network.

2 In a sense this part of our work is then somewhat in the spirit of [20] where MAC was compared
to forward checking. Now we compare maintaining SAC against maintaining AC.



3

2 Partial Singleton Arc Consistencies

In this section, we introduce some technical background about constraint networks
and consistencies. In particular, we introduce three partial forms of Singleton Arc-
Consistency called Bound-SAC, First-SAC and Existential-SAC.

A (finite) Constraint Network (CN)P is a pair(X ,C ) whereX is a finite set of
variables andC a finite set of constraints. Each variableX ∈ X has an associated
domain, denoteddom(X), which contains the set of values allowed forX. Each con-
straintC ∈ C involves a subset of variables ofX , called scope and denotedvars(C),
and has an associated relation, denotedrel(C), which contains the set of tuples allowed
for the variables of its scope. We will respectively denote the number of variables and
constraints of a CN byn ande. For any variableX, min(X) and max(X) represents
the smallest and greatest values indom(X). Note that a value will usually refer to a
pair (X,a) with X ∈ X anda ∈ dom(X). We will note (X, a) ∈ P (respectively,
(X, a) /∈ P ) iff X ∈X anda ∈ dom(X) (respectively,a 6∈ dom(X)).

A CN is said to be satisfiable iff it admits at least one solution. The Constraint Sat-
isfaction Problem (CSP) is the NP-complete task of determining whether a given CN,
also called CSP instance, is satisfiable. To solve a CSP instance, a depth-first search
algorithm with backtracking can be applied, where at each step of the search, a vari-
able assignment is performed followed by a filtering process called constraint propa-
gation. Usually, constraint propagation algorithms are based on domain filtering con-
sistencies [9], among which the most widely studied ones are called arc-consistency,
max-restricted path consistency and singleton arc-consistency. Arc-Consistency (AC)
is the basic property of CNs. It guarantees that each value admits at least one support in
each constraint.

Definition 1. Let P = (X ,C ) be a CN. A pair(X, a), with X ∈ X and a ∈
dom(X), is arc consistent (AC) iff∀C ∈ C | X ∈ vars(C), there exists a support
of (X, a) in C, i.e., a tuplet ∈ rel(C) such thatt[X] = a and t[Y ] ∈ dom(Y )
∀Y ∈ vars(C)3. A variableX ∈ X is AC iff dom(X) 6= ∅ and∀a ∈ dom(X), (X, a)
is AC.P is AC iff∀X ∈X , X is AC.

Singleton Arc-Consistency (SAC) is a stronger consistency than AC. It means that
SAC can identify more inconsistent values than AC can. SAC guarantees that enforc-
ing arc-consistency after performing any variable assignment does not show unsatis-
fiability, i.e., does not entail a domain wipe-out. To give a formal definition of SAC,
we need to introduce some notations. AC(P ) denotes the CN obtained after enforcing
arc-consistency on a given CNP . AC(P ) is such that all values ofP that are not arc
consistent have been removed. If there is a variable with an empty domain in AC(P ),
denoted AC(P ) =⊥, thenP is clearly unsatisfiable.P |X=a is the CN obtained fromP
by restricting the domain ofX to {a}.

Definition 2. Let P = (X ,C ) be a CN. A pair(X, a), with X ∈ X and a ∈
dom(X), is singleton arc consistent (SAC) iff AC(P |X=a) 6= ⊥. X is SAC iff∀a ∈
dom(X), (X, a) is SAC.P is SAC iff∀X ∈X , X is SAC.

3 t[X] denotes the value assigned to X int.



4

B−SACSAC E−SAC

F−SAC

L−SAC

AC

Fig. 1.Relationships between consistencies.A→ B means consistencyA is stronger thanB

A consistencyφ is stronger than a consistencyλ iff wheneverφ holds on a CN,λ
holds too.φ is strictly stronger thanλ iff φ is stronger thanλ and there exists a CN
on whichλ holds andφ does not hold. It is possible to define partial forms of SAC
(i.e. consistencies weaker than SAC) still stronger than AC by restricting SAC to some
values.

Definition 3. LetP = (X ,C ) be a CN.

– P is First-SAC iff∀X ∈X , X is AC and min(X) is SAC.
– P is Last-SAC iff∀X ∈X , X is AC and max(X) is SAC.
– P is Bound-SAC iffP is both First-SAC and Last-SAC.
– P is Existential-SAC iff∀X ∈X , X is AC and∃b ∈ dom(X) s.t. (X,b) is SAC.

Figure 1 shows the relations existing between the consistencies introduced just
above, SAC and AC. An arrow from a consistencyφ to another consistencyλ indicates
thatφ is strictly stronger thanλ.

It is natural to conceive algorithms to enforce First-SAC, Last-SAC and Bound-
SAC on CNs. Indeed, it suffices to remove all values detected as arc inconsistent and
bound values (only the minimal ones for First-SAC and the maximal ones for Last-
SAC) detected as singleton arc inconsistent. When enforcing a CNP to be First-SAC,
Last-SAC or Bound-SAC, one then obtains the greatest sub-network ofP which is
First-SAC, Last-SAC or Bound-SAC. As a consequence, if a consistencyφ is stronger
than another consistencyλ, then it means that all values removed when enforcingλ on
a given network are also removed when enforcingφ [9].

In fact, this last statement is true for all (known) consistencies, except for Existential-
SAC. Indeed, enforcing Existential-SAC on a CN is meaningless. Either the network is
(already) Existential-SAC, or the network is singleton arc inconsistent. It is then better
to talk about checking Existential-SAC. An algorithm to check Existential-SAC will
have to find a singleton arc consistent value in each domain. As a side-effect, if single-
ton arc inconsistent values are encountered, they will be, of course, removed. However,
we have absolutely no guarantee about the network obtained after checking Existential-
SAC due to the non-deterministic nature of this consistency.

3 Maintaining Singleton Arc Consistencies

We now show how SAC can be incorporated into a constraint programming toolkit so
that the search process maintains SAC on a specified set of variables. This then leads us



5

to naturally introduce Bound-SAC and First-SAC. These different levels of consistency
(AC, SAC, Bound-SAC, First-SAC) can then be applied selectively across different
sets of variables in a problem by the constraint programmer, allowing the programmer
to control the blend of mixed-consistency maintained during search. We use the JChoco
constraint programming toolkit [12] to demonstrate this.

3.1 Engineering SAC into JChoco

JChoco [12] is a freely available constraint programming toolkit, using the java pro-
gramming language. Most of the methods used to model and solve problems are called
via theProblem class. Constrained variables (be they enumerated, bound, real, or set
variables) are added to a problem, and constraints between those variables are posted to
it. A problem instance (i.e. an object of classProblem) can then be made arc-consistent
via thepropagate method and solutions found via thesolve method. Therefore, in or-
der to incorporate SAC into JChoco we merely produce a new subclass ofProblem
calledSacProblem and over-ride thepropagation method. All theProblem meth-
ods are inherited and we can then use the constraint toolkit as usual, but rather than
maintaining AC, we maintain SAC.

The java code for this is shown below. The boolean methodisSac determines if a
valuea for a variablex is SAC. The methodpropagate now maintains SAC rather than
AC, and the method callsuper.propagate() is a call to the inherited arc-consistency al-
gorithm used within JChoco. Therefore, if constraints are expressed explicitly as tuples
(allowed or disallowed), JChoco will use the optimal algorithm reported in [5], and if
a specialised constraint is used, then the appropriate specialised propagator will be ap-
plied. The code for the methodpropagate below should be compared to the procedure
SingletonAC given in [8] and the SAC1 procedure in [1]. Our java code is a straight-
forward translation of these procedures. However, the complexity of this procedure is
O(en2d4) [19], clearly far worse than the optimalO(end3) [3].

public class SacProblem extends Problem {

private boolean isSac(IntVar x,int a) throws ContradictionException {
boolean consistent = true;
worldPush();
try{x.setVal(a);super.propagate();}
catch (ContradictionException e) {consistent = false;}
worldPop();
return consistent;

}

public void propagate() throws ContradictionException {
super.propagate();
boolean change = true;
while (change) {

change = false;
for (int i=0;i<getNbIntVars();i++){

IntVar x = getIntVar(i);
IntDomain d = x.getDomain();
IntIterator domIter = d.getIterator();
while (domIter.hasNext()){

int a = domIter.next();
if (!isSac(x,a))

{x.remVal(a);change = true;super.propagate();}
}

}}}}



6

We believe that SAC can be similarly incorporated in other constraint toolkits that take
an object oriented approach (e.g. Koalog’s constraint solver [11]). Therefore, we ex-
pect that the above engineering approach could be quite generic. However, one obvious
limitation of theSacProblem class above is that it will only work on variables with
enumerated domains. How can we handle bound integer variables?

3.2 Bound-SAC and First-SAC

In [15], an algorithm is proposed for establishing Bound-SAC. Bound-SAC means that
the first and last values in any domain is SAC while all other values are arc consis-
tent. Again we can produce yet another subclass ofProblem which we might call
BoundSacProblem with apropagate method as shown below.

public void propagate() throws ContradictionException {
super.propagate();
boolean change = true;
while (change) {

change = false;
for (int i=0;i<getNbIntVars();i++){

IntVar x = getIntVar(i);
if (x.getDomainSize()>1){

while (!isSac(x,x.getInf()))
{x.remVal(x.getInf());change = true;super.propagate();}

while (!isSac(x,x.getSup()))
{x.remVal(x.getSup());change = true;super.propagate();}

}
}}}

The method callx.getInf() above gets the lower bound ofx andx.getSup() gets the
upper bound ofx. The innerwhile loops find respectively the smallest and largest SAC
values in the domain ofx. In addition we can decide to only make the first value in the
domain SAC, and we call this First-SAC. To engineer First-SAC all that need be done
is to delete the second innerwhile loop in the code above.

3.3 Mixed-Consistency

If we adopt the implementations above we are then in the position that we can either
model problems with enumerated domains or bound domains, but not both. An obvious
engineering fix is to be able to detect inside thepropagate method the class of vari-
able and then either apply AC, SAC, Bound-SAC or First-SAC. Another approach is to
associate three lists with ourSacProblem: one for enumerated variables to be made
SAC, another for enumerated and bound variables to be made Bound-SAC, and a third
for enumerated and bound variables to be made First-SAC. Any other variables will be
made arc-consistent due to the default call to the AC propagator viasuper.propagate().
This is what we in fact do (but don’t show), and have an additional method such that
we explicitly add to aSacProblem the variables to be made SAC, Bound-SAC, and
First-SAC. This then allows the programmer to blend the level of mixed-consistency
across variables in a problem.



7

4 Empirical Studies

We now present experimental studies showing the effects of maintaining different levels
of SAC during search. First, we investigate problems with no structure (random prob-
lems), then we look at problems with obvious structure and demonstrate the effect of
blending mixed-consistency.

4.1 A Study of Maintaining Levels of SAC on Random Problems

First, we study the effect of maintaining SAC during search on random instances of
the class〈20, 10, 0.5〉 (i.e. problems with 20 variables, each with domain size 10, with
a probability of 0.5 that there is a constraint between a pair of variables), answering
the decision problem “Is there a solution?”. Our problems are modelled in JChoco
using enumerated integer variables, constraints represented as allowed tuples, and arc-
consistency achieved via the optimal coarse grained algorithm proposed in [5]. We com-
pare MAC against different restrictions of SAC. We realise MAC within our framework
as a problem with no SAC or Bound-SAC variables. Consequently, in thepropagate
method only the callsuper.propagate() is made. The next experiment is of SAC, where
all the values in the domains of variables are maintained singleton arc-consistent. In
our third experiment all the variables are maintained Bound-SAC. Finally, we maintain
First-SAC on all variables.

Experiments were performed on a domestic machine with a 2.79 GHz processor,
with 512 MB RAM, and Windows XP. Measurements were taken of average runtime
in milliseconds and the number of nodes explored. We could not measure consistency
checks, as is the norm, as these are not available within the JChoco toolkit. However, we
consider run times to be as reliable and meaningful a measure as consistency checks.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

m
ill

is
ec

on
ds

constraint tightness

MAC
maintaining SAC

maintaining Bound-SAC
maintaining First-SAC

Fig. 2.Average CPU time in milliseconds for〈20, 10, 0.5〉



8

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

no
de

s 
vi

si
te

d

constraint tightness

MAC
maintaining SAC

maintaining Bound-SAC
maintaining First-SAC

Fig. 3.Average number of nodes visited for〈20, 10, 0.5〉

In Figure 2, we show the average run time in milliseconds to answer the decision
problem, with a sample size of 100. We see the familiar complexity peak at the phase
transition, with MAC outperforming the other consistency levels in all but the easy
insoluble region (p2 > 0.45). However, we do see that in the easy soluble region (p2 <
0.3) Bound-SAC and First-SAC perform quite well, at least when compared to SAC. In
previous studies, it was shown that SAC was a very expensive preprocess in the easy
soluble region, and now we see quite acceptable costs for Bound and First-SAC, at least
when applied to the decision problem.

Figure 3 shows the average number of nodes visited. We see that there is very little
difference in the number of nodes visited between our three versions of SAC. MAC
again shows typical phase transition behaviour, with a complexity peak at the crossover
point. However the SAC algorithms do not show this behaviour, but instead a gradual
fall in nodes visited as we increase constraint tightness. Therefore, we do continue to see
a complexity peak in terms of runtime, but this takes place within the SAC algorithms,
i.e. it takes longer to reach the SAC fixed point as we approach the phase transition.

This raises an interesting question: if we do not see a complexity peak in the size
of the search tree, and the cost of SAC is polynomial, will we actually fail to see a
complexity peak as problems get larger? Put another way, will search cost scale polyno-
mially at the phase transition? Of course, our intuition suggests that the answer would
be no, and that nodes would rise again. However, to answer (at least, partially) this
question, we have investigated the problem classes〈20, 20, 0.5〉 and〈50, 10, 0.1〉 using
JChoco and abscon [14]. The results were similar to those for〈20, 10, 0.5〉 with MAC
being dominant in runtime. However in the class〈20, 20, 0.5〉 a small but noticeable
complexity peak in nodes visited begins to emerge whilst maintaining SAC.



9

4.2 A Study of Mixed-Consistency Applied to Scheduling Problems

We performed experiments on 15 of the Lawrence Job-Shop scheduling instances, la01
to la15, available at ORLIB. The instances la01 to la05 are10 × 5 (i.e. 10 jobs and
5 resources), la06 to la10 are15 × 5, and la11 to la15 are20 × 5. Experiments were
performed to determine if any particular blend of SAC was beneficial with respect to
the quality of solution found when CPU time was bounded. Experiments were run on
a 1.3 GHz machine with 256 MB RAM. CPU time was limited to 600 seconds (10
minutes) on each instance. The scheduling problems were represented conventionally,
as a disjunctive graph. That is, for a job-shop instance withn jobs andm resources
there would bem.n(n − 1)/2 zero/one variables to decide the order of operations on
resources and(n.m+1) bound integer variables to represent operation start times along
with the optimisation variable. Therefore we have two distinct sets of variables: the set
of 0/1 variables that control disjunctive precedence constraints on resources and the set
of start times attached to operations. Consequently, this is a good model to explore the
effects of mixed-consistency, i.e. we can maintain different levels of consistency across
different sets of variables. The problem specific objective is to find the schedule that
minimises the makespan. The results of four of our experiments are shown in Table 1.

The first experiment used MAC (all variables were maintained arc-consistent) and
is tabulated as column MAC. Again, MAC was realised by using our SAC solver but
with an empty list of variables to make SAC. The second experiment used Bound-SAC
on the 0/1 decision variables (it then corresponds to use SAC) and MAC on all other
variables, and this is column B-SACdn. Experiment three maintains Bound-SAC on the
start times of operations and the optimisation variable, and this is column B-SACst.
Finally, in experiment four, all variables are made Bound-SAC, and this is column B-
SAC. In all the experiments, the search variables were the 0/1 decision variables. In
Table 1, we report the cost of the best solution found within the CPU time limit, and a
entry of− signifies that no solution was found in the time limit.

What we see is that Bound-SAC can indeed be beneficial, allowing us to frequently
find better solutions than just using MAC on its own. In particular, the B-SACdn results
show that more often than not Bound-SAC on the decision variables alone results in
significantly lower makespans than does MAC. However, too much SAC appears to be
a bad thing. In experiments B-SACst and B-SAC we see that too much time is spent
in SAC processing compared to time spent in search. Consequently solution quality
suffers. In fact, as instance size increases from la11 onwards no solutions were found
as all the CPU time was spent in SAC and none in search.

These experiments have demonstrated that a small amount of SAC can be a good
thing. But this raises the question: why? In experiment B-SACdn, we maintain Bound-
SAC on the 0/1 decision variables. This might be thought of as a weak form of edge-
finding [7], i.e. attempting to determine what operations must come first or last on a
resource. In experiment B-SACst we maintain Bound-SAC on the start times of opera-
tions, and this in turn is similar to shaving [18]. And finally, in experiment B-SAC we
are maintaining weak edge-finding and shaving, but at the expense of reduced explo-
ration.



10

Maintaining
InstanceMAC B-SACdn B-SACst B-SAC

la01 666 666 666 666
la02 655 655 655 655
la03 653 597 603 603
la04 628 598 590 590
la05 593 665 665 665
la06 1245 1146 1233 1237
la07 1214 897 1336 1359
la08 1161 1084 1400 1393
la09 1498 1049 1527 1520
la10 1658 972 1192 1259
la11 1453 1787 − −
la12 1467 1504 − −
la13 2899 2310 − −
la14 1970 1784 − −
la15 2368 2200 − −

Table 1.Cost of best solution found for Lawrence scheduling instances, given 10 minutes CPU.

4.3 A Study of Mixed-Consistency on Golomb Rulers

In [19], experiments were performed on Golomb rulers. In particular, given the lengthl
of the shortest ruler withn ticks (or marks), the objective is to find that ruler and prove
it optimal. The study showed that SAC preprocessing and restricted SAC preprocessing
could lead to a modest reduction in run-times. We repeat those experiments, but now
maintain a mix of SAC during the search process.

The problem was represented in JChoco usingn tick variables with enumerated
domains whose values range from0 to l, and, in additionn(n−1)/2 diff variables with
similar domains. Constraints posted to the problem are:diff [i][j] = tick[j] − tick[i]
andtick[i] < tick[j] for any pair (i,j) such that1 ≤ i < j ≤ n, and aboundAllDiff
constraint enforcing all thediff variables to be different. Thetick variables are the
decision variables and these were instantiated in a static lexicographic order. Again we
have a problem with two obviously different sets of variables, thetick variables and
thediff variables, and this again gives us an opportunity to investigate the effects of
blending mixed-consistency. Our experiments were run on a 3.01 GHz processor with
512 MB of RAM using Windows XP.

The results of the experiments are given in Table 2 which clearly shows that main-
taining Bound-SAC on thetick variables (denoted B-SACtk) dominates MAC, whereas
maintaining SAC on thetick variables (denoted SACtk) is far too expensive. We also
experimented with maintaining restricted Bound-SAC on thetick variables (denoted
RB-SACtk), i.e. thepropagate method for Bound-SAC was edited such that the outer
while(change)... loop was deleted, consequently only a single pass is made over the
variables. This is the same as the restriction proposed in [19]. Table 2 shows that this
results in our best performance.

Although not tabulated, we also investigated maintaining SAC, Bound-SAC, and
First-SAC on all the variables (tick’s anddiff ’s) but run-times did not compete with



11

Maintaining
Instance MAC SACtk B-SACtk RB-SACtk

5/11 0.01 (5) 0.12 (3) 0.08 (3) 0.08 (3)
6/17 0.1 (18) 0.27 (5) 0.14 (5) 0.14 (5)
7/25 0.47 (116) 0.81 (6) 0.30 (7) 0.34 (11)
8/34 3.6 (904) 14.6 (19) 1.8 (23) 1.6 (33)
9/44 29.1 (5502) 136 (62) 11.3 (68) 9.6 (103)
10/55 217.3 (30097)1075 (218) 68.8 (245) 59 (479)
11/72 7200 (773560) — 5534 (11742)4645 (20056)

Table 2. The runtime in seconds (and in brackets number of nodes visited) to find and prove
optimal a Golomb rulern/l, with n ticks of lengthl. Restricted Bound-SAC on thetick variables
(RB-SACtk) is fastest.

MAC over all instances. Also, First-SAC on thetick variables was competitive with
MAC except on the largest problem11/72 taking 12371 seconds and 41334 nodes,
much slower than MAC.

Some of the experiments were also repeated but using a different model, i.e. we
replaced theboundAllDiff constraint with a clique of not-equals constraints. In this
model MAC was dominant, typically running three times or more faster than Bound-
SAC on thetick variables. Similar behaviour was noted over the quasigroup completion
problems in [19]. This is due to the weak propagation of the not-equals constraint, and
that values will tend to be SAC until the domain of an adjacent variable is reduced to a
singleton. Therefore, we see that when maintaining SAC, we not only have to consider
the level of SAC to maintain and the variables over which to maintain that level, but
also the model itself.

5 Checking Existential SAC

Existential-SAC is the weakest (see Figure 1) partial form of SAC that we have intro-
duced. We now propose an algorithm to check existential-SAC and we present some
empirical results.

5.1 ∃-SAC3

We have presented limited forms of SAC on the basis of the most simple algorithm,
SAC1 [8]. SAC1 checks the singleton arc-consistency of all variables whenever a sin-
gleton arc-inconsistent value is detected and removed. Assuming an underlying optimal
arc-consistency algorithm, worst-case space and time complexities of SAC1 are respec-
tively O(ed) and O(en2d4).

In [13], an original approach to establish SAC has been proposed. The principle of
this is to perform several runs of a greedy search, where at each step arc-consistency
is maintained. As a result, the incrementality of arc-consistency algorithms is exploited
but in a different manner to that proposed in [3]. Unfortunately, a bound-SAC ver-
sion of this approach does not seem to be feasible. Indeed, the main goal is to build



12

Algorithm 1 buildBranch()
1: branchSize← 0
2: Pbefore ← P
3: repeat
4: pick and removeX from Q
5: select a valuea ∈ dom(X)
6: P ← AC(P |X=a,{X})
7: if P = ⊥ then
8: addX to Q
9: else

10: branchSize← branchSize + 1
11: end if
12: until P = ⊥ ∨Q = ∅
13: P ← Pbefore

14: if branchSize = 0 then
15: removea from dom(X)
16: P ← AC(P,{X})
17: Q← {X | X ∈ X }
18: end if

Algorithm 2 E-SAC-3(P = (X ,C ) : CN)
1: P ← AC(P ,X )
2: Q← {X | X ∈ X }
3: while P 6= ⊥ ∧Q 6= ∅ do
4: buildBranch()
5: end while

branches (corresponding to greedy runs) as long as possible in order to benefit from
incrementality, and potentially to find solutions during inference. When we are exclu-
sively maintaining Bound-SAC via this approach the resultant propagation branches
tend to be short, and therefore uneconomical. However, using a greedy approach to
check Existential-SAC seems to be quite appropriate. In particular, it is straight forward
to adapt the algorithm SAC3 [13] to guarantee∃-SAC. As mentioned in Section 2, such
an algorithm can generate different constraint networks depending on the order that
variables and values are considered i.e. it might have multiple fixed points.

Below, we give the description of this new algorithm, denoted∃-SAC3. It is given
in the context of using an underlying coarse-grained arc-consistency algorithm such as
AC2001/3.1 [5]. But first, we introduce some notations. IfP = (X ,C ), then AC(P ,Q)
with Q ⊆X means enforcing arc-consistency onP from the given propagation setQ.
For a description of AC, see, for instance, the functionpropagateAC in [3]. Q is the
set of variables whose existential consistency must be checked. Finally, an instruction
of the formPbefore ← P should not be systematically considered as a duplication of
the problem. Most of the time, it correspond to store or restore the domain of a network
(and the structures of the underlying arc-consistency algorithm)

Algorithm 2 starts by enforcing arc-consistency on the given network (line1). Then,
all variables are put in the structureQ (line 2) and in order to check Existential-SAC,



13

successive branches are built (line4). The process continues until Existential-SAC is
checked, or singleton arc inconsistency detected (line3). Algorithm 1 allows build-
ing a branch by performing successive variable assignments while maintaining arc-
consistency (line4 to 6). When an inconsistency is detected or the setQ becomes
empty, the greedy run is stopped (line12). If the branch is of size0 (line 14), we have
to manage the removal of a value (since it is singleton arc inconsistent), to reestablish
arc-consistency and to restart checking Existential-SAC from scratch (line17).

Space required specially by∃-SAC3 is O(n) since the only structure introduced isQ
which is O(n). The time complexity of∃-SAC3 is that of SAC3, that is to say O(bed2)
whereb denotes the number of branches built by the algorithm (using an optimal AC
algorithm such as AC2001, each branch built is O(ed2) due to the incrementality of
AC2001). In the best case, only one branch will be built (leading then directly to a
solution), and then we obtain O(ed2). In the worst-case, before detecting a singleton arc
inconsistent value,n − 1 branches of size1 can be built. As the number of values that
can be removed is O(nd), we obtain O(en2d3). Finally, when no inconsistent value is
detected, the worst-case time complexity of∃-SAC3 is O(end2).

5.2 Experimental Results

We believe that it is worth studying the effect of maintaining∃-SAC on satisfiable in-
stances using∃-SAC3, as due to greedy runs solutions can be found at any step of
the search. This is illustrated in Table 3 with some instances of then-queens prob-
lem (we only searched the first solution). These instances were modelled (with binary
constraints) in abscon [14] and run on a PC Pentium IV 2.4GHz 512MB RAM under
Linux. AC2001 was used as the underlying AC algorithm and dom/wdeg [6] as the
variable ordering heuristic. We also show results for forward checking (FC), maintain-
ing arc-consistency (MAC), first-SAC (F-SAC), bound-SAC (B-SAC), and SAC main-
tained using the SAC1 algorithm. It is interesting to note that for all these satisfiable
instances, maintaining SAC3 or∃-SAC3 explore no more than2 nodes. However, one
should expect to find less impressive results with unsatisfiable instances. To check this,
we have tested, using abscon, some difficult (modified) unsatisfiable instances of the
Radio Link Frequency Assignment Problem that came from the CELAR (Centre elec-
tronique de l’armement). Here, we do not consider optimisation, but only satisfaction.
These instances were used as benchmarks for the first CSP solver competition and can
be downloaded athttp://cpai.ucc.ie/05/Benchmarks.html . In Table 3, it
appears that maintaining SAC3 or∃-SAC3 really limits the number of nodes that have
to be visited. It can be explained by the fact that both algorithms learn from failures (of
greedy runs) as the employed heuristic isdom/wdeg.

We then compared maintaining∃-SAC to MAC on the full set of1064 instances in
the benchmark suite. When counting the number of solved instances within10 minutes,
MAC outperforms∃-SAC3 by60 instances when using thedom/wdeg heuristic and
by only23 instances with thedom heuristic. However, regardless of heuristics,∃-SAC3
behaves relatively poorly on random problems with MAC dominating on the majority
of instances in seriesfrb (random instances forced to be satisfiable) andrandom-
{23, 24, 25}. Interestingly, MAC and∃-SAC3 behave quite differently on different se-
ries. One example is all the instances inseries5 to series40 where∃-SAC dominates.



14

Maintaining
Instance FC MAC F-SAC B-SAC SAC1 SAC3 ∃-SAC3

100-queens (sat) 0.5 (194) 4.2 (118) 267 (101)421 (101) − 17.4 (0) 18.9 (2)
110-queens (sat) − − − − − 37.9 (0) 22.7 (1)
120-queens (sat) − 1636 (323K) − − − 16.7 (0) 47.3 (2)

scen11-f12 (unsat)69.1 (18K) 3.6 (695) 63.3 (60) 110 (48)1072 (41) 418 (5) 48.3 (30)
scen11-f10 (unsat)131 (34K) 4.4 (862) 84.4 (70) 140 (55)1732 (52) 814 (8) 38.3 (25)
scen11-f8 (unsat)260 (66K) 67.8 (14K)1660 (2K) − − − 290 (213)

Table 3.CPU time (and number of visited nodes) for instances of then-queens and the RLFAP,
given 30 minutes CPU.

6 Conclusion

We have taken what is probably an unusual step, reporting on how we can engineer
the least efficient version of the SAC algorithm into an actual constraint programming
toolkit. By doing this we have been able to perform the first investigation of the be-
haviour of maintaining SAC within the search process. This has led us to proposing
three new levels of SAC, i.e. Bound-SAC, First-SAC and∃-SAC. We have also al-
lowed ourselves to specify the set of variables in a problem that we make full, bound
or first SAC, i.e. we have shown how the programmer can produce a blend of mixed-
consistencies and we have shown empirically the effect this can have on runtime per-
formance. We have shown that maintaining the right blend of consistencies can result
in significant performance improvements.

When maintaining SAC in small random problems we see a peculiar signature when
measuring the size of the search tree (nodes) as we pass through the phase transition. All
of our SAC algorithms do not show a complexity peak. We also note that the size of the
search tree is relatively insensitive to the amount of restriction put upon SAC, and that
when problems are easy and soluble First-SAC and Bound-SAC perform remarkably
well. This is one area where earlier studies have shown that SAC is nothing but an
expense. For larger random problems, our preliminary study suggests that the size of
the search tree should again exhibit a complexity peak, provided that the size of the
problems is sufficiently large.

In the job-shop scheduling problem, restrictions on SAC have been beneficial, lead-
ing us to better solutions than MAC when CPU time is limited. One explanation is that
our restrictions allow us to emulate a weak form of edge-finding or shaving, and that
we can combine both of these. However, this has to be used with caution; we need
to consider just what variables will benefit from SAC (and that was the 0/1 decision
variables).

The Golomb ruler experiments show that we also need to take into consideration
how we model the problem. In a model with weakly propagating constraints, values
will tend to be SAC and SAC processing will tend to be nothing but an expense. How-
ever, with a good model and a well chosen level of SAC (Bound-SAC on the decision
variables) we were able to outperform the gold standard, a MAC solver using state of
the art constraint propagation algorithms.



15

The results are surprising when we consider that when using a basic sub-optimal
algorithm for SAC we can frequently beat MAC. From an abstract point of view, we
have demonstrated that rather than using the same level of inference (maintaining arc-
consistency) all the time (during search) everywhere (over all the variables) we can
often do much better by varying the level of inference (mixing the consistency levels
AC, SAC, Bound-SAC, First-SAC) and doing this over only parts of the problem (a
subset of the variables). Finally, we have introduced a simple and efficient implementa-
tion of an algorithm that checks∃-SAC. Empirical results suggests that this represents
a promising generic approach.

References

1. R. Bartak and R. Erben. A new algorithm for Singleton Arc Consistency. InProceedings of
FLAIRS’04, 2004.

2. C. Bessiere and R. Debruyne. Theoretical analysis of Singleton Arc Consistency. InPro-
ceedings of MSPC’04 workshop held with ECAI’04, pages 20–29, 2004.

3. C. Bessiere and R. Debruyne. Optimal and suboptimal Singleton Arc Consistency algo-
rithms. InProceedings of IJCAI’05, pages 54–59, 2005.

4. C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. The range and roots constraints:
Specifying counting and occurrence problems. InProc. of IJCAI’05, pages 60–65, 2005.

5. C. Bessiere, J.C. Ŕegin, R.H.C. Yap, and Y. Zhang. An optimal coarse-grained Arc Consis-
tency algorithm.Artificial Intelligence, 165(2):165–185, 2005.

6. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by weighting
constraints. InProceedings of ECAI’04, pages 146–150, 2004.

7. J. Carlier and E. Pinson. A practical use of Jackson’s preemptive schedule for solving the
Job-Shop problem.Annals of Operations Research, 26:269–287, 1990.

8. R. Debruyne and C. Bessiere. Some practicable filtering techniques for the Constraint Satis-
faction Problem. InProceedings of IJCAI’97, pages 412–417, 1997.

9. R. Debruyne and C. Bessiere. Domain filtering consistencies.Journal of Artificial Intelli-
gence Research, 14:205–230, 2001.

10. G. Dooms, Y. Deville, and P. Dupont. CP(Graph): Introducing a Graph Computation Domain
in Constraint Programming. InProceedings of CP’005, pages 211–225, 2005.

11. Y. Georget and M. Philip. The Koalog Constraint Solver.http://www.koalog.com .
12. F. Laburthe and N. Jussien. Jchoco: A java library for constraint satisfaction problems.

http://choco.sourceforge.net .
13. C. Lecoutre and S. Cardon. A greedy approach to establish Singleton Arc Consistency. In

Proceedings of IJCAI’05, pages 199–204, 2005.
14. C. Lecoutre and F. Hemery. Abscon 2006.http://www.cril.univ-artois.fr/

˜lecoutre .
15. C. Lecoutre and J. Vion. Bound consistencies for the discrete CSP. InProceedings of

CPAI’05 workshop held with CP’05, pages 17–31, 2005.
16. O. Lhomme. Quick shaving. InProceedings of AAAI’05, pages 411–415, 2005.
17. A.K. Mackworth and E.C. Freuder. The complexity of some polynomial network consistency

algorithms for constraint satisfaction problems.Artificial Intelligence, 25:65–74, 1985.
18. P. Martin and D.B. Shmoys. A new approach to computing optimal schedules for the Job-

Shop scheduling problem. InProceedings of IPCO’96, pages 389–403, 1996.
19. P. Prosser, K. Stergiou, and T. Walsh. Singleton Consistencies. InProceedings of CP’00,

pages 353–368, 2000.
20. D. Sabin and E. Freuder. Contradicting conventional wisdom in Constraint Satisfaction. In

Proceedings of ECAI’94, pages 125–129, 1994.


