
Edge Finding for Cumulative Scheduling

Luc Mercier and Pascal Van Hentenryck

Brown University, Box 1910, Providence, RI 02912

Email: {mercier,pvh}@cs.brown.edu

May 27, 2005

Abstract

Edge-finding algorithms for cumulative scheduling are at the core of
commercial constraint-based schedulers. This paper shows that Nuijten’s
edge finder for cumulative scheduling, and its derivatives, are incomplete
and use an invalid dominance rule. The paper then presents a new edge-
finding algorithm for cumulative resources which runs in time O(n2k),
where n is the number of tasks and k the number of different capacity re-
quirements of the tasks. The new algorithm is organized in two phases and
first uses dynamic programming to precompute the innermost maximiza-
tion in the edge-finder specification. Finally, this paper also proposes the
first extended edge-finding algorithm that runs in time O(n2k), improving
the running time of available algorithms.

1 Introduction

Edge finding [CP94] is a fundamental pruning technique for disjunctive and
cumulative scheduling1 and is an integral part of commercial constraint-based
schedulers. Informally speaking, an edge finder considers one resource at a time,
identifies pairs (Ω, i) such that task i cannot precede (resp. follow) any task from
Ω in all feasible schedules, and updates the earliest starting date (resp. latest
finishing date) of task i accordingly. An edge-finding algorithm is a procedure
that performs all such deductions.

Edge finding is well-understood for unary resources, i.e., resources with ca-
pacity one. Indeed, there exist efficient algorithms running in time O(n log n)
or O(n2), where n is the number of tasks on the resource [CP94, Nui94, Vil04].
Edge finding is more challenging for cumulative resources whose capacity is a
natural number C ≥ 1 and whose tasks may require several capacity units.
Nuijten [Nui94] (see also [NA96, BLPN01]) proposed an edge-finding algorithm
running in time O(n2k), where k ≤ n is the number of distinct capacity require-
ments of the tasks. This algorithm was later refined to run in O(n2) [BLPN01].

This paper shows that Nuijten’s algorithm, and its refinement, are incom-
plete and do not perform all the edge-finding updates. The mistake comes from
the use of an incorrect dominance rule which holds for unary resources but does
not carry over to the cumulative case. The paper also presents a new, two-phase,
edge finder for cumulative resources that runs in O(n2k). The first phase is a

1This paper considers only non-preemptive problems, where tasks cannot be interrupted.

1

dynamic programming algorithm that precomputes the potential edge-finding
updates. The second phase uses the precomputation to apply the actual up-
dates. Moreover, similar ideas can be used to derive an O(n2k) for the extended
edge-finding rule, improving the running time of the best available algorithms.
The contributions of this paper can thus be summarized as follows:

1. This paper shows that Nuijten’s algorithm and its derivatives are incom-
plete with respect to the edge-finding rule;

2. This paper presents a complete edge-finding algorithm that runs in time
O(n2k);

3. This paper presents a complete extended edge-finding algorithm running
in time O(n2k), improving the complexity of the best-known algorithm.

The rest of this paper is organized as follows. Section 2 specifies the problem
and the notations used in the paper. Section 3 proves that Nuijten’s algorithm
is incomplete. Sections 4, 5, and 6 are the core of the paper: they present
the dominance properties used for cumulative edge finding and the edge-finding
algorithm itself. Section 7 presents the extended edge-finding algorithm, and
Section 8 concludes the paper.

2 Problem Definition and Notations

Definition 1 (Cumulative Resource Problems) A cumulative resource
problem (CRP) is specified by a cumulative resource of capacity C and a set
of tasks T . Each task t ∈ T is specified by its release date rt, its deadline dt,
its processing time pt, and its capacity requirement ct, all of which being natural
numbers. A solution to a CRP P is a schedule that assigns a starting date st

to each task t so that

∀t ∈ T : rt ≤ st ≤ st + pt ≤ dt

and
∀i :

∑

t ∈ T
st ≤ i < st + pt

ct ≤ C.

The set of solutions to a CRP P is denoted by sol(P). Finally, Sc denotes the
set {ct | t ∈ T } of all capacity requirements, n denotes |T |, N = {1, . . . , n}, k
denotes |Sc|, and et = ctpt denotes the energy of a task t.

In the following, we abuse notations and assume an underlying CRP with its
resource and tasks specified as in Definition 1. We also lift the concepts of
release dates, due dates, and energies to sets of tasks, i.e.,

rΩ = min
j∈Ω

rj

dΩ = max
j∈Ω

dj

eΩ =
∑

j∈Ω

ej

2

where Ω is a set of tasks. By convention, when Ω is the empty set, rΩ = ∞,
dΩ = −∞ and eΩ = 0.
The CRP is NP-complete and constraint-based schedulers typically use a relax-
ation of feasibility to prune the search space.

Definition 2 (E-Feasibility) A CRP is E-feasible if

∀Ω ⊆ T : C(dΩ − rΩ) ≥ eΩ.

Obviously, feasibility of a CRP implies E-feasibility. A critical aspect of
constraint-based schedulers is to reduce the possible starting and finishing dates
that appear in solutions. The edge-finding rule is one of the fundamental tech-
niques to reduce these dates in disjunctive and cumulative scheduling. This
paper restricts attention to starting dates only (the handling of finishing dates
is similar), in which case the key idea underlying the edge-finding rule can be
summarized as follows. Consider a set of tasks Ω and a task i ∈ T \ Ω. If the
condition

C(dΩ − rΩ∪{i}) < eΩ∪{i}

holds, then there exists no schedule in which task i precedes any operation in
Ω. As a consequence, in any feasible schedule, the starting date si must satisfy

si ≥ rΘ +

⌈
1

ci

rest(Θ, ci)

⌉

for all Θ ⊆ Ω satisfying
rest(Θ, ci) > 0

where

rest(Θ, ci) =

{
eΘ − (C − ci)(dΘ − rΘ) if Θ 6= ∅;
0 otherwise.

Informally speaking, rest(Θ, ci) is the energy of eΩ that cannot be accommo-
dated by a cumulative resource of capacity C − ci in the interval [rΘ, dΘ). The
proofs of these results can be found in [BLPN01]. We are now ready to specify
the edge-finding algorithm.

Specification 1 (Edge Finding) The edge-finding algorithm receives as in-
put an E-feasible CRP. It produces as output a vector

〈
LB2(1), . . . , LB2(n)

〉

where
LB2(i) = max(ri, LB2(i))

and

LB2(i) = max
Ω ⊆ T
i /∈ Ω
α(Ω, i)

max
Θ ⊆ Ω

rest(Θ, ci) > 0

rΘ +

⌈
1

ci

rest(Θ, ci)

⌉

with
α(Ω, i) ⇐⇒

(
C(dΩ − rΩ∪{i}) < eΩ∪{i}

)
.

3

3 Incompleteness of Nuijten’s Algorithm

We now consider algorithm CalcLB (Figure 4.9 in [Nui94]; see also [BLPN01]),
which is is reproduced in Algorithm 1 for simplicity.2 Nuijten claims that Cal-

cLB computes LB2(i) for all i ∈ T , which is incorrect. Consider the following
instance on a resource of capacity 4:

task r d p c
a 0 69 4 1
b 1 2 1 4
c 0 3 1 2
d 0 3 1 2
e 2 3 1 1

Consider the pair (Ω, Θ) where Ω = T \{a} and Θ = {b}. The condition α(Ω, a)
holds because eΩ∪{a} = 13 and C(dΩ − rΩ∪{a}) = 4 × 3 = 12. Moreover, we
have Θ ⊆ Ω and rest(Θ, ca) = 1 which implies

LB2(a) ≥ rΘ +
1

ca

rest(Θ, ca) = 2.

Algorithm CalcLB does not perform this deduction because it never consid-
ers the pair (Ω, Θ). Instead, CalcLB considers the pair (Ω, Ω). But since
rest(Ω, ca) = 0, no update takes place. The problem with CalcLB is apparent
in line 7 which maintains l as the maximum due date of Ω. This maximal value
is then used to compute (incorrectly) the rest in line 9, performing no update
on the relevant gj and thus no update on the release date of task a (in lines 19
and 22).

It is easy to understand why Nuijten made this mistake. The algorithm
CalcLB for cumulative scheduling is derived from a similar algorithm for dis-
junctive scheduling (resources have capacity 1). In disjunctive scheduling, C−ci

is always zero and rest(Θ, ci) does not depend on dΘ. It is thus always beneficial
for a given rΘ to add more tasks when computing the inner maximization. This
is not the case in cumulative scheduling, where this dominance relation does
not hold as the instance above indicates. We now prove formally that CalcLB

does not compute LB2(a) by tracing the algorithm.

Theorem 1 Algorithm CalcLB does not compute LB2(i) (i ∈ T).

Proof Consider the following instance on a resource of capacity 4:

task r d p c

a 0 69 4 1
b 1 2 1 4
c 0 3 1 2
d 0 3 1 2
e 2 3 1 1

We showed earlier that LB2(a) ≥ 2 by considering the pair (Ω, Θ) where Ω = T \
{a} and Θ = {b}. Algorithm CalcLB considers only three due dates {2, 3, 69} and
performs the following processing.

2In CalcLB, lct(t) corresponds to dt, est(t) to rt, a(t) to et, sz(t) to c(t), and LBest(t)

to LB2(t). Our notations are consistent with [BLPN01].

4

Algorithm 1 CalcLB

Require: X is an array of tasks sorted by non-decreasing release dates;
Require: Y is an array of tasks sorted by non-decreasing due dates;
1: for y ← 1 to n do
2: if y = n ∨ dY [y] 6= dY [y+1] then
3: E ← 0; l← −∞; for all c ∈ Sc do gc ← −∞; endfor
4: for i← n downto 1 do
5: if dX[i] ≤ dY [y] then
6: E ← E + eX[i];
7: if dX[i] > l then l ← dX[i]; endif
8: for all c ∈ Sc do
9: rest← E − (l − rX[i])(C − c);

10: if rest/c > 0 then gc ← max(gc, rX[i] + drest/ce);
11: end for
12: end if
13: for all c ∈ Sc do G[i][c]← gc; endfor
14: end for
15: H ← −∞;
16: for x← 1 to n do
17: if dX[x] > dY [y] then
18: if E + eX[x] > (dY [y] − rX[x])× C then
19: LB[x]← max(LB[x], G[x][cX[x]]);
20: end if
21: if H + (eX[x]/C) > dY [y] then
22: LB[x]← max(LB[x], G[1][cX[x]]);
23: end if
24: else
25: H ← max(H, rX[x] + E/C);
26: E ← E − eX[x];
27: end if
28: end for
29: end if
30: end for

dΩ = 69. All tasks have due dates not greater than 69, and the test dX[x] > dY [y]

always fails in line 17. No bound is improved.

dΩ = 3. The only task satisfying dX[x] > dY [y] (i.e., di > dΩ) is a, so only LB2(a) can
be updated. Since the tasks are considered by decreasing release dates starting
with e, l is updated to 3 immediately and never decreases. As a consequence,
rest is never positive and all values G[t][c] are equal to −∞ at the end of the
first inner loop. No update can take place in the second inner loop.

dΩ = 2. The only task with a due date not greater than 2 is b. Since α({b} , i) does
not hold for any task i 6= b, no bound is improved.

This shows that algorithm CalcLB does not improve any bound on this instance,
contradicting the claim that CalcLB is an edge-finding algorithm. �

Note that the proof shows an even stronger result: sa will not be updated even
by iterating CalcLB, since a fixpoint is reached after the first iteration.

5

The result directly propagates to the O(n2) algorithm NBLP (algorithm
8, section 3.3.3 in [BLPN01]). Indeed, NBLP refines the first inner loop of
CalcLB and suffers from the same defect. (The same instance exhibits the
mistake).3

It is also unlikely that the structure of CalcLB can be salvaged. Indeed,
this would require the correct computation of all the G values in time O(nk),
which seems to be intrinsically two-dimensional. The algorithm proposed in this
paper remedies this problem by removing the first inner loop and using dynamic
programming to precompute the inner maximizations in the LB2(i) definitions.
The dynamic programming algorithm exploits some new dominance rules, which
are also used to simplify the second inner loop.

4 Dominance Properties

Before presenting the algorithm, it is important to review the dominance prop-
erties used by the algorithms.

4.1 Dominance Property for E-Feasibility

Testing E-feasibility only relies on a single dominance property based on the
concept of task intervals [CL94].

Definition 3 (Task Intervals) Let L, U ∈ T . The task interval ΩU
L is the set

of tasks
ΩU

L = {k ∈ T | rk ≥ rL ∧ dk ≤ dU } .

Note that it is not always the case that dΩU
L

= dU and rΩU
L

= rL. Indeed,

the tasks L and U are not necessarily included in ΩU
L . Algorithms for testing

E-feasibility only need to consider task intervals.

Proposition 1 E-feasibility testing only needs to consider task intervals.

Proof Consider a set Ω such that C(dΩ − rΩ) < eΩ and a set ΩU
L such that rL =

rΩ ∧ dU = dΩ. Since Ω ⊆ ΩU
L , C(dΩU

L
− rΩU

L
) < eΩU

L
. �.

4.2 Dominance Properties for Edge Finding

Edge-finding algorithms heavily rely on dominance properties in order to reduce
the pairs (Ω, Θ) to consider when updating a task i. This section reviews the
dominance properties used in our algorithm. Some of them are well-known,
others are new. The first three properties reduce the sets Ω that must be
considered in the pairs (Ω, Θ) for a task i. The last two reduce the sets Θ to
consider. In the following, we restrict attention to E-feasible CRPs only.

Definition 4 (Valid Pair) A pair (Ω, Θ) is valid wrt task i if

i /∈ Ω ∧ α(Ω, i) ∧ Θ ⊆ Ω ∧ rest(Θ, ci) > 0.

3We will discuss NBLP again, once we have presented a correct edge-finding algorithm for
cumulative resources.

6

Definition 5 (Maximal Pair) A pair (Ω, Θ) is maximal wrt task i if it is
valid and satisfies

LB2(i) = rΘ +

⌈
1

ci

rest(Θ, ci)

⌉
.

Proposition 2 The computation of LB2(i) for an E-feasible CRP only needs
to consider pairs of the form (ΩU

L , Θ) (L, U ∈ T).

Proof Consider a maximal pair (Ω, Θ) and a set ΩU
L such that rL = rΩ ∧ dU = dΩ.

Since Ω ⊆ ΩU
L and the inner maximization in LB2(i) only involves Θ, it suffices to

prove that (ΩU
L , Θ) is valid. Since α(Ω, i) holds and the CRP is E-feasible, i /∈ ΩU

L .
Moreover, by definition of ΩU

L and since Ω ⊆ ΩU
L , α(ΩU

L , i) holds and the pair (ΩU
L , Θ)

is valid and maximal. �

The following dominance property relates the pairs with task i.

Proposition 3 The computation of LB2(i) for an E-feasible CRP may restrict
attention to pairs (ΩU

L , Θ) where dU = dΩU
L

< di.

Proof Consider a maximal pair (ΩU
L , Θ). There exists a task U ′ ∈ ΩU

L such that

dU′ = dΩU
L

. Since ΩU
L = ΩU′

L , the pair (ΩU′

L , Θ) is also maximal. Assume now that

dU′ ≥ di and let Ω′ = ΩU′

L ∪ {i}. Since dΩ′ = dU′ and α(ΩU′

L , i) holds, it follows that
C (dΩ′ − rΩ′) < eΩ′ , which contradicts E-feasibility. �

Proposition 3 allows us to remove the constraint i /∈ Ω from LB2(i), since it is
implied by dU < di. The following dominance property is new and imposes a
restriction on the tasks L used to define the sets ΩU

L for LB2(i).

Proposition 4 The computation of LB2(i) for an E-feasible CRP only needs
to consider pairs (ΩU

L , Θ) where dΩU
L

= dU < di and rL = rΩU
L
∪{i}.

Proof Consider a maximal pair (ΩU
L , Θ) such that dU < di and let L′ ∈ T be a

task such that rL′ = min(ri, rΩU
L

). Since ΩU
L ⊆ ΩU

L′ and the inner maximization only

depends on Θ, it suffices to show that ΩU
L′ is valid. Since dU < di, i /∈ ΩU

L′ . Moreover,
since rΩU

L
∪{i} = rΩU

L′
∪{i} and ΩU

L ⊆ ΩU
L′ , α(ΩU

L′ , i) holds and the result follows. �

The following proposition summarizes the first three dominance properties.

Proposition 5 For a E-feasible CRP, LB2(i) may be computed as

LB2(i) = max
L, U ∈ T
α(ΩU

L , i)
dU = dΩU

L
< di

rL = rΩU
L
∪{i}

max
Θ ⊆ ΩU

L

rest(Θ, ci) > 0

rΘ +

⌈
1

ci

rest(Θ, ci)

⌉

The next two dominance properties concern the choice of Θ. The first one is
the counterpart of Proposition 2 for Θ.

Proposition 6 The computation of LB2(i) for an E-feasible instance only
needs to consider pairs (ΩU

L , Ωu
l) (rL ≤ rl ≤ du ≤ dU) satisfying rl = rΩu

l

and du = dΩu
l
.

7

Proof Consider a maximal pair (ΩU
L , Θ) and a set Ωu

l ⊆ ΩU
L such that rl = rΘ ∧ du =

dΘ. It follows that Θ ⊆ Ωu
l , rΘ = rΩu

l
, and rest(Θ, ci) ≤ rest(Ωu

l , ci). Hence, (ΩU
L , Ωu

l)
is maximal for task i. �

The above dominance properties restrict the set of pairs to consider in computing
LB2(i). The next property is of a fundamentally different nature: it increases
the set of pairs (Ω, Θ) to consider by relaxing the constraint rl ≥ rL (and thus
Θ ⊆ Ω). This dominance relation, which generalizes Theorem 4.13 in [Nui94],
enables us to amortize the precomputation of inner maximizations of LB2(i)
(i ∈ T) effectively and to simplify the second inner loop of CalcLB.

Proposition 7 Consider the function LB′
2 defined as

LB′
2(i) = max

L, U ∈ T
α(ΩU

L , i)
dU = dΩU

L
< di

rL = rΩU
L
∪{i}

max
l, u ∈ T
rΩu

l
= rl

dΩu
l

= du ≤ dU

rest(Ωu
l , ci) > 0

rl +

⌈
1

ci

rest(Ωu
l , ci)

⌉

For any E-feasible CRP, LB2(i) = LB′
2(i), where LB′

2(i) = max(ri, LB′
2(i)).

Proof By Proposition 5 and Proposition 6, LB2(i) can be rewritten as

LB2(i) = max
L, U ∈ T
α(ΩU

L , i)
dU = dΩU

L
< di

rL = rΩU
L
∪{i}

max
l, u ∈ T
rΩu

l
= rl

dΩu
l

= du ≤ dU

rl ≥ rL

rest(Ωu
l , ci) > 0

rl +

‰
1

ci

rest(Ωu
l , ci)

ı

It follows that LB2(i) ≤ LB′
2(i). Moreover, by definition of LB2(i) and LB′

2(i), it is
sufficient to consider the case where LB′

2(i) > ri and to show that LB2(i) ≥ LB′
2(i).

Consider L, U, l, u ∈ T satisfying

8
>>>>>>><
>>>>>>>:

rL = rΩU
L
∪{i}

α(ΩU
L , i)

rΩu
l

= rl

dΩu
l

= du ≤ dU = dΩU
L

< di

rest(Ωu
l , ci) > 0

LB′
2(i) = rl +

l
1
ci

rest(Ωu
l , ci)

m

If rl ≥ rL, then LB2(i) ≥ LB′
2(i). Otherwise, partition Ωu

l in Θ ∪ Ωu
L where

Θ = Ωu
l \ Ωu

L. The rest of the proof proceeds by a case analysis. Informally speaking,
in the first case, the set Θ has enough energy to cover C(rL − rl) and the computation
of LB2(i) for (ΩU

l , Ωu
l) is at least as good as the computation of LB′

2(i) on (ΩU
L , Ωu

l).
In the second case, Θ does not cover C(rL − rl) and LB2(i) on (ΩU

L , Ωu
L) is at least as

good as LB′
2(i).

Assumption 1: Consider the case

rl +
1

ci

rest(Ωu
l , ci) > rL +

1

ci

rest(Ωu
L, ci). (1)

8

We first rewrite the left-hand side of (1). By definition of rest, we have

cirl + rest(Ωu
l , ci) = cirl + eΩu

l
− (C − ci)(du − rl) (2)

since dΩu
l

= du, and rΩu
l

= rl. We now handle the right-hand side of (1) and show
that

rest(Ωu
L, ci) ≥ eΩu

L
− (C − ci)(du − rL). (3)

If Ωu
L 6= ∅, rest(Ωu

L, ci) = eΩu
L
− (C − ci)(dΩu

L
− rΩu

L
) and the result follows since

dΩu
L
≤ du and rΩu

L
≥ rL. If Ωu

L = ∅, rest(Ωu
L, ci) = 0 by definition and eΩu

L
= 0. To

show (3), we must prove that du > rL. The inequality (1) then becomes

cirl + eΩu
l
− (C − ci)(du − rl) > cirL.

By E-feasibility of Ωu
l , C(du − rl) ≥ eΩu

l
. These two last inequalities show that

cirl + ci(du − rl) > cirL.

and thus du > rL, establishing (3). We now show that

eΘ > C(rL − rl).

Rewriting (1) using (2) and (3) gives

cirl + eΩu
l
− (C − ci)(du − rl) > cirL + eΩu

L
− (C − ci)(du − rL)

eΩu
l
− eΩu

L
− Cdu + Cdu > (C − ci)(rL − rl) + ci(rL − rl)

eΘ > C(rL − rl).

Finally, it remains to show that α(ΩU
l , i) holds. Since Θ ∩ Ωu

L = ∅, Θ ⊆ Ωu
l , and

du ≤ dU , we have that Θ ∩ ΩU
L = ∅ and Θ ∪ ΩU

L ⊆ ΩU
l . Hence,

eΩU
l

= eΘ + eΩU
L

eΩU
l

> C(rL − rl) + eΩU
L

and thus
Crl + eΩU

l
> CrL + eΩU

L
.

Since α(ΩU
l , i) holds, we have

C(dΩU
L
− rΩU

L
∪{i}) < eΩU

L
∪{i}

C(dU − rL) < eΩU
L
∪{i} since U = dΩU

L
& rL = rΩU

L
∪{i}

C(dU − rL) < eΩU
L

+ ei since dU < di

C(dU − rl) < eΩU
l

+ ei since Crl + eΩU
l

> CrL + eΩU
L

.

Since dU ≥ dΩU
l

and rl ≤ rΩU
l
∪{i}, it follows that

C(dΩU
l
− rΩU

l
∪{i}) < eΩU

l
∪{i}

and α(ΩU
l , i) holds. As a consequence,

LB2(i) ≥ rl +
1

ci

rest(Ωu
l , ci)

and the result LB2(i) ≥ LB′
2(u) follows from the properties of ceil.

Assumption 2: Consider the case

rl +
1

ci

rest(Ωu
l , ci) ≤ rL +

1

ci

rest(Ωu
L, ci).

If rest(Ωu
L, ci) ≤ 0, it follows directly that rl + 1

ci
rest(Ωu

l , ci) ≤ rL and thus that

LB′
2(i) ≤ rL. But this contradicts our hypothesis LB′

2(i) > ri ≥ rL. Hence
rest(Ωu

L, ci) > 0 and, since Ωu
L ⊆ ΩU

L ,

LB2(i) ≥ rL +

‰
1

ci

rest(Ωu
L, ci)

ı
≥ LB′

2(i). �

9

Algorithm 2 E-FEASIBILITY

Require: X is an array of tasks sorted by non-decreasing release dates;
Require: Y is an array of tasks sorted by non-decreasing due dates;
Ensure: returns true iff the instance is E-feasible;
1: for y ← 1 to n do
2: D ← dY [y]

3: e← 0
4: for x← n downto 1 do
5: if dX[x] ≤ D then
6: e← e + eX[x]

7: if C · (D − rX[x]) < e then
8: return false;
9: end if

10: end if
11: end for
12: end for
13: return true;

5 Testing E-Feasibility

This section presents the standard algorithm for testing E-feasibility [Nui94].
The algorithm only considers task intervals and uses two arrays of tasks: an
array X where the tasks are sorted by non-decreasing release dates and an array
Y where the tasks are sorted by non-decreasing due dates. Because several tasks
may have the same release dates or the same due dates, the algorithm works in
fact with pseudo task intervals expressed in terms of the indices of the tasks in
the arrays. More precisely, the pseudo task intervals are defined as

Ω̃y
x =

{
X [j] | x ≤ j ≤ n & dX[j] ≤ dY [y]

}

Note that Ω̃y
x ⊆ Ω

Y [y]
X[x] and Ω̃y

x = Ω
Y [y]
X[x]when x = 1 or rX[x] > rX[x−1]. The

key insight underlying the algorithm is to amortize the energy computation by
using an inner-loop on the release dates, iterating down from the largest release
date to the smallest release date. The algorithm is depicted in Algorithm 2 and
its correctness follows from Proposition 1.

6 The Edge-Finding Algorithm

A simple use of the dominance relations leads to an O(n5) edge finder by ex-
ploring all tuples (i, L, U, l, u). However, the inner maximization of

rΘ +

⌈
1

ci

rest(Θ, ci)

⌉
.

does not depend on Ω, except for the fact that Θ ⊆ Ω or, more precisely, its
relaxation du ≤ dU due to Proposition 7. As a consequence, the loops on l and
u may be outside the loops on L and U , reducing the runtime complexity. The
new edge-finding algorithm is thus organized in two phases. The first phase
uses dynamic programming to precompute the inner maximizations, while the

10

second phase computes the updates using the precomputed results. We start
by presenting the precomputation.

6.1 The Precomputation

The precomputation performs the inner maximization in LB′
2, i.e.,

max
l, u ∈ T
du ≤ dU

rest(Ωu
l , c) > 0

rΩu
l

+

⌈
1

c
rest(Ωu

l , c)

⌉

for all c ∈ Sc and U ∈ T . Once again, in practice, the algorithm works with
pseudo task intervals and computes the values R[c, y] defined as

R[c, y] = max
l, u ∈ T

du ≤ dY [y]

rest(Ωu
l , c) > 0

rΩu
l

+

⌈
1

c
rest(Ωu

l , c)

⌉
.

To obtain R[c, y], the algorithm computes the values

RT [c, x, y] = max
x ≤ x′ & y′ ≤ y

rest(Ω̃y′

x′ , c) > 0

rx′ +

⌈
1

c
rest(Ω̃y′

x′ , c)

⌉
.

and we have that R[c, y] = RT [c, x, y]. The RT values can be computed by the
following recurrence relation.

Proposition 8 Let RT [c, x, 0] = −∞ (x ∈ N) and RT [c, n + 1, y] = −∞
(y ∈ N). For 2 ≤ x ≤ n + 1 and 0 ≤ y ≤ n− 1, we have

RT [c, x− 1, y + 1] = max





RT [c, x, y + 1]
RT [c, x− 1, y]

rX[x−1] +
⌈

1
c
f

(
rest(Ω̃y+1

x−1, c)
)⌉

where f is defined by f(x) = x if x > 0 and −∞ otherwise.

Proof The base cases correspond to empty sets and are valid. For the inductive case,
consider x∗ and y∗ (x ≤ x∗ & y∗ ≤ y) such that

RT [c, x − 1, y + 1] = rx∗ +

‰
1

c
rest(eΩy∗

x∗ , c)

ı
.

Either x∗ > x − 1 or y∗ < y or x∗ = x − 1 ∧ y∗ = y + 1. In the first two cases,
RT [c, x − 1, y + 1] is correct by induction. The third case is correct by definition of
RT . �

Algorithm 3 depicts a dynamic programming algorithm to compute the R values
using the recurrence relation above. The algorithm, for a given c, computes the
columns RT [c, n, y], . . . , RT [c, 1, y] in O(n2) time and O(n) space. It dynam-
ically computes the energy of task intervals instead of using an O(n2) array,
which is the purpose of lines 8-9.

11

Algorithm 3 CalcR: Precomputation of the Bounds Updates in O(n2k) time

Require: X array of task sorted by non-decreasing release date
Require: Y array of task sorted by non-decreasing due date
Ensure: R[c, y] is computed according to its specification
1: for all c ∈ Sc do
2: for all y ∈ T do
3: E[y]← 0;
4: R[c, y]← −∞;
5: end for
6: for x← n downto 1 do
7: for y ← 1 to n do
8: if dX[x] ≤ dY [y] then
9: E[y]← E[y] + eX[x];

10: end if
11: a← R[c, y];
12: b← R[c, y − 1];
13: rest← E[y]− (C − c)(dY[y]

− rX[x]);

14: c← if rest > 0 then rX[x] + 1
c
dreste else −∞;

15: R[c, y]← max(a, b, c);
16: end for
17: end for
18: end for

Theorem 2 Algorithm 3 is correct for E-feasible CRPs.

Proof Direct consequence of Proposition 8. �

6.2 The Edge Finding Algorithm

Once the precomputation is available, an O(n3) algorithm can be easily derived
(see Algorithm 4). The key idea is to iterate over all Ls and Us in the definition
of LB′

2, using the values R[c, U] to update the bounds. The algorithm is a direct

implementation of LB′
2, with lines 7-12 computing the energy E[x] of Ω̃

Y [y]
X[x].

Theorem 3 Algorithm 4 is correct for E-feasible CRPs.

Proof Direct consequence of Theorem 2 and Proposition 7. �

Algorithm CalcEFI can be improved by using an idea already present in
CalcLB. Observe that line 17 in CalcEFI does not depend on x: only the
condition in line 15 does. Hence the update in line 17 can be applied if there
exists an x satisfying the condition in line 15 (provided that the condition in
line 16 also holds) and we do not need to know x explicitly. As a consequence,
the loop on x can be removed and replaced by an incremental computation of
the condition in line 15 as the loop on i proceeds. More precisely, the idea of
algorithm CalcEF, depicted in Algorithm 5, is to maintain the part of the
condition which does not depend on i, i.e.,

ECF = max
x≤i

(E[x]− C(dY [y] − rX[x]))

at each iteration of the loop.

12

Algorithm 4 CalcEFI: An Edge-Finder in O(n3) Time and O(nk) Space

Require: X array of task sorted by non-increasing release date
Require: Y array of task sorted by non-decreasing due date

Ensure: LB[i] = LB2(X [i]) (1 ≤ i ≤ n)
1: R← CalcR();
2: for x← 1 to n do
3: LB[x]← rX[x]

4: end for
5: for y ← 1 to n− 1 do
6: E ← 0;
7: for x← n downto 1 do
8: if dX[x] ≤ dY [y] then
9: E ← E + eX[x];

10: end if
11: E[x]← E;
12: end for
13: for x← 1 to n do
14: for i← x to n do
15: if E[x] + eX[i] > C(dY [y] − rX[x]) then
16: if dX[i] > dY [y] then
17: LB[i]← max(LB[i], R[cX[i], y])
18: end if
19: end if
20: end for
21: end for
22: end for

Theorem 4 Algorithm 5 is correct for E-feasible CRPs.

Proof Consequence of Theorem 3 and the fact that CalcEF maintains the invariant

ECF = max
x≤i

(E[x] − C(dY [y] − rX[x]))

after line 15. �

6.3 Discussion

It is interesting to mention a couple of properties of CalcEF. The bottleneck
of the algorithm is the computation of the R values which takes O(n2k) time.
However, in practice, there is no need to precompute the entire array, since many
values R[c, y] may not be needed by the algorithm. A lazy implementation,
which computes R[c, y] on demand, runs in time O(n2 + ∆n2), where ∆ is the
number of distinct capacities required by the set of tasks whose bounds are
updated. Worst-case improvements to the algorithm however require a way to
compute the R values more efficiently.

The reader may also wonder if the “refinement” of NBLP over CalcLB

would transpose to CalcEF. It appears however that NBLP uses another in-
correct dominance rule in the computation of the first inner loop of algorithm
CalcLB. Indeed, NBLP only considers those Θ that maximize CrΘ+eΘ, which

13

Algorithm 5 CalcEF: An Edge-Finder in O(n2k) Time and O(nk) Space

Require: X array of task sorted by non-increasing release date
Require: Y array of task sorted by non-decreasing due date

Ensure: LB[i] = LB2(X [i]) (1 ≤ i ≤ n)
1: R← CalcR();
2: for x← 1 to n do
3: LB[x]← rX[x]

4: end for
5: for y ← 1 to n do
6: E ← 0;
7: for x← n downto 1 do
8: if dX[x] ≤ dY [y] then
9: E ← E + eX[x];

10: end if
11: E[x]← E;
12: end for
13: CEF ← −∞;
14: for i← 1 to n do
15: CEF ← max(CEF, E[i] − C(dY [y] − rX[i]));
16: if CEF + eX[i] > 0 then
17: if dX[i] > dY [y] then
18: LB[i]← max(LB[i], R[cX[i], y])
19: end if
20: end if
21: end for
22: end for

is not valid. As a consequence, there exist instances for which CalcLB returns
the correct lower bounds, but not NBLP. Consider the following instance with
a resource of capacity 2 and tasks with capacity requirements equal to one.

task r d p
a 0 69 51
b 1 5 4
c 4 6 2

NBLP does not make any update, although LB2(a) = 2. Indeed, when dY [c] = 6
is considered, the release date da should be improved with respect to the set
Ω = Θ = {b, c}. Instead of that, only Ω = {b, c} , Θ = {c} is considered, due to
the test of line 9 as Cr{b,c} + e{b,c} = 8 is smaller than Cr{c} + e{c} = 10.

7 Extended Edge Finding

This section considers the extended edge-finding rule from [Nui94]. Nuijten
gives an O(n3k) algorithm for the extended edge finger and reference [BLPN01]
claims the existence of an O(n3) algorithm but does not give the algorithm. This
section proposes an extended edge-finding algorithm that runs O(n2k) time and
O(nk) space.

14

7.1 The Extended Edge-Finding Rule

Consider a set Ω ⊆ T and a task i ∈ T \Ω such that ri ≤ rΩ ≤ ri +pi. This new
condition is interesting, since no tasks in Ω can be scheduled in [ri, rΩ). Under
these conditions, Nuijten [Nui94] shows that if

C(dΩ − rΩ) < eΩ + (ri + pi − rΩ)ci

then any feasible schedule satisfies

si ≥ rΘ +

⌈
1

ci

rest(Θ, ci)

⌉

for all Θ ⊆ Ω satisfying
rest(Θ, ci) > 0.

The preconditions can be specified by the property β(Ω, i) defined as

β(Ω, i) ⇐⇒

{
ri ≤ rΩ ≤ ri + pi

C(dΩ − rΩ) < eΩ + (ri + pi − rΩ)ci

The following proposition justifies why this rule is called the extended edge-
finder.

Proposition 9 ri ≤ rΩ ≤ ri + pi ∧ α(Ω, i) =⇒ β(Ω, i).

Proof Since ri ≤ rΩ, we have

C(dΩ − rΩ∪{i}) = C(dΩ − rΩ) + C(rΩ − ri).

Since i /∈ Ω, eΩ∪{i} = eΩ + pici and, since α(Ω, i) holds,

C(dΩ − rΩ) + C(rΩ − ri) < eΩ + pici.

Since C ≥ ci,
C(dΩ − rΩ) + ci(rΩ − ri) < eΩ + pici

and the result follows. �

We now specify the extended edge-finder algorithm.

Specification 2 (Extended Edge-Finder) An extended edge-finder is an al-
gorithm which, given an E-feasible CRP, computes a vector

〈
LB4(1), . . . , LB4(n)

〉

where
LB4(i) = max(ri, LB2(i), LB3(i))

and

LB3(i) = max
Ω ⊆ T
i /∈ Ω
β(Ω, i)

max
Θ ⊆ Ω

rest(Θ, ci) > 0

rΘ +

⌈
1

ci

rest(Θ, ci)

⌉

15

7.2 Dominance Properties

In general, the dominance properties of the extended edge finder are similar in
nature to those of the standard edge finder. In the following, we focus on the
differences and define valid pairs as before, except that the condition α(Ω, i) is
replaced by β(Ω, i). The first proposition simplifies the definition of β(Ω, i).

Proposition 10 For any E-feasible CRP,

β(Ω, i) ⇐⇒

{
ri ≤ rΩ

C(dΩ − rΩ) < eΩ + (ri + pi − rΩ)ci

Proof We only need to show that the right-hand side implies the left-hand side. If
rΩ > ri +pi, then eΩ +(ri +pi −rΩ)ci ≤ eΩ. Thus C(dΩ−rΩ) < eΩ, which contradicts
E-feasibility. �

The following proposition restricts the sets of pairs (Ω, Θ) to consider. These
are the same as in the standard case, except that rL = rΩU

L
because of the

nature of the extended rule.

Proposition 11 The computation of LB3(i) for an E-feasible CRP only needs
to consider pairs of the form (ΩU

L , Ωu
l) such that rL = rΩU

L
, dU = dΩU

L
, du =

dΩu
l
≤ dU < di and rl = rΩu

l
≥ rL.

Proof Similar to the proofs of Propositions 2, 3, and 4. �

The following proposition is the counterpart of Proposition 7. It refers both to
the standard and extended edge finders.

Proposition 12 Let LB′
3 be defined by

LB′
3(i) = max

L, U ∈ T
β(ΩU

L , i)
dU < di

rL = rΩU
L

dU = dΩU
L

max
l, u ∈ T
rl = rΩu

l

du = dΩu
l
≤ dU

rest(Ωu
l , ci) > 0

rl +

⌈
1

ci

rest(Ωu
l , ci)

⌉

Then, for any E-feasible CRP, LB′
3(i) ≤ max(ri, LB3(i), LB2(i)).

Proof The previous propositions claim that

LB2(i) = max
L, U ∈ T
dU < di

rL = rΩU
L

dU = dΩU
L

β(ΩU
L , i)

max
l, u ∈ T

du = dΩu
l
≤ dU

rl = rΩu
l
≥ rL

rest(Ωu
l , ci) > 0

rl +

‰
1

ci

rest(Ωu
l , ci)

ı

It follows that LB3(i) ≤ LB′
3(i). Moreover, it is sufficient to consider the case where

LB′
3(i) > ri and to show that max(LB2(i), LB3) ≥ LB′

3(i). Suppose that LB′
3(i) > ri.

16

Let L, U, l, u ∈ T satisfying:
8
>>>>>>>>>><
>>>>>>>>>>:

rL = rΩU
L

dΩU
L

= dU < di

β(ΩU
L , i)

rΩu
l

= rl

du = dΩu
l
≤ dU

rest(Ωu
l , ci) > 0

LB′
3(i) = rl +

l
1
ci

rest(Ωu
l , ci)

m

If rl ≥ rL, (ΩU
L , Ωu

l) is a maximal valid pair and LB3(i) ≥ LB′
3(i). Now suppose that

rl < rL. As in Proposition 7, partition Ωu
l in Θ ∪ Ωu

L, with Θ = Ωu
l \ Ωu

L.

Assumption 1: Assume first that

rl +
1

ci

rest(Ωu
l , ci) > rL +

1

ci

rest(Ωu
L, ci)

which implies eΘ > C(rL − rl). Now we have two cases.

case rl ≥ ri. We show that LB3(i) ≥ LB′
3(i). Since rl = rΩu

l
, du ≤ dU , and rl < rL,

eΩU
l

+ ci(ri + pi − rΩU
l

) ≥ eΩU
l

+ ci(ri + pi − rL).

Since Θ ∩ ΩU
L = ∅, eΩU

l
= eΘ + eΩU

L
and

eΩU
l

+ ci(ri + pi − rΩU
l

) ≥ eΘ + eΩU
L

+ ci(ri + pi − rL).

Since β(ΩU
L , i) holds and rL = rΩU

L
, we have

eΩU
l

+ ci(ri + pi − rΩU
l

) > C(dU − rL) + eΘ

which implies by eΘ > C(rL − rl) that

eΩU
l

+ ci(ri + pi − rΩU
l

) > C(dU − rL) + C(rL − rl).

Since rl = rΩu
l

and du ≤ dU , we have rl = rΩU
l

and thus

eΩU
l

+ ci(ri + pi − rΩU
l

) > C(dU − rΩU
l

)

which implies β(ΩU
l , i).

case rl < ri. We show that LB2(i) ≥ LB′
3(i). Since eΩU

l
= eΘ + eΩU

L
,

eΩU
l

+ ei = eΘ + eΩU
L

+ ei

and, since eΘ > C(rL − rl), β(ΩU
L , i) holds, and ei = pici, we have

eΩU
l

+ ei > C(rL − rl) + C(dU − rL) − ci(ri + pi − rL) + pici

eΩU
l

+ ei > C(dU − rl) + ci(rL − ri)

eΩU
l

+ ei > C(dU − rl)

which implies α(ΩU
l , i).

Assumption 2: It remains to consider the case

rl +
1

ci

rest(Ωu
l , ci) ≤ rL +

1

ci

rest(Ωu
L, ci),

which is similar to the same case in Proposition 7. �

Corollary 1 For any E-feasible CRP, we have

LB4(i) = max(ri, LB′
2(i), LB′

3(i))

17

Algorithm 6 CalcEEFI: An Extended Edge-Finder in O(n3) Time.

Require: X array of task sorted by non-increasing release date
Require: Y array of task sorted by non-decreasing due date

Ensure: LB[i] = LB4(X [i]) (1 ≤ i ≤ n)
1: CalcEF();
2: for y ← 1 to n− 1 do
3: E ← 0;
4: for x← n downto 1 do
5: if dX[x] ≤ dY [y] then
6: E ← E + eX[x];
7: end if
8: E[x]← E;
9: end for

10: for x← 1 to n do
11: for i← 1 to x do
12: if E[x] + cX[i](rX[i] + pX[i] − rX[x]) > C(dY [y] − rX[x]) then
13: if dX[i] > dY [y] then
14: LB[i]← max(LB[i], R[cX[i], y])
15: end if
16: end if
17: end for
18: end for
19: end for

7.3 The Extended Edge-Finding Algorithm

The extended edge-finding algorithm uses the same precomputation as the stan-
dard procedure, since the only change is the condition β(Ω, i) which replaces
α(Ω, i). Moreover, it is possible to derive an O(n3) algorithm CalcEEFI, which
is essentially similar to CalcEFI. The only changes are the initialization of the
LB values in line 1 by CalcEF, the loop on i that now goes from 1 to x and,
of course, the condition β(Ω, i). CalcEEFI is shown in Algorithm 6.

Theorem 5 Algorithm 6 is correct for E-feasible CRPs.

Proof Direct consequence of Theorem 2 and Proposition 12. �

The optimization to move from O(n3) to O(n2k) is slightly more complex for
the extended edge finder. Once again, observe that line 14 in CalcEEFI does
not depend on x: only the condition in line 12 does. Moreover, the condition
can be rewritten as

(C − cX[i])rX[x] + E[x]− CdY [y] > −(cX[i](rX[i] + pX[i])).

It does not matter which x satisfies this test, only that there exists such a value.
As a consequence, the algorithm precomputes the expression

CEEF [c, i] = max
x≥i

((C − c)rX[x] + E[x]− CdY [y]).

Observe that these expressions are precomputed for all capacities, since we do
not know in advance the capacities of the tasks the test will be applied to.

18

Algorithm 7 CalcEEF: An Extended Edge-Finder in O(n2k) Time.

Require: X array of task sorted by non-increasing release date
Require: Y array of task sorted by non-decreasing due date

Ensure: LB[i] = LB4(X [i]) (1 ≤ i ≤ n)
1: CalcEF();
2: for y ← 1 to n− 1 do
3: E ← 0;
4: for x← n downto 1 do
5: if dX[x] ≤ dY [y] then
6: E ← E + eX[x];
7: end if
8: E[x]← E;
9: end for

10: for x← 1 to n− 1 do
11: if rX[x] = rX[x+1] then
12: E[x + 1]← E[x];
13: end if
14: end for
15: for all c ∈ Sc do
16: CEEF [c, n + 1]←∞;
17: end for
18: for x← n downto 1 do
19: for all c ∈ Sc do
20: CEEF [c, x]← max(CEEF [c, x + 1], (C − c)rX[x] + E[x]− CdY [y]);
21: end for
22: end for
23: for i← 1 to n do
24: if CEEF [cX[i], i] + cX[i](rX[i] + pX[i]) > 0 then
25: if dX[i] > dY [y] then
26: LB[i]← max(LB[i], R[cX[i], y])
27: end if
28: end if
29: end for
30: end for

Hence it necessary to compute them prior to the loop instead of incrementally
as in CalcEF. The resulting edge finder CalcEEF is shown in Algorithm 7.

Observe lines 10-13 which establish the correspondence between Ω̃y
x and Ω

Y [y]
X[x]

by ensuring that
E[x] = max{ E[j] | rX[j] = rX[x]}.

These lines are not necessary in CalcEF since its loops scan array X from 1
to n contrary to the loop in lines 18-20.

Theorem 6 Algorithm 5 is correct for E-feasible CRPs.

Proof Consequence of Theorem 5 and the correctness of the CEEF [c, x] values which
satisfy the specification

CEEF [c, i] = max
x≥i

((C − c)rX[x] + E[x] − CdY [y]). �

19

8 Conclusion

This paper reconsidered edge-finding algorithms for cumulative scheduling.
These algorithms are at the core of constraint-based schedulers and update the
earliest starting dates and latest finishing dates of tasks that must be scheduled
after or before a set of other tasks. The paper made three contributions. First,
it indicated that Nuijten’s algorithm, and its derivatives, are incomplete because
they use an invalid dominance rule inherited from disjunctive scheduling. Sec-
ond, the paper presented a novel edge-finding algorithm for cumulative resources
which runs in time O(n2k), where n is the number of tasks and k the number of
different capacity requirements of the tasks. The key design decision is to orga-
nize the algorithm in two phases: The first phase uses dynamic programming to
precompute the innermost maximization in the edge-finder specification, while
the second phase performs the updates based on the precomputation. Finally,
the paper proposed the first extended edge-finding algorithms that run in time
O(n2k), improving on the running time of existing algorithms.

References

[BLPN01] P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-Based Schedul-
ing. Kluwer Academic Publishers, 2001.

[CL94] Y. Caseau and F. Laburthe. Improving CLP Scheduling with Task
Intervals. In Proceedings of the 11th International Conference on
Logic Programming (ICLP’94), pages 369–383, Santa Margherita
Ligure, Italy, 1994.

[CP94] J. Carlier and E. Pinson. Adjustment of Heads and Tails for the Job-
shop Problem. European Journal of Operational Research, 78:146–
161, 1994.

[NA96] W. Nuijten and E. Aarts. A Computational Study of Constraint
Satisfaction for Multiple Capacitated Job Shop Scheduling. European
Journal of Operational Research, 90(2):269–284, 1996.

[Nui94] W. Nuijten. Time and Resource Constrained Scheduling: A Con-
straint Satisfaction Approach. PhD thesis, Eindhoven University of
Technology, 1994.

[Vil04] Petr Vilim. O(n log n) Filtering Algorithms for Unary Resource Con-
straint. In Proceedings of the First International Conference on the
Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (CP-AI-OR’04), pages 319–
334, Nice, 2004.

20

