
Edge Finding Filtering Algorithm for Discrete

Cumulative Resources in O(kn log n)

Petr Viĺım

ILOG S.A. an IBM Company, 9, rue de Verdun, BP 85
F-94253 Gentilly Cedex, France

petr vilim@cz.ibm.com

Abstract. This paper presents new Edge Finding algorithm for dis-
crete cumulative resources, i.e. resources which can process several ac-
tivities simultaneously up to some maximal capacity C. The algorithm
has better time complexity than the current version of this algorithm:
O(kn log n) versus O(kn2) where n is number of activities on the resource
and k is number of distinct capacity demands. Moreover the new algo-
rithm is slightly stronger and it is able to handle optional activities. The
algorithm is based on the Θ-tree – a binary tree data structure which
already proved to be very useful in filtering algorithms for unary resource
constraints.

1 Introduction

Nowadays, constraint based scheduling engines like IBM ILOG CP-Optimizer
[1] allow to describe and solve very complex scheduling problems involving a
variety of different constraints. This paper describes a filtering algorithm called
Edge Finding for one of them – for discrete cumulative resource constraint.

Let us demonstrate the problem on a simple example on Figure 1. Note that
this example may be just a small part of much more complex problem. There
are three equivalent workers (a resource with capacity C = 3) who must perform
four different activities T = {A, B, C, D}. Activity A requires all three workers
(cA = 3) for one hour (pA = 1), activity B requires only one worker (cB = 1) but

A

B

C D

estA = estD = 0

estB = estC = 2

lctA = lctB = lctC = 5

C = 3

0 5 10

Fig. 1. An example: estD can be updated from 0 to 4

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 802–816, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Edge Finding Filtering Algorithm 803

for 3 hours (pB = 3) and remaining two activities C and D require two workers
each (cC = cD = 2), activity C for 2 hours (pC = 2) and activity D for 3 hours
(pD = 3). Moreover the earliest possible starting time of activities A and D is
zero (estA = estD = 0), for activities B and C it is 2 (estB = estC = 2). Latest
possible completion time (deadline) for activities A, B and C is 5 (lctA = lctB =
lctC = 5), activity D does not have a deadline (lctD = ∞).

Looking closely to the problem we can see that there is no way for D to start
before 4. Therefore we can update estD from 0 to 4 and this way limit the search
space of the problem. The rest of this paper describes the algorithm (called Edge
Finding) which performs such an update.

Note that there are also filtering algorithms for discrete cumulative resource
other than Edge Finding. For example Timetable propagation [2], Not-First/Not-
Last [3], Energetic Reasoning [2], Max Energy propagation [4] or Extended Edge
Finding [5]. However Timetable and Edge Finding are the ones which are used
most of the time.

Let us quickly review existing Edge Finding algorithms for discrete cumulative
resources. To the author’s knowledge the current state-of-the-art algorithm can
be found in [5]. In this paper Luc Mercier and Pascal Van Hentenryck proved
that the original cumulative Edge Finding algorithm with time complexity O(n2)
in [2] is incomplete, and therefore they designed new (complete) algorithm with
time complexity O(kn2).

This paper further improves the algorithm [5] in several aspects:

– Θ-tree data structure improves time complexity from O(kn2) to O(kn log n).
– Better usage of relation “ends before end” makes the filtering a little bit

stronger. There are cases when the new algorithm propagates while the old
one does not (Section 6.2).

– The algorithm can be easily adapted to handle optional activities. Although
propagation of optional activities can be further improved [6], it is already
pretty strong. We will show how to handle optional activities at the end of
the paper (Section 9).

– The algorithm is based on modified Edge Finding rules which are more
suitable for propagation. We provide a proof that the new rules are not
weaker than the original ones (Section 8).

Like algorithm [5] the new algorithm has two phases:

Detection phase tries to discover necessary relative positions of activities on
the resource. The result of this phase is a partial knowledge of a relation
“ends before end” (see later), which will be used in the next phase. For the
example on Figure 1 the algorithm in this phase detects that activity D must
end after the end of {A, B, C}.

Adjustment phase utilizes results of the previous phase to improve temporal
bounds of activities – earliest start times and latest completion times.

In comparison with algorithm [5] the time complexities of both phases are im-
proved. For detection phase from O(n2) to O(n log n), for adjustment phase from
O(kn2) to O(kn log n). For simplicity we will describe each phase separately.

804 P. Viĺım

We present only the algorithm to update earliest start times (not latest com-
pletion times) because the algorithm for update of latest completion times is
symmetrical.

Note also that Edge Finding algorithm is not idempotent and therefore it is
usually repeated until a fixpoint is reached.

2 Basic Notation

Let us formalize the notation already used in the introduction. The input of the
algorithm is a discrete cumulative resource with capacity C ∈ N

+ and a set of
activities T (|T | = n) which must be processed by the resource. Each activity
i ∈ T is characterized by the following attributes:

– earliest possible start time esti ∈ N,
– latest possible completion time lcti ∈ N,
– processing time (duration) pi ∈ N – a constant,
– required capacity ci ∈ N – a constant ci ≤ C.

Activities are not preemptive, that is, if an activity i starts at time t it must con-
tinue without interruption until time t + pi where it ends. During the whole pro-
cessing from t to t + pi it requires capacity ci from the resource. At any time, the
total capacity required from the resource cannot exceed the maximum capacity
C. We define k to be number of distinct capacity demands k = |{cl, l ∈ T }|.

Values esti and lcti can change – they can be updated by other filtering
algorithms or by the Edge Finding algorithm itself. Therefore the input of the
Edge Finding algorithm are current bounds esti and lcti, the output are new
(updated) bounds.

Note that at any time the following inequality must hold for every activity i:

esti + pi ≤ lcti

If it does not hold then the problem does not have any solution and the propa-
gation ends (a fail).

From the processing time and required capacity we can compute an energy of
an activity i:

ei = ci pi

The energy corresponds to the area occupied by the activity on the resource
when depicted like on Figure 1.

The notation for earliest start time, latest completion time and energy can be
easily extended for a set of activities Ω ⊆ T :

estΩ = min {esti, i ∈ Ω}
lctΩ = max {lcti, i ∈ Ω}

eΩ =
∑
i∈Ω

ei

Edge Finding Filtering Algorithm 805

e = 16

Env = 16

e = 9

Env = 9

e = 7

Env = 13

estA = 0

eA = 3

Env = 3

estD = 0

eD = 6

Env = 6

estB = 2

eB = 3

Env = 9

estC = 2

eC = 4

Env = 10

Fig. 2. An example of a Θ-tree for Θ = {A,B, C, D} from Figure 1

3 Earliest Completion Time, Energy Envelope

A critical role in the algorithm plays a computation of possible earliest comple-
tion time of a set of intervals Θ ⊆ T . This computation was already described
in detail in [4], therefore here we only quickly repeat the main idea. We defined
a lower bound Ect(Θ) of earliest completion time of a set of activities Θ ⊆ T as:

Ect(Θ) =
⌈

Env(Θ)
C

⌉

where Env(Θ) is so-called energy envelope of set Θ:

Env(Θ) = max
Ω⊆Θ

{C estΩ + eΩ} (1)

3.1 Cumulative Θ-Tree

The paper [4] also describes how to compute Env(Θ). The idea is to organize
set Θ in a balanced binary tree which we call cumulative Θ-tree. Activities are
represented by leaf nodes and sorted by esti from left to right. Each node v of
the tree holds the following values:

ev = eLeaves(v) (2)
Envv = Env (Leaves (v)) (3)

Where Leaves(v) is a set of all activities represented by leaves of the subtree
rooted in v.

Figure 2 shows a Θ-tree for Θ = {A, B, C, D} from Figure 1. Notice that the
energy envelope of the represented set Θ is equivalent to the value Env of the
root node. We can conclude that Ect ({A, B, C, D}) = �16/3� = 6.

For a leaf node v representing an activity i ∈ T the values in the tree are set
to:

ev = ei Envv = Env ({i})
For internal nodes v these values can be computed recursively from their children
nodes left(v) and right(v) as shown in the following proposition.

806 P. Viĺım

Proposition 1. For an internal node v, values ev and Envv can be computed
by the following recursive formulas:

ev = eleft(v) + eright(v) (4)

Envv = max
{
Envleft(v) + eright(v), Envright(v)

}
(5)

Proof. See [4]. �	
Thanks to formulas (4) and (5), computation of values ev and Envv can be inte-
grated within standard operations with balanced binary trees without changing
their usual time complexities.

4 Relation “Ends before End”

Before going into details about Edge Finding, let us introduce a notion of ends
before end. We say that an activity j ends before the end of an activity i (denoted
by j � i) if in all solutions end(j) ≤ end(i). The goal of the Edge Finding
algorithm is to discover as much of the relation � as possible and use it to
update temporal bounds. Until a solution is found the relation “ends before
end” is known only partially. Therefore in the following we will use the notation
j � i in the sense “it is known that in all solutions j ends before the end of i”.

The notation for “ends before end” can be extended also to sets of activities:

∀Ω ⊂ T, ∀i ∈ T \ Ω : Ω � i ⇔ (∀j ∈ Ω : j � i)

5 Edge Finding: Detection Rule

Let us start by definition of a left cut of T by activity j:

LCut(T, j) = {l, l ∈ T & lctl ≤ lctj}
To detect the relation � we will use the following rule:

∀j ∈ T, i ∈ T \ LCut (T, j) :
(Ect (LCut (T, j) ∪ {i}) > lctj ⇒ LCut(T, j) � i)

The idea of this rule follows. The set LCut(T, j) must be processed before lctj .
So if there is not enough time to process i together with LCut(T, j) then the
activity i must end after LCut(T, j). Note that this rule is different from the
original Edge Finding rule. We will show that this new rule is not weaker later
in Section 8.

The rule above can be rewritten using energy envelope into a form more
suitable for the algorithm:

∀j ∈ T, i ∈ T \ LCut (T, j) :
(Env (LCut (T, j) ∪ {i}) > C lctj ⇒ LCut(T, j) � i) (EF1)

Edge Finding Filtering Algorithm 807

Our goal is to discover as much of the relation � as possible. Therefore for each
activity i ∈ T we are looking for an activity j ∈ T with maximal1 lctj such that
LCut(T, j) � i can be detected by the rule (EF1). This is the task for the first
part of the algorithm.

6 Detection Algorithm

Notice that once we prove by (EF1) that LCut (T, j) � i then it is pointless to
evaluate the rule (EF1) for the same activity i and any j′ ∈ T such that lct′j ≤
lctj because it cannot bring any new information (LCut(T, j′) ⊆ LCut(T, j)).

The algorithm is similar to the Edge Finding algorithm for unary resource [7].
We iterate over activities j in non-increasing order by lctj and we maintain a set
Λ ⊆ T \ LCut (T, j) of all activities i for which we still did not find a set which
must end before end of i. In each step of the algorithm we check whether there
is some activity i ∈ Λ such that the rule (EF1) proves that LCut (T, j) � i. In
other words, we test whether the following inequality holds:

max
i∈Λ

{Env (LCut (T, j) ∪ {i})} > C lctj

– If it holds then we find the responsible activity i ∈ Λ and conclude that
LCut (T, j) � i. Therefore we can remove i from Λ.

– If it does not hold then we move activity j into Λ and continue by next
activity j (because there is no activity i such that LCut(j)� i can be proved
by (EF1)).

To formalize the algorithm let us define:

Env (Θ, Λ) = max
i∈Λ

{Env (Θ ∪ {i})}

Although we did not show yet how to compute Env (Θ, Λ) we can already present
the resulting Algorithm 1. The result of the computation is the array prec which
has the following meaning:

∀i ∈ T : {l, l ∈ T & lctl ≤ prec [i]} � i

In the algorithm, Θ = LCut(T, j) unless there are duplicities in lctj (the algo-
rithm is correct even with such duplicities). In the following we will concentrate
on the computation of Env (Θ, Λ) and the proof that the algorithm 1 has time
complexity O(n log n).

6.1 Computation of Env (Θ, Λ)

The idea is to extend cumulative Θ-tree into Θ-Λ-tree in a similar way it was
done for unary resource in [7]. The cumulative Θ-Λ-tree is a balanced binary tree

1 Maximality of lctj assures that for any other j′ ∈ T satisfying LCut(T, j′) � i by
(EF1) we have LCut(T, j′) ⊆ LCut(T, j).

808 P. Viĺım

Algorithm 1. Edge Finding: Detection

1 ��� i ∈ T ��

2 prec [i] := −∞ ;
3 Θ := T ;
4 Λ := ∅ ;
5 ��� j ∈ T in non-increasing order of lctj �� ����	

6
���� Env(Θ, Λ) > C lctj �� ����	

7 i := activity from Λ responsible for Env(Θ, Λ) ;
8 prec [i] := lctj ; // means: LCut(T, j) � i
9 Λ := Λ \ {i} ;

10 �	� ;
11 Θ := Θ \ {j} ;
12 Λ := Λ ∪ {j} ;
13 �	� ;

where each leaf represents one activity from the set Θ or Λ. Leaves are sorted
from left to right according to esti. Each node of the tree holds the following
values:

ev = eLeaves(v)∩Θ

eΛ
v = eLeaves(v)∩Θ + max

i∈Leaves(v)∩Λ
{ei}

Envv = Env (Leaves (v) ∩ Θ)

EnvΛ
v = Env (Leaves (v) ∩ Θ, Leaves (v) ∩ Λ)

Notice that Env (Θ, Λ) is equivalent to EnvΛ
v in the root node. For an example

of the cumulative Θ-Λ-tree see Figure 3.
For a leaf node v an activity i ∈ Θ ∪ Λ these values are set to:

ev =

{
ei if i ∈ Θ

0 if i ∈ Λ
eΛ
v =

{
−∞ if i ∈ Θ

ei if i ∈ Λ

Envv =

{
C esti + ei if i ∈ Θ

−∞ if i ∈ Λ
EnvΛ

v =

{
−∞ if i ∈ Θ

C esti + ei if i ∈ Λ

For internal nodes v these values are computed recursively from their children
nodes left(v) and right(v):

Proposition 2. For an internal node v values ev, eΛ
v , Envv and EnvΛ

v can be
computed by the following formulas:

ev = eleft(v) + eright(v) (6)

eΛ
v = max

{
eΛ
left(v) + eright(v), eleft(v) + eΛ

right(v)

}
(7)

Envv = max
{
Envleft(v) + eright(v), Envright(v)

}
(8)

EnvΛ
v = max

{
EnvΛ

left(v) + eright(v), Envleft(v) + eΛ
right(v), EnvΛ

right(v)

}
(9)

Edge Finding Filtering Algorithm 809

e = 10

Env = 13

eΛ = 16

EnvΛ = 16e = 3

Env = 3

eΛ = 9

EnvΛ = 9

e = 7

Env = 13

eΛ = −∞
EnvΛ = −∞

estA = 0

e = 3

Env = 3

eΛ = −∞
Env

Λ
= −∞

estD = 0

e = 0

Env = −∞
eΛ = 6

Env
Λ

= 6

estB = 2

e = 3

Env = 9

eΛ = −∞
Env

Λ
= −∞

estC = 2

e = 4

Env = 10

eΛ = −∞
Env

Λ
= −∞

Fig. 3. An example of a Θ-Λ-tree for Θ = LCut(T, A) = {A, B, C} and Λ = {D} from
Figure 1. We see that Env(Θ, Λ) = 16 which is more than C lctA = 15 and therefore
{A, B, C} � D.

Proof. First notice that formulas (6) and (8) are the same as formulas (4) and
(5) in Proposition 1. Addition of new leaves representing Λ into the tree cannot
invalidate these formulas because for these leaves v we have ev = 0 and Envv =
−∞. Therefore formulas (6) and (8) hold by Proposition 1.

Formula (7) is simple to prove. It is enough to realize that the difference
between computation of ev by (6) and computation of eΛ

v is that it is allowed to
use one of the activities i ∈ Λ. This activity i can be either in the left subtree of v
(and in this case we can use eΛ

left(v) instead of eleft(v)) or in the right subtree of v

(and we can use eΛ
right(v) instead of eright(v)). Putting this together we transform

formula (6) into (7).
It remains to prove formula (9). Again the difference between computation of

Envv and EnvΛ
v is that it is allowed to use one of the activities i ∈ Λ. This activity

can be either in the left subtree of v (and in this case we can use EnvΛ
left(v) instead

of Envleft(v)) or in the right subtree of v (and we can use EnvΛ
right(v) instead of

EnvΛ
right(v) or eΛ

right(v) instead of eright(v) but not both). This way we transform
formula (8) into (9). �	
Thanks to these recursive formulas it is possible to recompute internal values
within standard operations with balanced binary trees without changing their
time complexity. Therefore lines 9, 11 and 12 of Algorithm 1 has time complexity
O(log n) and line 6 has time complexity O(1). To prove that time complexity of
the whole Algorithm 1 is O(n log n) it remains to show that time complexity of
line 7 is also O(log n).

The activity i ∈ Λ responsible for Env(Θ, Λ) can be found by following a path
from the root of the tree to the responsible leaf. In each internal node we can
recognize in O(1) whether the responsible activity is in the left or right subtree
by analyzing which part of the formulas (9) or (7) was used in the given node:

810 P. Viĺım

M N

O

estM = estN = 2

estO = 0

lctM = lctN = 5

C = 3

0 5 10

Fig. 4. An example: {M, N} � O but the rule (EF1) is not able to detect it

responsibleeΛ(v) =

{
responsibleeΛ (left (v)) if eΛ(v) = eΛ

left(v) + eright(v)

responsibleeΛ (right (v)) if eΛ(v) = eleft(v) + eΛ
right(v)

responsibleEnvΛ(v) =

⎧⎪⎨
⎪⎩

responsibleEnvΛ (right (v)) if EnvΛ(v) = EnvΛ
right(v)

responsibleeΛ (right (v)) if EnvΛ(v) = Envleft(v) + eΛ
right(v)

responsibleEnvΛ (left (v)) if EnvΛ(v) = EnvΛ
left(v) + eright(v)

We start the search in the root node r looking for responsibleEnvΛ(r) and con-
tinue down the tree using the formulas above (and possibly switching from
responsibleEnvΛ(v) to responsibleeΛ(v) on the path) until we reach a leaf.

6.2 Improving Detection

Consider the example on Figure 4. In this example we can see that in every
solution end(M) ≤ end(O) because the maximum possible value for end(M) is
lctM = 5 and the minimum possible value for end(O) is estO + pO = 5. Therefore
M �O. Similarly N �O. However Edge Finding rule (EF1) is not able to detect
that {M, N} � O and we miss the update of estO from 0 to 5. It is a similar
situation to Detectable Precedences for unary resource described in [7].

The idea is to improve the propagation by improving the knowledge of the
relation � stored in the array prec:

prec[i] := max {prec [i] , esti + pi}
It takes time O(n) to update all prec[i] according to the formula above.

7 Time Bound Adjustment

Let us return again to the example on Figure 1. The algorithm presented in the
previous chapter detected that {A, B, C}�D. We will try to use this knowledge
to update estD. Notice that activity A is actually not important for the update
(but it was important in the previous phase to realize that {A, B, C} � D), it
is a set Ω = {B, C} ⊂ Θ which determines new estD. With this set Ω we can
compute new value of estD denoted as est′D:

est′D = estΩ +
⌈

eΩ −(C − cD)(lctΩ − estΩ)
cD

⌉
= 2 +

⌈
7 − (3 − 2)(5 − 2)

2

⌉
= 4

Edge Finding Filtering Algorithm 811

X

W

Y

Z

estX = estW = estZ = 0

estY = 6

lctW = lctX = lctY = 7

C = 2

0 5 10

Fig. 5. An example: estZ can be updated from 0 to 2

However when LCut(T, j) � i we cannot use just any subset Ω ⊆ LCut(T, j)
to compute update of esti as we did for estD above. Consider the example on
Figure 5. Here {W, X, Y } � Z but we cannot use Ω = {Y } because the result
would be invalid:

estΩ +
⌈

eΩ −(C − cZ)(lctΩ − estΩ)
CZ

⌉
= 6 +

⌈
1 − (2 − 1)(7 − 6)

1

⌉
= 6

The valid update would be to set estZ to 2, not to 6. The reason that we cannot
use Ω = {Y } for update of estZ is that there is not enough energy in Ω = {Y }
to be in potential conflict with Z.

Let us generalize the idea demonstrated on these examples. When LCut(T, j)�
i then we want to update esti the following way:

LCut(T, j) � i ⇒ est′i := max {update (j, ci) , esti} (EF2)

where:

update(j, c) = max
Ω⊆LCut(T,j)

eΩ>(C−c)(lctΩ − estΩ)

{
estΩ +

⌈
eΩ − (C − c) (lctΩ − estΩ)

c

⌉}

The condition eΩ > (C − c)(lctΩ − estΩ) makes sure that we do not make any
invalid update as described above.

In the following we will describe how to compute values update(j, c). When
all values update(j, c) are computed then update of esti using array prec and
formula (EF2) is trivial.

Let’s assume for simplicity that there are no duplicates in the set {lctj , j ∈
T }. Therefore if we sort activities T by increasing lctj in a sequence j1, j2, . . . , jn

we get:
LCut(T, j1) � LCut(T, j2) � · · · � LCut(T, jn)

So when we compute value update(jl, c) we do not have to iterate again on all
possible subsets Ω ⊆ LCut(T, jl), we can use the fact that we already considered
part of them in the computation of update(jl−1, c). I.e. in the outermost cycle
of the algorithm we iterate over all c ∈ {cm, m ∈ T } and in the inner cycle we
iterate over all jl ∈ T and compute:

update(jl, c) =

{
diff (j1, c) when l = 1
max {update (jl−1, c) , diff (jl, c)} when l > 1

(10)

812 P. Viĺım

where:

diff(j, c) = max
Ω⊆LCut(T,j)

eΩ>(C−c)(lctj − estΩ)

{
estΩ +

⌈
eΩ −(C − c)(lctj − estΩ)

c

⌉}
(11)

So in the computation of diff(j, c) we “pretend” that all sets Ω ⊆ LCut(T, j)
has lctΩ = lctj . This is not true, there may be sets Ω � LCut(T, j) such that
lctΩ < lctj . However these sets are correctly considered during computation of
diff(j′, c) such that lctj′ = lctΩ.

Let’s define function minest(j, c) as:

minest(j, c) = min {estΩ, Ω ⊆ LCut (T, j) & eΩ > (C − c)(lctj − estΩ)}
Notice that for a particular set Ωm which defines minest(j, c), i.e. estΩm =
minest(j, c), we have:

estΩm +
⌈

eΩm −(C − c)(lctj − estΩ)
c

⌉
> estΩm = minest(j, c)

and therefore diff(j, c) > minest(j, c). Now we will show that:

diff(j, c) = max
Ω⊆LCut(T,j)

estΩ≤minest(j,c)

{
estΩ +

⌈
eΩ −(C − c)(lctj − estΩ)

c

⌉}
(12)

The reason follows. The original condition was more restrictive than the new one:
in (12) we iterate over more sets Ω than in (11). However for every additional
set Ω we have estΩ ≤ minest(j, c) and eΩ ≤ (C − c)(lctj − estΩ) therefore:

estΩ +
⌈

eΩ −(C − c)(lctj − estΩ)
c

⌉
≤ estΩ ≤ minest(j, c)

And we already know that diff(j, c) > minest(j, c). Therefore newly added sets
cannot influence the resulting maximum value in formula (12).

Formula (12) is algebraically equivalent to:

diff(j, c) =
⌈

Env(j, c) − (C − c) lctj

c

⌉
(13)

where:

Env(j, c) = max
Ω⊆LCut(T,j)

eΩ>(C−c)(lctj − estΩ)

{C estΩ + eΩ} (14)

We can split each set Ω by minest(j, c) into two parts:

Ω1 = {l, l ∈ Ω & estl ≤ minest (j, c)}
Ω2 = {l, l ∈ Ω & estl > minest (j, c)}

Edge Finding Filtering Algorithm 813

Cut

α(j, c) β(j, c)

minest(j, c)

e = 9

Env = 13

Envc = 9
e = 8

Env = 8

Env
c

= 8

e = 1

Env = 13

Env
c

= 7

estW = 0

e = 2

Env = 2

Envc = 2

estX = 0

e = 6

Env = 6

Envc = 6

estY = 6

e = 1

Env = 13

Envc = 7

Fig. 6. Example: computation of Env(j, c) for c = 1 and j = Y from example on
Figure 5. Therefore LCut(T, j) = {W, X, Y }. Situation just before the cut.

And thenC estΩ + eΩ = C estΩ1 + eΩ1 + eΩ2 . Let’s apply this idea on formula (14).
We define:

α(j, c) = {l, l ∈ LCut (T, j) & estl ≤ minest (j, c)}
β(j, c) = {l, l ∈ LCut (T, j) & estl > minest (j, c)}

And (14) is equivalent to:

Env(j, c) = max
Ω1⊆α(j,c)
Ω2⊆β(j,c)

{C estΩ1 + eΩ1 + eΩ2} =

= eβ(j,c) + Env (α (j, c)) (15)

We can compute Env (α (j, c)) by building Θ-tree for the set α(j, c) as shown in
Proposition 1. However it is more suitable for the algorithm to build Θ-tree for
the whole set LCut(T, j) and cut it into two parts just before the computation
of Env (α (j, c)). The cut operation splits the tree into two trees, it is done in
such a way that all activities l ∈ LCut(T, j) such that estl ≤ minest(j, c) go to
the left part while the others go into the right part. See Figure 6 for an example.
The cut operation has time complexity O(log n) and it splits the set LCut(T, j)
into sets α(j, c) and β(j, c). The value Env (α (j, c)) can be found in the root
node of the Θ-tree for α(j, c), and eβ(j,c) can be found in the root node of the
Θ-tree for β(j, c).

It remains to show how to compute minest(j, c). The value minest(j, c) was
defined as:

minest(j, c) = min {estΩ, Ω ⊆ LCut (T, j) & eΩ > (C − c)(lctj − estΩ)}
The condition eΩ > (C − c)(lctj − estΩ) is algebraically equivalent to:

(C − c) estΩ + eΩ > (C − c) lctj (16)

814 P. Viĺım

Algorithm 2. Computation of minest(j, c) using Θ-tree for LCut(T, j)

1 v := root ;
2 E := 0 ;
3
���� v is not a leaf node �� ����	

4 �� Envc (right (v)) + E > (C − c) lctj ��	

5 v := right(v) ;
6 ���� ����	

7 E := E + eright(v) ;
8 v := left(v) ;
9 �	� ;

10 �	� ;
11 l := activity represented by leaf v ;
12 ����	 estl ;

Algorithm 3. Computation of all update(j, c)

1 ��� c ∈ {cm, m ∈ T} �� ����	

2 Θ := ∅ ;
3 upd := −∞ ;
4 ��� j ∈ T in non-decreasing order by lctj �� ����	

5 Θ := Θ ∪ {j} ;
6 minest := minest(j, c) ; // see Algorithm 2
7 (α, β) := Cut (Θ , minest) ;
8 Env(j, c) := e(β) + Env(α) ; // see (15)

9 diff :=
⌈

Env(j,c)+(C−c) lctj

c

⌉
; // see (13)

10 upd := max (upd , diff) ; // see (10)
11 update(j, c) := upd ;
12 Θ := join (α , β) ;
13 �	� ;
14 �	� ;

Notice that the left part of this inequality is very similar to the computation of
energy envelope, just C is replaced by (C − c). Let us define a new variant of
energy envelope Envc:

Envc(Θ) = max
Ω⊆Θ

{(C − c) estΩ + eΩ}

The computation of Envc can be done again using Θ-tree by Proposition 1. We
can compute Env and Envc in the same Θ-tree as shown on Figure 6. Now we
can see that because of condition (16) it must hold:

Envc (β (j, c)) < (C − c) lctj

but if we would include activities l with estl = minest(j, c) into the right tree
(in other words if we would do the cut more on the left) then this condition
would not hold. That allows to find a leaf l with estl = minest(j, c) by following

Edge Finding Filtering Algorithm 815

a path from the root the leaf as shown in Algorithm 2. Using this procedure
we can compute all values update(j, c) by Algorithm 3 with time complexity
O(kn log n). Note that once update(j, c) is computed we can trivially update
values esti using (EF2).

8 Relation with Standard Edge Finding

We will show that the algorithm described in the paper does not miss any update
done by Edge Finding algorithm described in [5]. It is enough to prove that the
original Edge Finding propagation rules are subsumed by the new rules (EF1)
and (EF2).

The traditional Edge Finding rule is:

∀i ∈ T, ∀Θ ⊆ T \Θ : C
(
lctΘ − estΘ∪{i}

)
< eΘ∪{i} ⇒ esti := max (esti, newesti)

where:

newesti = max
Ω⊆Θ

eΩ>(C−c)(lctΩ − estΩ)

{
estΩ +

⌈
eΩ − (C − c) (lctΩ − estΩ)

ci

⌉}
(17)

Let’s consider an activity i and sets Θ and Ω which achieves the best update
by the rule above. Then we can define j to be an activity from Θ such that
lctj = lctΘ. And because Θ ⊆ LCut(T, j) we can see that the rule (EF1) holds
for i and j. And because Ω ⊆ Θ ⊆ LCut(T, j) the update by the rule (EF2)
must be at least the same as by the original rule (17).

9 Optional Activities

Optional activity is an activity which may or may not be present in the resulting
schedule [1]. Optional activities makes modeling of certain types of problems
much easier (for example dealing with alternatives) and it also allows the CP
engine to propagate better. Therefore it is very important that Edge Finding
algorithm can handle optional activities.

To handle optional activities we can use the same idea as suggested in [4]: in-
stead of changing the algorithm we can just change its input data. If an activity j
is optional, we set for the algorithm lctj = ∞ regardless the real value of lctj .
This way the algorithm can never conclude that j � i for any activity i because
from the point of view of the algorithm the activity j can be always scheduled
later than i. Therefore optional activities will be influenced by non-optional ones,
but non-optional activities will not be influenced by optional ones.

Note that propagation for optional activities could be further improved as
suggested for unary resource in [6]. However it would probably result in increase
of time complexity of the algorithm.

816 P. Viĺım

10 Experimental Results

Speed of the presented algorithm was tested against incomplete algorithm [2]
by measuring time needed for initial propagation. These tests was done on cu-
mulative job-shop instances with resources of capacity 2 (note that in this case
k = 1). For n = 20 activities on resource the presented algorithm is on average
faster by factor 1.34, for n = 30 it is faster by factor 1.60, for n = 40 by 1.99,
for n = 60 by 2.68, for n = 100 by 4.15 and for n = 200 by factor 7.35.

11 Conclusions

This paper presents a new Edge Finding algorithm for discrete capacity re-
sources. The new algorithm is stronger than the state-of-the-art algorithm [5], it
is faster (in term of time complexity) and it can handle optional activities. The
algorithm is successfully used by CP-Optimizer [1] starting from version 2.0.

References

1. IBM ILOG CP Optimizer, http://www.ilog.com/products/cpoptimizer/
2. Philippe Baptiste, C.L.P., Nuijten, W.: Constraint-Based Scheduling: Applying Con-

straint Programming to Scheduling Problems. Kluwer Academic Publishers, Dor-
drecht (2001)

3. Schutt, A., Wolf, A., Schrader, G.: Not-first and not-last detection for cumula-
tive scheduling in O(n3 log n). In: Umeda, M., Wolf, A., Bartenstein, O., Geske,
U., Seipel, D., Takata, O. (eds.) INAP 2005. LNCS (LNAI), vol. 4369, pp. 66–80.
Springer, Heidelberg (2006)

4. Viĺım, P.: Max energy filtering algorithm for discrete cumulative resources. In: van
Hoeve, W.J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 294–308.
Springer, Heidelberg (2009)

5. Mercier, L., Hentenryck, P.V.: Edge finding for cumulative scheduling. Informs Jour-
nal of Computing 20, 143–153 (2008)

6. Kuhnert, S.: Efficient edge-finding on unary resources with optional activities. In:
Proceedings of INAP 2007 and WLP 2007 (2007)

7. Viĺım, P.: Global Constraints in Scheduling. PhD thesis, Charles University in
Prague, Faculty of Mathematics and Physics, Department of Theoretical Computer
Science and Mathematical Logic (2007)

http://www.ilog.com/products/cpoptimizer/

	Edge Finding Filtering Algorithm for DiscreteCumulative Resources in $O(kn log n)$
	Introduction
	Basic Notation
	Earliest Completion Time, Energy Envelope
	Cumulative Θ-Tree

	Relation ``Ends before End''
	Edge Finding: Detection Rule
	Detection Algorithm
	Computation of Θ, Λ
	Improving Detection

	Time Bound Adjustment
	Relation with Standard Edge Finding
	Optional Activities
	Experimental Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

