
E L S E V I E R European Journal of Operational Research 78 (1994) 146-161

EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

Adjustment of heads and tails for the job-shop problem

J. Carl ier a,,, E. P i n s o n b

a URA CNRS, HEUDIASYC, Universitg de Technologie de Compi~gne, 60200 Compi~gne Cede.x, France
b Institut de Math~matiques Appliqu~es, Universit~ Catholique de l'Ouest, B.P. 808, 49008 Angers Cedex 01, France

Abstract

The efficiency of recent enumerative methods for the job-shop problem crucially depends on immediate
selections of disjunctive constraints leading to adjustment of heads and tails. This paper presents new investigations
concerning this powerful tool. More efficient algorithms are proposed, and global operations are introduced. We
also describe a new lower bound and a new branching scheme which are used to design a branch and bound method.
Computational results show that these techniques permit to drastically reduce the size of the search trees.

Keywords: Scheduling; Job-shop; Branch and bound method

I. Introduction

In the job-shop problem, n jobs have to be processed on m machines, subject to both conjunctive and
disjunctive constraints, in order to minimize the makespan (Muth and Thompson, 1963). It is an NP-hard
problem in the strong sense (Lenstra et al., 1977), which remains probably one of the most computation-
ally intractable combinatorial problem to date. This fact justifies the considerable amount of study which
this problem has been subject to over the years (see the partial reference list).

In a previous paper (Carlier and Pinson, 1989), we proposed an efficient enumerative method which
solved for the first time a particular instance with 10 jobs and 10 machines proposed by Muth and
Thompson in 1963. In Carlier and Pinson (1990), we introduced the concept of immediate selection and
explained how it permits to adjust heads and tails and to select directly some disjunctions. We also
designed a polynomial algorithm for optimally adjusting heads and tails and consequently fixing
disjunctive constraints, allowing us to efficiently prune the search tree associated with a new branch and
bound method. This basic idea has been recently used by Brucker, Jurisch and Sievers (1991) and
Brucker, Jurisch and Kramer (1992) for designing new enumerative methods for this problem. With some
modifications leading to weaker conditions than the ones we proposed, they obtain an O(max
[d,n log2n])-steps algorithm for adjusting heads and tails (d denotes the number of selected disjunctive
constraints). They also propose new immediate selections and efficient algorithms to compute them.

* Corresponding author.

0377-2217/94/$07.00 © 1994 Elsevier Science B.V. All rights reserved
SSDI 0377-2217(94)00077-P

J. Carlier, E. Pinson / European Journal of Operational Research 78 (1994) 146-161 147

Applegate and Cook (1990), using a mixed integer linear programming formulation of the problem
combined with cutting plane generations, some of them built on the same concept, obtained for the first
time to the best of our knowledge, interesting computational results with such an approach.

The results obtained for all these approaches seem to prove the prime interest of the concept of
immediate selection. So, the aim of this paper is to present some new investigations concerning this
powerful tool.

The paper is organized as follows. In Section 2, we recall some backgrounds and basic results relying
on the job-shop problem. In Section 3, we present the key idea of immediate selection and adjustment of
heads and tails. We show how such computations can be performed both on local and global levels. On
local level, we propose more efficient algorithms for optimally adjusting heads and tails and exhibiting
immediate selections. These computations are called local operations. On global level, we propose a
method for performing new adjustments of heads and tails, and using the local operations defined
before. These computations are called global operations and are detailed in Section 4. In Section 5, we
propose a new branching scheme and a new lower bound leading to a more efficient Branch & Bound
method. This new enumerative method allowed us to solve the 10 jobs and 10 machines of Muth and
Thompson developing a search tree with only 35 nodes. Moreover, four other open instances proposed
by Adams et al. in 1986 are solved with this new method. Complementary computational experiments are
reported.

2. Problem statement, background, basic notations and properties

2.1. The job-shop prob lem

In the job-shop problem, n jobs ,P'I, ,P'2 , ~ have to be processed on m different machines ~¢'1,
.av 2~tv m. Each job ~P~j consists of a sequence of operations which have to be scheduled in a given
order. Moreover, each operation can be processed only by one machine among the m available ones.
Preemption of any operation is not allowed. The objective is to find an operating sequence for each
machine so as to minimize the maximum of the completion times Cm~ x of the jobs.

2.2. Dis junct ive graph

Two operations i and j, executed by the same machine, cannot be simultaneously processed. So we
associate with them a pair of disjunctive arcs [i, j] = {(i, j) , (j , i)}. The problem is then modelled by a
disjunctive graph ff = (G, D), where G = (X, U) is a conjunctive graph and D a set of disjunctions. Fig.
1 shows an example of disjunctive graph associated with a job-shop with 3 jobs and 3 machines.

Z3. Bas& notat ions

In this paper, Pi denotes the processing time of operation i, r i (resp. qi) its head (resp. its tail).
Denoting the value of one of the longest paths from i to j in G by l(i, j) , we have: r i = l(o, i) and
qi = l(i , *) - Pi, where o and * are the source and the sink in G.

2.4. Schedule

A schedule on a disjunctive graph ~' = (G, D) is a set of starting times T--- { t i l i ~ X } such that:
- the conjunctive constraints are satisfied:

t i - ti ~- Pi V (i , j) ~ U,

2 5 4

J1

J2

J 3

148 J. Carlier, E. Pinson / European Journal of Operational Research 78 (1994) 146-161

Conjunctive constraint

Disjunctive constraint

Fig. 1. A 3 × 3 job-shop instance.

- the disjunctive constraints are satisfied:

t j - t i >--Pi or t i -- tj >PJ V(i , j) ~ D.

2.5. Selection

To build a schedule, we have to select the disjunctive constraints and thus to choose an operating
sequence for each machine.

A selection A is a set of disjunctive arcs such that if (i, j) c A , then (j, i) CA. The membership of
(i, j) to A makes necessary to process operation i before operation j. We associate the conjunctive
graph G A = (X, U U A) with selection A. By definition, a selection is complete if all the disjunctions of
D are selected. It is consistent if the associated conjunctive graph is acyclic. A schedule corresponds to a
consistent complete selection. Its makespan is the value of one of the longest path in G A.

2.6. Solution

Let UB be a given integer. By definition, a solution of the job-shop problem is a schedule with a
makespan smaller or equal than UB.

2. 7. Clique of disjunctions

A clique of disjunctions is a set K of operations such that every couple of operations of K is in
disjunction. Cliques are obtained for the job-shop by considering a group of operations processed on a
specific machine, e ~ K (resp. s ~ K) is called the input (resp. output) of the clique K if e (resp. s) is
sequenced in T before (resp. after) all the other operations of K.

2.8. Jackson's preemptive schedule: Primal and dual version

Let us consider a subset I of operations that have to be processed on the machine. Jackson's
preemptive schedule is the list schedule associated with the Most Work Remaining (MWR) priority

J. Carlier, E. Pinson / European Journal of Operational Research 78 (1994) 146-161 149

i 1 2 3 4 5 6
r~ 4 0 9 15 20 21

I~ 6 8 4 5 8 8

oj 20 25 30 9 14 16

<DJrs~l ' 121 6 I ~ 1 3 I ' I 2 I
9 1 , 1 6 2 , 30 3 , ,0 ,6

Fig . 2.

dispatching rule. To build it, we schedule, at the first moment t where the machine and at least one
operation are available, the available operation with maximal tail: This operation is processed either up
to its completion or until a more urgent operation becomes available. We update t, and iterate until all
the operations are scheduled (Jackson, 1955).

Because of the symmetric role of heads and tails, we can design in the same way a symmetric version
of this algorithm we call Dual Jackson's Preemptive Schedule (DJPS), in opposition with the previous
version we call for this reason Primal Jackson's Preemptive Schedule (PJPS).

By using heap structures, both (PJPS) and (DJPS) can be computed in O(n log2n) steps.
Their makespan are lower bounds of the job shop problem, and are equal to Max j~ lh (J) , where

(Carlier, 1982)

h (J) = Min rj + ~ pj + Min q/.
J~J j~J J~J

(1)

Fig. 2 shows an example of (PJPS) and (DJPS) built on 6 operations.

2.9. Basic property on (PJPS) and (DJPS)

From the construction of (PJPS) (resp. (DJPS)), we can deduce the following result. First, let us
introduce some complementary notations: for any operation j of I, we denote by:

• tj (resp. t~) its starting time in (PJPS) (resp. (DJPS));
• Cj (resp. C}) its completion time in (PJPS) (resp. (DJPS)).

Proposition 1. Let j ~ I. There exists a subset Kj ~ I (resp. K~ c_I) s.t.:
• j ~ K j (resp. j ~ K ~) ;
• V k ~ Kj, qj < qk (resp. Vk ~ K~, rj < rk);
• Cj = Mini~Kir j + Ej~KjPj. (resp. C~ = Miny~ K; qj + F j~K; pj).

Proof. See Carlier and Pinson (1990). []

For the example above (see Fig. 2), we have for instance K 1 = {1, 2, 3} and K~ = {1, 3, 5, 6}.

2.10. Immediate selections

Let us consider a non-selected disjunctive constraint [i, j]. If we can prove that in any solution,
operation j is processed after (resp. before) operation i, we can select the disjunctive constraint [i, j] in
i ~ j (resp. j ---> i) direction and we say that we have an immediate selection.

150 J. Carlier, E. Pinson / European Journal of Operational Research 78 (1994) 146-161

2.11. Ad jus tment o f heads and tails

Let c be an operation. If we can prove that in any solution, r c >_ a (q¢ >_ fl), then we can set r c = a
(resp. qc =/3) and we say that we have an adjustment of head (resp. tail).

As we pointed out in Carlier and Pinson (1990), adjustments of heads and tails are of prime
importance for efficiently solving the job-shop problem, because they allow, via the immediate selections
on disjunctive constraints, to exhibit more quickly a complete and consistent selection for the problem,
and so a solution.

3. Local operations

3.1. Introduction

One of the most efficient way of solving the job-shop problem consists of relaxing it to m one-machine
scheduling problems linked by the precedence constraints associated with jobs sequences, and thus to
solve them sequentially or parallelly. In this section, we recall a way for determining immediate
selections that we proposed in Carlier and Pinson (1990), namely immediate selection on disjunctions
and immediate selection on ascendant sets. These operations being performed on each clique of
disjunctions, we call them local operations. In this section, I denotes a subset of operations associated
with a given machine.

3.2. Immediate selection on a disjunction

In Carlier and Pinson (1989), we proved the following simple result:

Proposition 2. Let [i, j] be a non-selected disjunctive constraints on I. I f

rj +pj +Pi + q i > UB, (2)

then it is scheduled before j in any solution, and we can select [i, j] in the i--+j direction and set

ry = max(r j , r i + Pi) and qi = max(qi, qy + Pj).

We propose below a procedure allowing the determination of all immediate selections on disjunctive
constraints associated with operations of I in O(n log2n) steps. In this algorithm, .2~' 1 (resp. _9'2) denotes
the ordered list on increasing (resp. decreasing) (qi +pi)-values (resp. (r i +pi)-values) (i E I). i 1 (resp. i 2)
denotes the operation matching the current minimum (resp. maximum) value over 21 (resp. -~2).

Procedure Disj(I)
While -~1 4: ¢ and -~2 4= ¢ do

If Pil q- qi, < UB - (ri2-I-pi 2) Then
"~1 :=-~1 \ {il}

Else
ri 2 := max{ri2; max i E .~,\{i2}[ri +Pi]}
..9' 2 :=.g:2\ {i2}

Endif
Enddo

J. Carlier, E. Pinson /European Journal o f Operational ResearCh 78 (1994) 146-161 151

For iz, Disj(I) computes the smallest value over S'~1 such that i I precedes i 2 because of Proposition 2.
Consequently, all immediate selections on disjunctions involving i2 can be deduced.

Proposition 3. Algorithm Disj(I) runs in O(n log2n).

Proof. Clearly, as 1-~1 [= n and I-~z[= n, algorithm Disj(I) runs in O(n log2n) steps using a heap
structure for the adjustment of ri2-values. []

3.3. Immediate selections on an ascendant set

3.3.1. Previous results
All the definitions and results of this section can be found in Carlier and Pinson (1990). In the sequel,

and without loss of generality, we make the assumption that all heads and tails are different. In case of
ties, we simply break them by taking into account the numbering of the operations in the disjunctive
graph.

By definition, a subset J of operations is called an ascendant set of c if c ~ J and

Min r j+ Y'. p j + M i n q j > U B . (3)
j~JU{c} j~JU{c} J~J

Clearly, if J is an ascendant set of c, c is output of K = J u {c}, and we can set

:= = Max [Minr: + Y'. p j] r c Max(re, a c), where a c
J'GJ jEJ ' J jEJ ' I

Let us introduce some complementary notations:
• for j ~ I, P7 is the processed time of j before r c in (PJPS), pj+ is the processed time of j after r c in

(PJPS);
• K ~ = { j ~ I l p ~ = O } ; K + c = { j ~ I l p ~ > O } .
We proved that for finding %, we can look for a non-empty subset K ÷ of K~ + satisfying

r e + P c + E P ~ + Min q j > U B . (4)
j ~ K + Y ~ K +

If such a set exists, there exists a maximal set K* satisfying (4), and we have the maximal adjustment

a c = Max C
j~K*~ J"

These results can of course be transposed to the symmetric case, that is to say to the search of
descendant sets for operation c. We also proposed the following simple procedure for finding K*:

• Build (PJPS) up to t = r c.
• Take the operations o f K+~ in the increasing order o f the qj, and f ind the first one s such that

r c + P c + E p 2 + q, > UB (i f a n y e x i s t s) .
{J ~K+ [qj~qs}

• Define K * = {j ~ K + [qj > qs}.
In the next section, we show that, using a specific data structure, s and K* can be computed in

O(logen) steps, leading to an overall O(n log/n)-step algorithm for optimally adjusting heads which we
describe in Section 3.3.4.

152 J. Carlier, E. Pinson / European Journal of Operational Research 78 (1994) 146-161

8.9-10-11-12-13"14-15

4-5-6-7 12-13-14-15

2-3 10-11 14-15

1

Fig. 3.

3.3.2. Data structure for computing K*
Let us suppose that (PJPS) has been built up to time instant t = r c. From the previous section, finding

the maximal ascendant set for operation c (if any exists) is equivalent to finding an operation s of K~ +
such that:

• r +pc+ E p;+q,>UB, (5)
{j ~g+c lq/>~qs}

• q~ is minimal. (6)

In the following, we denote by s c the operation satisfying (5)-(6) for operation c. By convention sc will
be set to + oo if K* does not exist.

Let us consider the balance binary search tree ~ built on the operations of I using a numerical key
induced by the qi-values. For a seek of clarity, and without loss of generality, we assume that the
operations have been renumbered in the order of increasing qi-values. So, we have

q l < q 2 < " ' " <qn"

For instance, for n = 15 operations, we obtain the binary tree of Fig. 3 (here, the balance is equal to
zero).

In this search tree, we denote for any node k associated with operation k:
kl,kr,kf: Its left successor, its right successor and its predecessor in ~i.
.~k,~k: Its associated left and right subtrees.
3-k: The subtree of root k.

By convention, kl (resp. kr, ke) will be set to 0 if the left successor (resp. right successor, predecessor)
of node k does not exist. ~I verifies the property

Vk E In] , Vi E.~k, Vj E,Yl k, qi < qk < q~.

Moreover, we denote by:
v: The root of ~i-
¢¢': The set of leaves of ~ r
5": The set of operations j from I satisfying P7 > 0.
With the convention above, we have X = {k ~ IIk~ -- k r = 0}.

Now, let us assign to any node k, in addition to its key qk, the following quantities,

p;,

E p;,
j ~-_.af k

(7)

J. Carlier, E. lh'nson / European Journal of Operational Research 78 (1994) 146-161 153

max [q2+ E p+] if3-knS'~4=#,
- (8)

{i~3- k I qi>qj}

- ~ otherwise.
+ Pk ,o-k and ~:k (k ~]n]) will be used for computing K*.

As p+-values decrease during (PJPS) construction, o" k- and ~:k-values will be modified at the same
tim'e. Next section deals with the initialization and the updating of these quantities in case of variation of
p f-values.

3.3.3. Computing the quantities o-k, ~k and ~7~.
From (7)-(8), we can deduce the following recursive definitions:

f p ~ if k , = k r = 0 ,
o-k = / p~- + ~'kr otherwise,

with the convention that o-0 = 0.

(q~ +o-k

~k =] max[o'k + ~:k,, ~:kr]

/ max[sck, + ok, qk + o-k, ~kr]

with the convention that ~0 = - ~.
Indeed, we have:

~k,= max [q~ + ~ P+],
J~'~kNSP[{ i ~ k]qi>-qj} J

max [[q +]
{i ~--q~k I q~ >- q j}

In particular, it is straightforward to check that

maxIqj + ~ p+]
~v : j~d)~[{i Ilqi~qj} J

i f k l = k r = 0 a n d + Pk >0,

if p~-= 0,

otherwise,

O-k- and ~:k-values for k ~ I can be initialized by the following procedure. Of course, we have, at the
beginning of the processing: Vj ~ I, p ~ = p j > 0. 5 r denotes a FIFO storage structure.

P r o c e d u r e I n i t i a l i z e (~ r , ~)

Build ~i
5r=A/ , o-o = O, ~o = - ~ , ro=O
While 3 r ~ {0} do

Let k be the first element in 9-
o-, =P, + rk,, ~k = max[~, + o-k, qk + o-k, ~k,]
j r = gr U {k f} /{k}

Enddo

As we saw previously, p~--values decrease and become null during the construction of (PJPS).
Procedure Update (o-, ~:, k, e) performs the updating of o~ and scj quantities after a variation (positive or
negative) e of p+ for a given operation k: k

154 J. Carlier, E. Pinson / European Journal of Operational Research 78 (1994) 146-161

Procedure Update (~r,g,k,e)
trk = O'k + e
I f p ~ = 0 then

~k = maxi~k~ + crk, ~kr]
Else

~k = max[~k, + Ok, qk + O'k, ~k r]
Endif
j = k
While j * O do

j = j f
if qj < qk then

o) = o) + e
Endif
I f pj+= 0 then

~ = max[¢j, + %, ~1
Else

= m a x [f i t + o;., +
Endif

Enddo

Procedure upda te simply performs a backtrack f rom node k to the root v in Wz applying the recursive
relations defining o~ and ~j (j ~ I) .

Now, let us suppose again that (PJPS) has been built up to t -- r c. Let us denote by p~-, trk, and SCk
(k E I) the current values of the quantities defined above. Procedure Find(s c) allows to determine the
opera t ion s c defined in (5)-(6).

Procedure Find(s c)
Update(a ,~,c, - Pc)
5 = UB - (r c +Pc)
Sc= +oo
k = v
While ~k > 8 do

I f ~k, + O'k > ~ then
~ = ~ - - O k , k = k l

Else
I f (qk + irk > t~) and (p-~ ~ O) then

so=k, k = O
Else

k = k r
Endif

Endi f
enddo
Update(o',~,c,p c)

Procedure Find(s c) starts f rom the root k = v of ~i. I f ~k > (5 = UB - (r c +Pc) , then there exists an
ascendant set for opera t ion c, and s c is defined. If ~k I + Ok> ~, then at least one opera t ion in -~k
verifies (5)-(6). We set k = k I and ~ = 8 - trk in order to scan this subtree. If not, if qk + Ork > t~, then k

J. Carlier, E. Pinson / European Journal of Operational Research 78 (1994) 146-161 155

is clearly the operation with minimal tail satisfying (5)-(6), and we stop the procedure with s~--k.
Otherwise, s c is located in the subtree ~q~'k and we set k --- k~ in order to explore it.

Proposition 4. a) Procedure Initialize (or,so) runs in O(n) steps.
b)Procedures Update (o-,~,k,e) and Find(s~) run in O(log2n) steps.

Proof. a): Evident by construction.
b): Procedure Update works by performing a backtrack from node k to the root v in ~i. Procedure

Find follows the single path connecting the root v to node s~ in ~I. As the depth of such a balanced
binary tree is log2n, the result holds. []

Once s c is computed, we can define K* = {j ~ Kc + [qj > qsc}, and then adjust r c by setting

r c = a c w i t h a c= M a x C j .
y ~K*

This adjustment simply forces operation c to be processed after the completion of all operations j of
K*. For ~rJPS),'- this is equivalent to forbid the process of operation c until we have: Vj ~ K'c, p + = 0 ,
and thus until

V J ~ { i ~ I l q i > - q s c } , P T = O . (9)

Clearly, relation (9) is equivalent to

<s~, (10)

where v = m a x k ~ l [k l p +>k 0]= m a x k ~ , [k] .
If t denotes the first time instant in (PJPS) for which (10) is satisfied, then we have rc = ac = t. This

simple property will be used in the algorithm designed in next section to avoid the explicit computation
of ac-values.

Now, we propose an algorithm for optimally adjusting heads on operations of I, based on the
principle explained in Section 3.3.1, and which uses the above data structure and the related procedures
for determining ascendant sets.

3.3.4. A n O(n log2n) algorithm for optimally adjusting heads on operations o f I
The notations are the same as the one used in previous sections. Moreover, in this algorithm, we

denote by:
t: The current time instant.
~': The set of non-completed operations at the current time instant t.

.~: The set of delayed operations at the current time instant; ~ = {j ~ ~'lsj < v}.
~¢: The set of available and non-delayed operations at the current time instant; ~¢ = {j ~ ~'1 rj _< t and

j ~ }

Procedure Adjust(I)
Initializations

Initialize(~r ,~)
t = min t ~ i rj
• "=I; e g = { j ~ g l r j = t } ; 5 P = I ; ~ t = f 3
For every operation j ~ I, p f =p j

156 J. Carlier, E. Pinson / European Journal of Operational Research 78 (1994) 146-161

Main step
While ~ ~ O do

For every operation c in ~¢ satisfying r c = t do
Find(s¢)
I f so ~ + ~ then ~" =~¢\{c}; ~ = ~ u {c}

Enddo
let i be the operation in ~" with maximal tail
t '= mmj" ~ ~\~, rj; e = rain(p/+, t' - t); t = t + e; p+ = p ~ - e
Update(o-, ~, i, - e)
I f p~-= 0 then C i = t; ~ = ~/\{i}; S : = S : \ { i } ; ~¢ =~¢\{ i}
For every operation j in ~ satisfying sj > v do

aj = t; ~ = ~ \ { j } ; ~¢ = ~ u {j}
Enddo
~¢ = ~ u {j ~ ~lry = t}
I f ~ = 9) then t = m i n j ~ , \ ~ rj; ~" = {j ~ ~'lrj = t}

Enddo

Proposition 5. a) Procedure Adjust(I) computes optimal heads adjustments on operations of I in O(n log 2n)
steps.
b) Moreover, the determination of these adjustments leads to the immediate selection of all the disjunctive
constraints associated with the ascendant sets J of any operation c.

Proof. a): We use heap structures for determining, at each iteration of the main step, the operation i
from ~ with maximal tail, every operation j from z¢ satisfying rj = t, u, and every operation j in .~
satisfying sj > v. All these computations can be performed in O(logzn). Update (or, ~, j, e) runs in
O(log2n) steps and the adjustment of one head does not lead to modification of pT-values. Moreover,
the number of preemptions in (PJPS) does not exceed n-1 (see for instance Carlier, 1982). So the total
number of iterations for the main step does not exceed 2n-1. Thus, the overall complexity is O(n log2n)
steps.

b): See Carlier and Pinson (1990). []

3.4. Other simple immediate selections

It is straightforward to see that other immediate selections than the two particular cases discussed
above can be found using the same idea: to position some operations in relation to some other ones by
relaxing locally the non preemption condition. To illustrate this purpose, we propose in this section a
direct extension of the last particular case developed in the previous section.

Proposition 6. Let i be the operation of J G I defined by q i = M i n j ~ j q j , and assume that p/-> 0. I f
IS(c ,J) +p / -> UB, then i is processed before c in any solution, where IS(c ,J) is the quantity defined by

IS(c , J) = r c + P c + ~"~pT+ Minqj. (9)
jEJ J~J

Proof. IS(c,J) + P7 corresponds to a makespan lower bound of a schedule in which c is processed before
i. []

We actually work on a general framework exploiting these immediate selections which are of course
more powerful than the previous ones.

J. Carlier, E. Pinson / European Journal of Operational Research 78 (1994) 146-161 157

4. Global operations

4.1. Introduction

In this section, we propose a new way of providing adjustments of heads and tails, and immediate
selections of disjunctive constraints for the job shop problem. This method uses the local operations
defined in previous section as a building block. In addition, we present a new lower bound based on the
same principle.

4.2. Adjustment of heads and tails: Global operations

Let us consider the procedure Local which consists of determining all immediate selections (al-
gorithms Disj and Adjust in their primal and dual versions) on each machine, propagating heads and tails
adjustments over the current conjunctive graph. Let c be a given operation, and let us increase
progressively the value rc, reapplying each time the procedure Local. Obviously, such a process
terminates with one of the two following issues:
a) The maximal possible value UB-(pc + q¢) for r c has been reached without detecting any inconsistency

for the global problem.
b) For a certain value of r c, say fc, we obtain an inconsistency for the global problem ((PJPS) - or

(DJPS) - has a makespan greater than UB for some machine(s)).
Clearly, in case b), there exists no solution with c scheduled after t = f c - 1. So we can set

qc := UB + 1 - (fc +Pc) to enforce operation c to start before this date. Of course, the symmetric result
allowing to adjust r c holds. In the computational experiments we present in Section 5, these new heads
and tails adjustments are quite naively implemented. Finding fc is achieved by a simple dichotomic
search on the interval [rc;UB - (Pc + qc)], and these tests are performed once per operation, in the order
of their decreasing processing times. Of course, such adjustments are quite time consuming if systemati-
cally applied to all operations. But they lead to very good results, allowing, for example, to limit the
search tree of our new enumerative method to 35 nodes for optimally solving the 10 jobs-10 machines
instance of Muth & Thompson, with a CPU time of 520" (against 3430 nodes without them, for a CPU
time of 200"). We report in next section some complementary experiments proving their interest.

4.3. Immediate selection of disjunctive constraints

Let [i, j] be a non-selected disjunction. Impose that i is scheduled before j, and apply the procedure
l_~cal presented in the previous section (determination of all immediate selections on each machine with
propagation of heads and tails adjustments over the current conjunctive graph). If we obtain an
inconsistency for the global problem, we can deduce that i will be processed after j in any solution. So,
we can select the disjunction [i, j] in the j ~ i direction. Of course, the global operation consisting of
testing every non selected disjunction is quite time consuming, but it allows in practice to select directly a
large number of supplementary disjunctions.

4.4. Lower bound

The new lower bound we propose here is based on an idea we presented in Carlier and Pinson (1990).
Let us fix the quantity UB, and apply the procedure described in section 4.2. Obviously, such a procedure
terminates with one of the two following issues:
a) We can detect no more immediate selections.
b) (PJPS) - or (DJPS) - has a makespan greater than UB on some machine(s).

158 J. Carlier, E. Pinson / European Journal of Operational Research 78 (1994) 146-161

In case a), we can decrease UB, and reapply the procedure. Necessarily, for a certain value UB' of
UB, this procedure terminates with the second issue, and UB' + 1 is a lower bound of the optimal
makespan for the job-shop problem. At each step, the new value of UB can be computed in such a way
that we are sure to detect at least one immediate selection at the next procedure run. I k denoting a
subset of operations associated with machine ~'k, we define the three following quantities:
6~ = max{di~li, j ~ I k, d U <_ UB}, where diy = max[r i + Pi + Pj + qy, rj + pj + Pi + qi].
6k _ 2 _ max{ri +Pi + ~v (i)1i ~ Ik}, where soy(i) denotes the value of ~ at time instant t = r i in Adjust(l) (see

Section 3.3.4).
63 = max{qi +Pi + ~'~(i)1 i ~ I~}, where ~'~(i) denotes the value of ~'~ at time instant t = qi in the dual

version of Adjust(I).
From Section 3, it is straightforward to check that by taking the value

UB = Max (6~¢, 62 , 63) - 1,
k~]m]

we are certain to detect at least one new immediate selection.
In Section 5.4, we report, for each test problem and at the root of the search tree, the lower bound

computed by using this principle. The results show the superiority of this new lower bound over the
classical ones proposed so far.

5. Branch and bound method

5.1. Introduction

In this section, we present a new branch and bound method using the ideas developed in the previous
sections. This enumerative method uses both a new lower bound and a new branching scheme we detail
hereafter. Computational results are reported.

5.2. Lower bound

The lower bound is the same as the one used in our previous branch and bound method (Carlier and
Pinson, 1990).

5.3. Branching scheme

Different branching schemes for the job-shop problem have been proposed in the literature. The one
we propose here relies on the idea developed in the previous section for the lower bound computation.
I k having the same meaning than before, let us consider a subset J c I k and an operation c ~ I k \ J such
that

Max{h(c ~ J) , h(c $ J) , h (J ~ c) } > UB, (10)

Max{Min{h(c ---~J), h (c $ J)} , Min{h(c $ J) , h(J ~ c)}} < UB, (11)

where

h(c--->J) =rc +Pc +

h (c $ J) = minr~ +
jEJ

h (J - ~ c) = minrj +
j ~ J

pj + minq:,
j ~ j jEJ J

Y'~ py + min q. + Pc,
jEJ jEJ J

S, pj+pc+qc.
j ~ J

J. Carlier, E. Pinson / European Journal of Operational Research 78 (1994) 146-161 159

Table 1

Test origin Test characteristics B&B1 B&B2 (local) B&B2 (local+ global) Optimal Lower

jobs # machines # nodes CPU (s) # nodes CPU (s) # nodes CPU (s) makespan bound

(Muth & Thompson '63) 10 10 4336 253 3122 135 37 450 930 868
(Muth & Thompson '63) 20 5 44 15 49 14 40 1000 1165 1165
(Adams et al. '88) 10 10 197 12 45 9 2 55 945 901
(Adams et al. '88) 10 10 111 11 53 10 12 100 784 777
(Adams et al. '88) 15 10 5882 594 4912 475 73 4732 927 913
(Adams et al. '88) 15 10 70 13 75 12 14 1081 1032 1032
(Adams et al. '88) 20 10 125 174 102 135 22 1100 1355 1355
(Adams et al. '88) 30 10 143 207 161 218 2 480 1850 1850
(Adams et al. '88) 15 15 4416 7163 3910 6201 23 3583 1268 1233

So, J is not an ascendant set of c, but one of the three conditions leading to an immediate selection
holds. Let us suppose for example that (J, c) verifies

h (c ~ J) > U B , h (c S J) < U B , h (J ~ c) < U B .

We branch by creating one subproblem (P1) where c is scheduled after at least one operation of J,
and a second subproblem (P2) where c is scheduled after all the operations of J. The other cases can be
derived in the same way. The choice of (J, c) is based on the fact that Max{h(c ~ J), h(c $ J), h(J ~ c)}
is a lower bound of the optimal makespan for the job-shop problem. In order to improve as quickly as
possible the global lower bound, we focus on the pair (J, c) satisfying (10)-(11) with maximum second
minimum over the list {h(c ~J) , h(c $ J), h (J ~ c)}, and the maximum is taken over all the machines. If
no pair (J, c) satisfies the conditions (10)-(11), then we simply branch on a non selected disjunctive
constraint using a penalty function as defined in Carlier and Pinson (1989).

5. 4. Computational results

We have implemented this branch and bound method in Fortran 77 on a workstation IBM
RS6000/320H, and tested it on about 30 benchmarks originating in the literature (Muth and Thompson,
1963; Adams et al., 1988). In Table 1, we compare our previous method (Carlier and Pinson, 1990)
indicated by (B&B1) with the new one (indicated by B&B2) for which we distinguish two different
implementations:
• the first one including only local operations;
• the second one including both local and global operations.

Global operations are implemented in a quite naive way. They are performed, at each level of the
search tree, once per operation taken in the order of their decreasing processing times.

Table 2

Test origin Test characteristics B&B2 (local + global) Best Lower

jobs # machines # nodes CPU (s) makespan bound

(Adams et al. '88) 15 10 1335 71231 1048 a 1033
(Adams et al. '88) 20 10 207 25307 1235 a 1235
(Adams et al. '88) 20 10 414 62312 1216 a 1216
(Adams et al. '88) 20 10 96 11238 1175 1119
(Adams et al. '88) 15 15 32 3903 1397 a 1397

a Makespan proved to be optimal.

160 J. Carlier, E. Pinson / European Journal of Operational Research 78 (1994) 146-161

In nearly all problems we tested, B & B2 with only local operations leads to a significant reduction of
the search tree size and computational time (=--15% in average). The addition of global operations in
B&B2 leads also to important reduction of the search tree size, but in general with an increase of the
corresponding computational time.

For validating the contribution of global operations, we made complementary tests summarized in
Table 2. For these latter, we focused on seven instances, proposed in Adams et al., (1988) that remained
unsolved up today. We were able to solve optimally four of them with B&B2 including both local and
global operations. For the last 20 jobs-10 machines instance, we give only the best solution we found
within a limit of 20 hours of CPU time. For the two last instances, namely problems with 15 jobs and 15
machines, we were unable to improve the best known solution within a limit of 20 hours of CPU time.

6. Conclusion

The new tools presented in this paper seem to be very powerfull in view of the results we obtain by
integrating them in our branch and bound procedures. They permit for all tested problems to reduce
significantly the size of the search tree associated with our new enumerative method and to solve open
test problems. Nevertheless, they are still too time consuming and need to be refined in order to become
really operational. A first way of achieving this goal is to use some heuristic rules in order to apply global
operations only under certain conditions. Parallelly, we are working on mathematical characterizations
leading on one hand to algorithmic improvements for the global operations proposed in this paper, and
on the other hand to define a general framework for immediate selections in order to exploiting new
ones.

References

Adams, J., Balas, E., and Zawack, D. (1988), "The Shifting Bottleneck Procedure for job-shop scheduling", Management Science
34, pp. 391-401.

Applegate, D., and Cook, W. (1990), "A computational study of job-shop scheduling", CMU-CS-90-145, to appear in ORSA Journal
of Computing.

Barker, J.R., and McMahon, G.B. (1985), "Scheduling the general job shop", Management Science 315.
Balas, E. (1969), "Machine sequencing via disjunctive graphs: An implicit enumeration algorithm", Operations Research 17, pp.

941-957.
Bouma, R.W. (1982), "Job shop scheduling: A comparison of three enumeration schemes in a branch and bound approach",

Master's Thesis, Faculty of Econometrics and Operations Research, Erasmus University Rotterdam.
Brucker, P., Jurisch, B., and Sievers, B. (1991), "A Branch and Bound algorithm for the Job-shop scheduling problem", to appear

in Discrete Applied Mathematics.
Brucker, P., Jurisch, B., and Kramer, A. (1992), "The Job-shop and immediate selection", Technical Report, Osnabriicker

Schriften zur Mathematik, F M / l , UniversitS.t Osnabriick.
Carlier, J. (1982), "One machine problem", European Journal of Operational Research 11, pp. 42-47.
Carlier, J. (1984), "Probl~mes d'ordonnancements ?~ contraintes de ressources: Algorithmes et complexit6", Th~se d'6tat.
Carlier, J., and Pinson, E. (1989), "An algorithm for solving the job shop problem", Management Science Vol. 35 2, pp. 164-176.
Carlier, J., and Pinson, E. (1990), "A practical use of Jackson's preemptive schedule for solving the job-shop problem", Annals of

Operations Research 26, 269-287.
French, S. (1982), "Sequencing and scheduling: an introduction to the mathematics of the job shop", Wiley, New York.
Garey, M.R. and Johnson, D.S. (1979), "Computers and intractability", Freeman, San Francisco, CA.
Grabowsky, J. (1982), "A new algorithm of solving the job-shop problem", Operational Research in Progress, pp. 57-75.
Jackson, J.R. (1955), "Scheduling a production line to minimize maximum tardiness", Research Report 43, Management Science

Research Project, University of California, Los Angeles, CA.
Lageweg, B.J., Lenstra, J.K., and Rinnooy Kan, A.H.G. (1976), "Minimizing maximum lateness on one machine: Computational

experiences and some applications", Statistica Neerlandica 30, 25-41.
Lenstra, J.K., Rinnooy Kan, A.H.G. and Brucker, P. (1977), "Complexity of machine scheduling problems", Annals of Discrete

Mathematics 1,343-362.

J. Carlier, E. Pinson / European Journal of Operational Research 78 (1994) 146-161 161

McMahon, G.B. and Florian, M. (1975), "On scheduling with ready times and due dates to minimize maximum lateness",
Operations Research, Vol. 23 3, pp. 475-482.

Muth, J.F., and Thompson, G.L., (1963), "Industrial scheduling", Prentice-Hall, Englewood Cliffs, NJ.
Pinson, E. (1988), "Le probl~me de job-shop", Th~se de doctorat de l'Universit~ PARIS VI.
Potts, C.N. (1980), "An adaptive branching rule for the permutation flow-shop problem", European Journal of Operational Research

5, pp. 19-25,

