
ECS122A Handout The 0-1 Knapsack Problem

Problem statement

A thief robbing a store finds n items; the ith item is worth vi dollars and weights wi

pounds. He wants to take as valuable a load as possible, but he can carry at most W pounds
in his knapsack. What items should be taken?

Formally, the problem can be stated as follws:

Input: n items of values v1, v2, . . . , vn and of the weight w1, w2, . . . , wn, and a
total weight W , where vi, wi and W are positive integers.

Output: a subsect S ⊆ {1, 2, . . . , n} of the items such that
∑

i∈S

wi ≤ W and
∑

i∈S

vi is maximized.

This is called the 0-1 knapsack problem because each item must either be taken or left
behind; the thief cannot take a fractional amount of an item or take an item more than once.
The knapsack problem is an abstraction of many real problems, from investing to telephone
routing.

Dynamic Programming

1. The solution is based on the optimal-substructure observation. Let k be the highest-
numberd item in an optimal solution S of W pounds and items {1, 2, . . . , n}. Then
S ′ = S − {k} is an optimal solution for W − wk pounds and items 1, 2, . . . , k − 1, and
the value of the solution S is vk plus the value of the subproblem solution S ′.

2. We can express the optimal-substructure observation in the following recursive formula:

Define c[i, w] to be the value of an optimal solution for items 1...i and maximum weight
w. Then

c[i, w] =











0 if i = 0 or w = 0
max (vi + c[i − 1, w − wi], c[i − 1, w]) if i > 0 and wi ≤ w

c[i − 1, w] if i > 0 and wi > w

This says that the value of a solution for item i is

• either includes item i, in which case it is vi plus a subproblem solution for i − 1
items and the weight excluding wi,

• or does not include item i, in which case it is a subproblem solution of i − 1 items
and the same weight.

This is, if the thief picks item i, he takes vi value, and he can choose from items 1...i− 1
up to the weight limit w − wi, and get c[i − 1, w − wi] additional value. On the other
hand, if he decides not to take item i, he can choose from items 1...i−1 up to the weight
limit w, and get c[i − 1, w] value. The better of these two choices should be made.

1



3. Although the 0-1 knapsack problem doesn’t seem analogus to the LCS problem, the
above formula for c is similar to the LCS formula: initial values are 0, and other values
are computed from the inputs and “earlier” values of c. So the 0-1 knapsack problem is
like the LCS-length algorithm for finding the LCS of two sequences.

4. The pseudocode is presented below. The algorithm takes as inputs the maximum
weight W , the number of items n, and the two sequences v = 〈v1, v2, . . . vn〉 and
w = 〈w1, w2, . . . wn〉. It stores the c[i, w] values in the table of c[0...n, 0...W ] whose
entries are computed row-major order (This is, the first row of c is filled from left to
right, then the second row, and so on.) At the end of the computation, c[n,W ] contains
the maximum value the thief can take.

Dynamic-0-1-Knapsack(v,w,n,W)

for w = 0 to W

c[0,w] = 0

for i = 1 to n

c[i,0] = 0

for w = 1 to W

if w[i] <= w then

if v[i] + c[i-1,w-w[i]] > c[i-1,w] then

c[i,w] = v[i] + c[i-1,w-w[i]]

else

c[i,w] = c[i-1,w]

end if

else

c[i,w] = c[i-1,w]

end if

end for

end for

5. The set of items to take can be deduced from the c-table by starting at c[n,W ] and
tracing where the optimal values came from.

• If c[i, w] = c[i − 1, w], item i is not part of the solution, and we continue tracing
with c[i − 1, w].

• Otherwise item i is part of the solution, and we continue tracing with c[i−1, w−wi].

6. The above algorithm takes Θ(nW ) time total:

• Θ(nW ) to fill in the c table – (n + 1) · (W + 1) entries each requiring Θ(1) time to
compute.

• O(n) time to trace the solution (since it starts in row n of the table and moves up
1 row at each step.)

2



Example. Let

n = 9,

v = 〈2, 3, 3, 4, 4, 5, 7, 8, 8〉,

w = 〈3, 5, 7, 4, 3, 9, 2, 11, 5〉,

W = 15.

By the program Dynamic-0-1-Knapsack(v,w,n,W), the calculated c-table is

w → 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

i = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i = 1 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2

i = 2 0 0 0 2 2 3 3 3 5 5 5 5 5 5 5 5

i = 3 0 0 0 2 2 3 3 3 5 5 5 5 6 6 6 8

i = 4 0 0 0 2 4 4 4 6 6 7 7 7 9 9 9 9

i = 5 0 0 0 4 4 4 6 8 8 8 10 10 11 11 11 13

i = 6 0 0 0 4 4 4 6 8 8 8 10 10 11 11 11 13

i = 7 0 0 7 7 7 11 11 11 13 15 15 15 17 17 18 18

i = 8 0 0 7 7 7 11 11 11 13 15 15 15 17 17 18 18

i = 9 0 0 7 7 7 11 11 15 15 15 19 19 19 21 23 23

Optimal value = c[n,W ] = c[9, 15] = 23.
The set of items to take = {9, 7, 5, 4}.

3


