Problem statement

A thief robbing a store finds n items; the *i*th item is worth v_i dollars and weights w_i pounds. He wants to take as valuable a load as possible, but he can carry at most W pounds in his knapsack. What items should be taken?

Formally, the problem can be stated as follws:

Input: n items of values v_1, v_2, \ldots, v_n and of the weight w_1, w_2, \ldots, w_n , and a total weight W, where v_i, w_i and W are positive integers.

Output: a subsect $S \subseteq \{1, 2, ..., n\}$ of the items such that

$$\sum_{i \in \mathcal{S}} w_i \le W \quad \text{and} \quad \sum_{i \in \mathcal{S}} v_i \quad \text{is maximized.}$$

This is called the **0-1 knapsack problem** because each item must either be taken or left behind; the thief cannot take a fractional amount of an item or take an item more than once. The knapsack problem is an abstraction of many real problems, from investing to telephone routing.

Dynamic Programming

- 1. The solution is based on the *optimal-substructure* observation. Let k be the highestnumberd item in an optimal solution S of W pounds and items $\{1, 2, ..., n\}$. Then $S' = S - \{k\}$ is an optimal solution for $W - w_k$ pounds and items 1, 2, ..., k - 1, and the value of the solution S is v_k plus the value of the subproblem solution S'.
- 2. We can express the optimal-substructure observation in the following recursive formula: Define c[i, w] to be the value of an optimal solution for items 1...i and maximum weight w. Then

$$c[i,w] = \begin{cases} 0 & \text{if } i = 0 \text{ or } w = 0\\ \max(v_i + c[i-1, w - w_i], c[i-1, w]) & \text{if } i > 0 \text{ and } w_i \le w\\ c[i-1, w] & \text{if } i > 0 \text{ and } w_i > w \end{cases}$$

This says that the value of a solution for item i is

- either includes item i, in which case it is v_i plus a subproblem solution for i 1 items and the weight excluding w_i ,
- or does not include item i, in which case it is a subproblem solution of i 1 items and the same weight.

This is, if the thief picks item i, he takes v_i value, and he can choose from items 1...i - 1 up to the weight limit $w - w_i$, and get $c[i - 1, w - w_i]$ additional value. On the other hand, if he decides not to take item i, he can choose from items 1...i - 1 up to the weight limit w, and get c[i - 1, w] value. The better of these two choices should be made.

- 3. Although the 0-1 knapsack problem doesn't seem analogus to the LCS problem, the above formula for c is similar to the LCS formula: initial values are 0, and other values are computed from the inputs and "earlier" values of c. So the 0-1 knapsack problem is like the LCS-LENGTH algorithm for finding the LCS of two sequences.
- 4. The pseudocode is presented below. The algorithm takes as inputs the maximum weight W, the number of items n, and the two sequences $v = \langle v_1, v_2, \ldots v_n \rangle$ and $w = \langle w_1, w_2, \ldots w_n \rangle$. It stores the c[i, w] values in the table of c[0...n, 0...W] whose entries are computed row-major order (This is, the first row of c is filled from left to right, then the second row, and so on.) At the end of the computation, c[n, W] contains the maximum value the thief can take.

```
Dynamic-0-1-Knapsack(v,w,n,W)
   for w = 0 to W
       c[0,w] = 0
   for i = 1 to n
       c[i,0] = 0
       for w = 1 to W
           if w[i] <= w then
              if v[i] + c[i-1, w-w[i]] > c[i-1, w] then
                  c[i,w] = v[i] + c[i-1,w-w[i]]
              else
                  c[i,w] = c[i-1,w]
              end if
           else
              c[i,w] = c[i-1,w]
           end if
       end for
   end for
```

- 5. The set of items to take can be deduced from the c-table by starting at c[n, W] and tracing where the optimal values came from.
 - If c[i, w] = c[i 1, w], item *i* is not part of the solution, and we continue tracing with c[i 1, w].
 - Otherwise item i is part of the solution, and we continue tracing with $c[i-1, w-w_i]$.
- 6. The above algorithm takes $\Theta(nW)$ time total:
 - $\Theta(nW)$ to fill in the c table $-(n+1) \cdot (W+1)$ entries each requiring $\Theta(1)$ time to compute.
 - O(n) time to trace the solution (since it starts in row n of the table and moves up 1 row at each step.)

Example. Let

$$n = 9,$$

$$v = \langle 2, 3, 3, 4, 4, 5, 7, 8, 8 \rangle,$$

$$w = \langle 3, 5, 7, 4, 3, 9, 2, 11, 5 \rangle,$$

$$W = 15.$$

By the program Dynamic-O-1-Knapsack(v,w,n,W), the calculated c-table is

$w \rightarrow$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
i = 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
i = 1	0	0	0	2	2	2	2	2	2	2	2	2	2	2	2	2
i=2	0	0	0	2	2	3	3	3	5	5	5	5	5	5	5	5
i = 3	0	0	0	2	2	3	3	3	5	5	5	5	6	6	6	8
i = 4	0	0	0	2	4	4	4	6	6	7	7	7	9	9	9	9
i = 5	0	0	0	4	4	4	6	8	8	8	10	10	11	11	11	13
i = 6	0	0	0	4	4	4	6	8	8	8	10	10	11	11	11	13
i = 7	0	0	7	7	7	11	11	11	13	15	15	15	17	17	18	18
i = 8	0	0	7	7	7	11	11	11	13	15	15	15	17	17	18	18
i = 9	0	0	7	7	7	11	11	15	15	15	19	19	19	21	23	23

Optimal value = c[n, W] = c[9, 15] = 23.The set of items to take $= \{9, 7, 5, 4\}.$