
Annals of Operations Research 115, 73–93, 2002
 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Cost Based Filtering for the
Constrained Knapsack Problem ∗

TORSTEN FAHLE and MEINOLF SELLMANN {tef,sello}@uni-paderborn.de
Department of Mathematics and Computer Science, University of Paderborn, Fürstenallee 11,
D-33102 Paderborn, Germany

Abstract. We present cost based filtering methods for Knapsack Problems (KPs). Cost based filtering aims
at fixing variables with respect to the objective function. It is an important technique when solving complex
problems such as Quadratic Knapsack Problems, or KPs with additional constraints (Constrained Knapsack
Problems (CKPs)). They evolve, e.g., when Constraint Based Column Generation is applied to appropriate
optimization problems. We develop new reduction algorithms for KP. They are used as propagation routines
for the CKP with�(n log n) preprocessing time and �(n) time per call. This sums up to an amortized time
�(n) for �(log n) incremental calls where the subsequent problems may differ with respect to arbitrary
sets of necessarily included and excluded items.

Keywords: constraint programming, constrained knapsack problems, cost based filtering, optimization
constraints, reduction algorithms

1. Introduction

An effective way of combining the advantages of Constraint Programming (CP) and Op-
erations Research (OR) techniques is the development of optimization constraints that
perform cost based filtering [8]. Optimization constraints are used for pruning and to
include (exclude) items that must (cannot) be part of any improving solution. We intro-
duce propagation algorithms to perform pruning and cost based filtering for Constrained
Knapsack Problems (CKPs).

In every tree search, there is a trade-off between the quality of the bounds (i.e. the
time saved due to an effective pruning) and the time needed for their computation. When
solving pure KPs, a big effort to tighten the problem in every search node usually does
not pay off. However, in the presence of additional constraints that have to be propagated
in addition to the optimization constraint, the total cost per choice point is usually much
bigger. Thus, the gain due to an effective bounding and tightening is higher, and better
bounds can be used profitably for pruning and domain reduction. On the other hand, fast
KP reduction algorithms using weak bounds, such as the algorithm developed by Dembo
and Hammer [5], are not effective enough for more complex CKPs.

∗ This work was partly supported by the UP-TV project, partially funded by the IST program of
the Commission of the European Union as project number 1999-20 751, by the German Ministry
for Education and Research Bmb+f (Parpap project 01 HR 9955), and by the Future and Emerging
Technologies programme of the EU under contract number IST-1999-14186 (ALCOM-FT).



74 FAHLE AND SELLMANN

Based on reduction techniques for KP, we develop propagation routines for knap-
sack constraints. We present several new propagation algorithms using bounds of dif-
ferent quality. The method that we consider the most interesting one theoretically and
practically is based on a bound proposed by Martello and Toth [15]. By reusing informa-
tion gained in an initial preprocessing step taking time �(n log n), the actual reduction
per choice point only requires linear time. We numerically compare two of the new
methods with two other reduction algorithms that have been proposed earlier in the KP
literature.

Recently, Trick proposed a dynamic programming approach for propagation of
knapsack constraints [26]. We compare that approach with the one presented here in
section 1.3.

Junker et al. [13] developed a framework for the integration of CP and OR within
column generation approaches, the so called Constraint Based Column Generation. It
describes a generic way of how to treat arbitrary constraints for the constrained subprob-
lem in the column generation phase. The approach has been successfully applied to the
Crew Assignment Problem, where the subproblem is a Constrained Shortest Path Prob-
lem [6]. Another important class of subproblems that evolve when following a column
generation approach are (Constrained) Knapsack Problems. They evolve for example
when solving a (Constrained) Cutting Stock problem. To motivate the work presented,
we show exemplary how CKPs can be used when generating columns for that prob-
lem.

1.1. Constrained Knapsack Problems

The CKP is a knapsack problem with additional constraints. We do not require these
additional constraints to be linear. Nevertheless, objective function and the knapsack
constraint itself have to be linear. Formally, the CKP is defined as follows:

Definition 1. Let C, n,w1, . . . , wn ∈ N; p1, . . . , pn ∈ Z. C is the capacity of the
knapsack, n the number of items, and wi the weight of item i with profit pi ∀1 � i � n.
Moreover, let w := (w1, . . . , wn)

T , and p := (p1, . . . , pn)
T .

1. Let B := {0, 1}, and G := {x ∈ B
n | wT x � C}.

2. Let k ∈ N, and R := {r1, . . . , rk | rj : B
n → B ∀1 � j � k}. Every r ∈ R is called a

(knapsack) rule and R is called a (knapsack) rule set.

3. Every x ∈ G is called feasible (with respect to a given rule set R), iff r(x) = 1
∀r ∈ R. F(R) := {x ∈ G | x is feasible} is called the set of feasible constrained
knapsacks (with respect to rule set R). To simplify the notation, we often write F
instead of F(R) if R is known from the context.

4. The Constrained Knapsack Problem is then to

maximize pT x, x ∈ F.



COST BASED FILTERING 75

Notice, that for the unconstrained KP it holds, F = G. Here, we investigate
the general case of F ⊆ G. Generally, algorithms for the unconstrained KP are not
able to solve the CKP, because they do not allow to incorporate additional constraints.
Moreover, algorithms designed to solve pure KPs make certain assumptions that do not
hold for CKPs. E.g., it is not clear for the CKP that we can require the profits to be
non-negative (as it is the case for KP), because the strategy to omit items with positive
weight and negative profit [18] may not yield feasible knapsacks at all.

In the following, with identifiers B, C, n, w, p, G, R, and F we refer to the
above definition. We will sometimes need to refer to reduced CKPs where an item
i ∈ {1, . . . , n} is either included or excluded in any feasible solution. We refer to those
problems with CKP[xi = 1] or CKP[xi = 0], respectively.

1.2. Applications for Constrained Knapsack Problems

CKPs appear in various application areas. In the following, we sketch three examples:

1.2.1. A multimedia application
A CKP accompanied by a special shortest path constraint occurs in the Automatic
Recording Problem (ARP). That problem consists of finding an optimal selection of
TV broadcasts for video recording. The shortest path constraint ensures that only non-
overlapping broadcast can be recorded, whereas the knapsack constraint models the
storage limit of the recording device. The objective is to maximize user’s satisfaction.
In [24], the ARP has been solved by Lagrangian relaxation using the algorithm presented
in section 3.1. The approach outperforms both, pure CP as well as pure OR methods for
the ARP.

1.2.2. Constraint Based Column Generation
When applying the Constraint Based Column Generation paradigm [13] to appropriate
optimization problems, CKPs occur as subproblems. As an example, applying Column
Generation to the Constrained Cutting Stock Problem – a Cutting Stock Problem with
additional constraints on the cutting patterns – results in a CKP subproblem. Additional
constraints usually stem from real-world applications (an example for real-world con-
straints is given in [3]) and may be non-linear.

In the CP-based Column Generation context, we search for feasible knapsacks with
negative reduced costs. In the Constrained Cutting Stock Problem, for instance, each
cutting pattern has cost 1 since we try to minimize the number of rolls needed to cover
the specified demand. Thus, the objective in the subproblem is to minimize 1 − πT x

(i.e. to minimize the reduced costs of the cutting pattern), where π is the vector of dual
values corresponding to the current optimal solution of the continuous relaxation of the
master problem. Our objective in the CKP then is to maximize πT x with an initial lower
bound of 1.



76 FAHLE AND SELLMANN

1.2.3. Fast reduction techniques for Quadratic Knapsack Problems
The Quadratic Knapsack Problem (QKP) calls for maximizing a quadratic boolean ob-
jective function subject to a linear knapsack constraint. The relax and cut algorithm of
Porto et al. [22] computes bounds of the QKP by linearizing the problem to KP, then
tightening the problem by adding three families of valid inequalities, and finally solving
the resulting linear program (LP) by Lagrangian relaxation. Thus, a series of KPs has
to be solved in every search node. The authors mention that fixing variables was vital
for their approach. Typically, filtering algorithms for KP are used to reduce the size
of the given QKP [2]. The algorithms proposed in section 3 may help to increase the
performance of the overall approach in [22].

1.3. Constrained knapsack vs. pure knapsack problems

For pure knapsack problems without additional constraints, the state-of-the-art solving
techniques would focus on a so called core problem, which may be extended during
the optimization process [14,20]. For these algorithms it is not straightforward to see
how the reduction algorithm we present in the following could be integrated efficiently.
However, in the context of this paper we focus on Constrained Knapsack Problems,
where a branch-and-bound tree search framework is needed to find feasible solutions
with respect to additional constraints, and where algorithms tailored for the pure KP
are likely to fail. This motivates the decision to make use of efficiency orderings of the
knapsack items in an algorithm for CKP, although it is known already that the calculation
of those orderings often does not pay off when solving pure KPs.

Trick [26] derives a hyper-arc-consistency approach from some dynamic program-
ming method designed for pure KPs. The problems considered in that paper differ from
the ones described in this paper: the input is a two sided knapsack, i.e. a linear con-
straint of the form L �

∑
i Wixi � C. The running time depends heavily on C and

L in practice, and is theoretically bounded in O(nC2) only. That is, the algorithm is
pseudo-polynomial in C. Also, the space requirement of O(nC) depends on C. As an
advantage, the approach works independently of the type of the objective function.

In contrast, the approach presented here considers one sided knapsacks with∑
i Wixi � C, runs in amortized linear time, uses O(n) space, and is tailored to lin-

ear cost functions only.

1.4. Outline of the paper

The remaining paper is organized as follows. In section 2, we formalize the concept of
optimization constraints and present upper bounds and reduction techniques for KP from
the literature. Section 3 explains the new algorithms for a quick propagation of knapsack
constraints. An experimental evaluation of these algorithms, as well as a comparison
with alternative approaches is presented in section 4. Finally, we conclude in section 5.



COST BASED FILTERING 77

2. Preliminaries

2.1. Optimization constraints

CKPs belong to the class of optimization constraints, i.e. constraints reflecting feasibility
and cost aspects simultaneously. Optimization constraints have been addressed, e.g.,
in [6,8,9,13,19].

Before proceeding with the special case of CKPs, we would like to propose a for-
mal concept of optimization constraints. To our knowledge, in the literature this has not
been done before.

Given n ∈ N, let V1, . . . , Vn denote some variables with finite domains
D(V1), . . . ,D(Vn). Further, given a constraint ζ : D(V1) × · · · × D(Vn) → {0, 1},
and an objective function Z : D(V1)× · · · ×D(Vn) → R, let vi ∈ D(Vi) ∀1 � i � n.

Definition 2. Let B ∈ R denote an upper/lower bound on the objective Z to be mini-
mized/maximized.

• ϑζ,Z[B] : D(V1) × · · · × D(Vn) → {0, 1} with ϑζ,Z[B](v1, . . . , vn) = 1 iff
ζ(v1, . . . , vn) = 1 and Z(v1, . . . , vn) < B is called minimization constraint.

• ϑζ,Z[B] : D(V1) × · · · × D(Vn) → {0, 1} with ϑζ,Z[B](v1, . . . , vn) = 1 iff
ζ(v1, . . . , vn) = 1 and Z(v1, . . . , vn) > B is called maximization constraint.

• A minimization or maximization constraint is also called an optimization constraint.

The next definition couples optimization constraints and relaxations.

Definition 3. Given an optimization constraint ϑζ,Z[B] : D(V1)×· · ·×D(Vn)→ {0, 1},
let ! := D(V1)× · · · ×D(Vn). Further, denote with 2! the set of all subsets of !.

• We say that an optimization constraint ϑζ,Z[B] is consistent, iff for any given
1 � i � n and vi ∈ D(Vi), there exist vj ∈ D(Vj), j �= i, such that
ϑζ,Z[B](v1, . . . , vn) = 1.

• Let ϑζ,Z[B] be a minimization constraint, and let L : 2! → R such that for all
Mi ⊆ D(Vi), 1 � i � n,

L(M1 ×· · ·×Mn) � min
{
Z(v1, . . . , vn) | ζ(v1, . . . , vn) = 1, vi ∈ Mi, 1 � i � n

}
,

where min ∅ = ∞. We say that ϑζ,Z[B] is relaxed L-consistent, iff for any given
1 � i � n and vi ∈ D(Vi), L(D(V1)× · · · × {vi} × · · · ×D(Vn)) < B.

• Analogously, let ϑζ,Z[B] be a maximization constraint, and let U : 2! → R such
that for all Mi ⊆ D(Vi), 1 � i � n,

U(M1×· · ·×Mn) � max
{
Z(v1, . . . , vn) | ζ(v1, . . . , vn) = 1, vi ∈ Mi, 1 � i � n

}
,

where max ∅ = −∞. We say that ϑζ,Z[B] is relaxed U -consistent, iff for any given
1 � i � n and vi ∈ D(Vi), U(D(V1)× · · · × {vi} × · · · ×D(Vn)) > B.



78 FAHLE AND SELLMANN

When solving an optimization problem, B is used as a no-good and is usually
determined as the value of the incumbent solution. As the quality of B is crucial for the
effectiveness of the propagation algorithm, in practice a primal heuristic is often applied
to determine a fairly good solution prior to the tree search.

From the definition, relaxed L-consistency (relaxed U -consistency follows anal-
ogously) can the easier be achieved the weaker L is. For L ≡ −∞, any propaga-
tion algorithm has nothing to do, whereas the tightest “relaxation” is achieved when
L(M1 × · · · × Mn) = min{Z(v1, . . . , vn) | ζ(v1, . . . , vn) = 1, vi ∈ Mi , 1 � i � n}.
That is, the choice of L determines the degree of propagation. Usually, L is chosen as a
tight bound that can be computed quickly.

Clearly, optimization constraints are closely related to global constraints and gen-
eralized arc-consistency (e.g., [23]) as they link a (global) constraint together with the
restriction to improve on the objective function. The main contribution here consists in
the definition of relaxed consistency that has been widely used in the OR community be-
fore to prune in the search tree. The idea is similar to the definition of bound consistency
that can also be achieved more easily than general arc consistency, and that has proven
valuable for many applications.

2.2. Variable fixing for the constrained knapsack problem

In a canonical IP formulation of the knapsack problem, there is one variable xi for each
item i ∈ {1, . . . , n}. The domain of each variable is defined as D(xi) := B. Fur-
ther, the knapsack constraint is modeled by a function ω : B

n → B with ω(x) =
ω(x1, . . . , xn) = 1 iff wT x � C. Finally, the objective function is P : B

n → R with
P(x) = P(x1, . . . , xn) := pT x. Given any lower bound B � 0, we consider the max-
imization constraint ϑω,P [B]. Items of the CKP fall into either one of the following
classes:

• items i that can be excluded from further investigation as they cannot be part of any
improving solution, i.e.

P(x) � B ∀x ∈ {y ∈ G | yi = 1} (1)

• items i that can be included into the knapsack as they must be part of any improving
solution, i.e.

P(x) � B ∀x ∈ {y ∈ G | yi = 0} (2)

• items that cannot be decided at the moment.

Propagation is expected to include or remove items that do not fall into the last
class. Since showing that either (1) or (2) holds for an item i (i.e. to check the satisfia-
bility of ϑω,P [B]) generally requires to solve a KP itself, complete propagation here is
an NP-hard task. Therefore, we only check if the inequality holds for an upper bound U



COST BASED FILTERING 79

on KP[xi = b], b = 0 or b = 1, i.e., if U(B × · · · × {b} × · · · × B) � B. Then, we write
U(KP[xi = b]) � B.1

In the KP literature, this idea has been used to reduce problem sizes initially or in
selected nodes of a branch-and-bound tree. Especially when solving complex problems
such as quadratic knapsack problems, variable fixing is of great importance [22]. In the
next section, we give the definitions of some bounds that have been developed for the
KP.

2.3. Upper bounds for Knapsack Problems

The effectiveness of a knapsack constraint propagation algorithm relies heavily on the
quality of the bounds calculated. Following the presentation given in chapter 2 of [18],
we present some upper bounds that have been developed originally for the maximiza-
tion problem KP. They also apply to the CKP by relaxing it to a KP first. Obviously,
ignoring all additional constraints often does not yield tight bounds on the objective.
However, if the additional constraints satisfy certain properties, they can be incorpo-
rated in the objective function of a pure KP using Lagrangian relaxation. For additional
linear constraints, there are ways of how this can be done effectively [9,24,25]. Notice,
that dropping all additional constraints allows to set xi := 0 ∀pi � 0 and 1 � i � n. We
therefore require all items to have positive profits.

Without loss of generality, we may assume that the items are ordered according
to decreasing efficiency, i.e. p1/w1 � p2/w2 � · · · � pn/wn. We define the critical
item s of a knapsack problem as the first item that overloads the knapsack, that is s =
minj {∑j

i=1wi > C} (we omit the trivial case here where no such s exists). Dantzig [4]
showed that the linear relaxation of the 0–1 knapsack has the optimal value

∑s−1
j=1 pj +

cps/ws , where c is defined as the remaining capacity of the knapsack after filling in the
first s − 1 items: c = C − ∑s−1

j=1wj .
Let ∅ �= M1, . . . ,Mn ⊆ B. Denote with li := min(Mi) the minimum, and with

ri := max(Mi) the maximum of Mi , 1 � i � n. The first upper bound on KP is defined
as U1 : 2B

n → R with

U1(M1 × · · · ×Mn)

:= max
{
P(x1, . . . , xn) | ω(x1, . . . , xn) = 1, xi ∈ [li , ri], 1 � i � n)

}
.

It holds,

U1 := U1(KP) =
s−1∑
j=1

pj +
⌊
c
ps

ws

⌋
. (3)

1 To improve the readability, here and in the following we write CKP or KP instead of B
n, and identify

CKP[xi = b] as well as KP[xi = b] with B × · · · × {b} × · · · × B, where {b} is the ith factor.



80 FAHLE AND SELLMANN

Figure 1. The width of each element is proportional to its weight. The elements are ordered with respect to
the efficiencies pi/wi . The leftmost element has the biggest efficiency, and the rightmost the smallest one.

s marks the critical item in U1.

A second bound U2 was introduced in [15]. It imposes the integrality of the critical
item s. Either item s belongs to the optimal solution (leading to a value U 1) or not
(leading to a value U 0):

U 0 =
s−1∑
j=1

pj +
⌊
c
ps+1

ws+1

⌋
, (4)

U 1 =
s−1∑
j=1

pj +
⌊
ps − (ws − c) ps−1

ws−1

⌋
. (5)

Defining U2 as the maximum of U 0 and U 1 results in a bound dominating U1.
Formally, let ∅ �= M1, . . . ,Mn ⊆ B, and denote with s the critical item with respect
to necessarily included and excluded items implicitly defined by the Mi . We set U2 :
2B

n → R with U2(∅) := −∞, and

U2(M1 × · · · ×Mn) := max
(
U 0, U 1

) −
∑

i<s,Mi={0}
pi +

∑
i>s,Mi={1}

pi.

It holds,

U2 := U2(KP) = max
(
U 0, U 1) � U1. (6)

Instead of estimating the loss caused by the integrality of item s by the efficiency
of the neighboring items of s, an even tighter bound can be obtained by calculating

bounds U1 on KP[xs = 0], and KP[xs = 1] [7,10,27]. Let U
0 := U1(KP[xs = 0]), and

U
1 := U1(KP[xs = 1]). Then, U3 := max(U

0
, U

1
) dominates U1 and U2. An even

tighter bound could be obtained by using U2 instead of U1 in the definition of U
0

and

U
1

and so on.
Figures 1 and 2 give graphical interpretations of the bounds U1 and U3. Obviously,

all three bounds U1, U2, U3 can be computed in time O(n) after a preprocessing step



COST BASED FILTERING 81

Figure 2. U3 requires the integrality of item s. The figures show U1(KP[xs = 0]), and U1(KP[xs = 1]).

of sorting the items according to decreasing efficiencies. This requires time �(n logn).
Balas and Zemel [1] developed an algorithm for the calculation of s using linear time
without any preprocessing. But for the reduction algorithm that we present in the fol-
lowing – just as in former reduction algorithms for the KP – the efficiency ordering is
needed anyway. On top of that, we use an ordering of the items with respect to increasing
weights.

In a tree search, both orderings can be calculated in an initial preprocessing step.
After that, they can be reused in every search node. Within a column generation context,
the weight ordering only has to be calculated once, but the efficiency ordering has to be
recomputed every time new dual values of the master problem lead to a change of the
objective in the successive CKPs.

2.4. Reduction techniques for Knapsack Problems

A first reduction algorithm for KPs based on upper bound U1 has been proposed by In-
gargiola and Korsh [12]. In a loop over all items i = 1, . . . , n, the algorithm determines
U1(KP[xi = b]), b ∈ {0, 1}. Since each bound calculation takes linear time, the worst
case complexity of this algorithm is �(n2).

If bound U2 is used instead of U1, more effective pruning can be achieved in the
same asymptotic running time. Martello and Toth [16], showed that the running time
can be reduced to O(n log n) while keeping the solution quality of bound U2. The key
idea of their algorithm is to compute the critical item s by binary search. We refer to the
methods of Ingargiola and Korsh, and Martello and Toth as IKR, and MTR, respectively.

Dembo and Hammer [5] proposed a reduction algorithm (DHR) that runs in linear
time�(n). They calculate the critical item s only once for the original problem. Within a
loop they estimate the loss when removing/including item i = 1, . . . , n by extrapolating
the efficiency of item s, which allows to perform this step in constant time. As this
extrapolation is less accurate than U1, their method is not as effective as IKR or MTR.

Though being developed a decade or more ago, DHR or MTR are still vital ingre-
dients in state-of-the-art solvers for pure KP or quadratic KP (see, e.g., [20–22]).



82 FAHLE AND SELLMANN

The algorithm we present in the following does not improve on the running time
of reduction techniques based on the more efficient bounds U1, U2, if the reduction
algorithm is only called once. For such an application, the new method presented and
the one developed by Martello and Toth both use the same asymptotic time �(n log n).

However, the situation changes if a reduction method is called many times for
similar knapsack instances, as it is the case when applying a tree search. Within a tree
search, we try to prune the search or to apply domain filtering after every branching
step. The subsequent instances only differ with respect to the sets of variables that have
already been fixed. As we will see in the next section, such a situation allows to hide
parts of the work in a preprocessing step that takes time �(n logn). Provided with the
information gathered in that preprocessing, every call to the reduction routine requires
linear time only.

3. Fast propagation algorithms for Knapsack Constraints

3.1. A fast propagation algorithm based on bound U1 and U2

We will now show how to reduce the running time of IKR and MTR to �(n) by mak-
ing use of information generated in a preprocessing step requiring time �(n logn).
The bounds obtained are of the same quality as in the original algorithms. Again, let
KP[xj = b] denote B × · · · × {b} × · · · × B, b ∈ {0, 1}, and s(M1 × · · · × Mn) =
minj {∑i�j |Mi=B

wi > C − ∑
i|Mi={1}wi} denote the critical item of KP[xj = b]. The

key idea of the routine is to calculate the bounds of the reduced problems U(KP[xj = b])
in an order of increasing weight of the items j . Thereby, we obtain a sequence of critical
items that is monotonically increasing. Thus, the critical item and the upper bound for
the j th item (with respect to the weight ordering) can be transformed into the critical item
and upper bound for the (j + 1)th item by starting the calculation of s(KP[xj+1 = b]) at
s(KP[xj = b]).

The time consuming step in reduction algorithms using bound U1, U2, resp., is to
determine the critical items s(KP[xi = b]) ∀1 � i � n, and b ∈ {0, 1}. Once these val-
ues are known, the calculation of the upper bounds and the reduction itself only require
linear time. (In fact, in the following algorithm the bounds can be computed at the same
time as the critical items. To clarify the argumentation, however, we just show how to
calculate the latter.) By omitting the fractional parts, it is also possible to calculate lower
bounds for the KP. Reduction should only take place, after all lower bounds have been
calculated [16]. For the CKP, however, the necessary feasibility checking with respect
to additional constraints makes the generation of lower bounds more complicated.

Although calculating s(KP[xi = b]) for each single i ∈ {1, . . . , n}, b ∈ {0, 1}, gen-
erally takes linear time, the calculation of all these values also only requires time �(n)
once we know an ordering σ = (σ1, . . . , σn) of the items according to their weight,
i.e. wσi � wσj iff i � j . The efficiency ordering of the items as well as the the per-
mutation σ can be obtained in a sorting step prior to any reduction and requiring time
�(n log n).



COST BASED FILTERING 83

Given s = s(KP), we know that U(KP[xi = 1]) = U(KP) ∀i < s, and U(KP[xi =
0]) = U(KP) ∀i > s. Thus, we only need to calculate the arrays S1 := [s(KP[xi = 1]) |
i � s], and S0 := [s(KP[xi = 0]) | i � s]. We describe how to determine S0 in the
following. The calculation of S1 is done analogously.

We iterate over all items i < s in increasing order of weight. Like that, we can be
sure that s(KP[xi = 0]) increases monotonically with growing i ∈ {0, . . . , s− 1}. Thus,
we can start the search for the next critical item at the position of the last one.

The following book keeping argument shows that this procedure only takes linear
time. We estimate the computational effort of the reduction algorithm by assigning a
unit cost (say, 1 €) to the items causing it:

• Every item j � s that is being passed is charged 1 €. By “passed” we mean, that the
item is being included entirely when iterating from one critical item to the other.

• Every item is charged 1 € each time it is being included fractionally.

The first group of items causes at most n€ costs as the critical items are monotonically
increasing: every item is being passed at most once. It remains the effort for all items
that are being included fractionally. Obviously, there are at most as many fractionally
included items as critical items. Therefore, this group of items also costs not more
than n€. Thus, the costs for the entire computation are in O(n).

Finally, the calculation of s(KP[xs = 0]) can be performed in time that is linear
in the number of items as well. Another possibility to calculate this value is to insert
item s at the position corresponding to c in the weight ordering of items and to calculate
s(KP[xs = 0]) just like the critical items for the exclusion of the other items.

Obviously, the above algorithm can be applied with bounds U1 and U2. As a con-
sequence, we have shown the following

Theorem 1. After a �(n logn) preprocessing step, relaxed U2-consistency for a knap-
sack constraint can be obtained in time O(n) per choice point.

It is easy to see that, for a constant number of choice points, MTR and the algorithm
given above need the same running time of �(n logn). If �(log n) choice points have
to be investigated, however, the time spent in the preprocessing is dominated by the
accumulated time needed in the choice points. In that case, theorem 1 implies

Corollary 1. If propagation is triggered in �(log n) search nodes, relaxed U2-consist-
ency for a knapsack constraint can be obtained in amortized timeO(n) per choice point.

Thus, in a typical CP search tree with�(log n) search nodes, the method presented
here is asymptotically optimal and superior to the algorithms proposed before.

3.2. More effective cost based filtering using bound U3

To strengthen the propagation abilities of the optimization constraint, we can use the
stronger bound U3:



84 FAHLE AND SELLMANN

Figure 3. The figure illustrates the proceeding of the reduction algorithm presented for KP[xi = 0]. The
weight ordering in which the items are tested ensures that the critical item moves monotonically to the right.

U3(KP) is obtained by calculating bound U1 on KP[xs = 0], and KP[xs = 1]. For
propagation based on that bound, we need to compute sbi , b ∈ {0, 1}, the critical items of
those restricted KPs with xi = b: Let 1 � i � n, b ∈ {0, 1}. Then, s0

i := s(KP[xi = b,

xs(KP[xi=b]) = 0]), and s1
i := s(KP[xi = b, xs(KP[xi=b]) = 1]).

To do so efficiently, we first determine the values s(KP[xi = b]) using the al-
gorithm in section 3.1. Then, we apply a binary search to determine s0

i and s1
i for all

1 � i � n. This leads to a running time of �(n logn). A similar idea has been intro-
duced by Martello and Toth [16].

Corollary 2. Relaxed U3-consistency for a knapsack constraint can be obtained in time
O(n log n) per choice point.

For real life instances, using a binary search to determine the critical item of
KP[xs = b2, xi = b1] for b1, b2 ∈ {0, 1}, usually does not pay off as it is likely to
be “close” to s. Thus, we consider this result to be of theoretical interest only. However,
the algorithm above leads to another propagation algorithm that is asymptotically as ef-
ficient as the one presented in section 3.1 (that runs in amortized linear time), but that is
even more effective. In fact, the bound it uses to perform cost based filtering is at least
as good as U2, but for some items it is even U3:

Let 1 � i � n, b ∈ {0, 1}, s := s(KP), s0
i := s(KP[xi = b, xs = 0]), and s1

i :=
s(KP[xi = b, xs = 1]). In contrast to the sequence of critical items that is computed
for U3, the second variable xs that is being fixed remains the same for all s0

i , and s1
i .

Again by using the algorithm in section 3.1, we determine U2(KP[xs = 0, xi = b])
∀1 � i � n, and then U2(KP[xs = 1, xi = b]) ∀1 � i � n. For any given 1 � i � n,
we check whether max{U2(KP[xs = 0, xi = b]), U2(KP[xs = 1, xi = b])} � B. If so,
we fix the value of xi to 1 − b.

It is easy to see that the bound calculated is at least as good as U2. For items
i < s with s(KP[xi = 0]) = s and items i > s with s(KP[xi = 1]) = s, however,



COST BASED FILTERING 85

propagation is even as effective as for bound U3. Hence, we achieve an amortized linear
time algorithm based on a ‘mix’ of U2 and U3 bounds.

3.3. Cost based filtering for special constrained knapsack problems

Before we evaluate the propagation algorithms empirically, we would like to discuss
their applicability to two special variants of the (constrained) knapsack problem that
have been introduced in the literature.

3.3.1. Multi-dimensional knapsack problems
The multi-dimensional knapsack problem consists in the maximization of a given profit
function with respect to two or more given capacity constraints. The problem can be
viewed as a collection of m pure knapsack problems sharing one objective:

max
∑
j

pjxj

s.t.
∑
j

wi,jxj � Ci, i = 1, . . . , m,

xj ∈ {0, 1}.

(7)

Thus, for each of the capacity constraints we can define an optimization constraint
and perform cost based filtering using the propagation algorithms we just presented.
This approach, however, suffers a setback from the fact, that the bounds computed in
each optimization constraint ignore all constraints except one. Therefore, the bounds are
not tight, and filtering is less effective than it could and should be.

In [24,25], we developed a generic method for the coupling of linear optimization
constraints to one global optimization constraint, the CP-based Lagrangian Relaxation.
When applied to multi-dimensional knapsack problems, the filtering algorithm for the
composite constraint uses the propagation routines of the individual knapsack constraints
incorporating the other constraints in a Lagrangian objective. We have shown that this
approach is clearly favorable compared to the loose connection of optimization con-
straints that interact by domain reduction only.

Note, however, that the asymptotic complexity improvements we introduce in this
paper are lost when applying the knapsack filtering algorithm in the context of CP-based
Lagrangian relaxation, because for each Lagrangian subproblem the objective changes.
Thus, the efficiency ordering has to be recomputed which then dominates the algorith-
mic complexity. Noteworthy, that problem does not occur when the filtering algorithms
presented here are applied to column generation subproblems (as in CP-based column
generation), because the objective remains fixed for the entire tree search that is applied
to compute a new column. Thus, the efficiency ordering of the knapsack items has to be
recomputed only when a new subproblem is set up.



86 FAHLE AND SELLMANN

3.3.2. Bounded knapsack problems
Bounded knapsack problems generalize the 0–1 KP by defining individual bounds on
the solution vector:

max
∑
j

pjxj

s.t.
∑
j

wjxj � C,

xj ∈ {0, 1, 2, . . . , uj }.

(8)

Obviously, (8) can be transformed into a CKP by replacing one original xj by uj
new variables x′

j,k ∈ {0, 1}, k = 1, . . . , uj . (Notice, that a finite uj always exists, as
xj � �C/wj�.) Then the algorithms presented before could be applied. That approach,
however, artificially enlarges the number of variables and ignores the additional structure
of (8) completely.

We can do better by extending U1 and U2 to general integer bounds for KP. That is,
we chose the critical item as s := minj {∑j

i=1 ui · pi > C}. Then U1 can be re-written
as U1(KP) = ∑s−1

j=1 uj · pj + �cps/ws�, where c = C − ∑s−1
j=1 uj · wj . For a detailed

discussion of such generalizations, and an extension of U2, we refer to [18, pp. 84ff.].
Taking these extended bounds, efficient propagation for the bounded knapsack problem
then is easily achieved by the algorithms proposed in sections 3.1 and 3.2.

4. Experiments

After we analyzed the new algorithm theoretically in section 3.1, we now compare it
numerically with different methods that were derived from KP reduction techniques pre-
sented in the literature. All experiments were run on a Sun Enterprise 450 Model 4300
(296 MHz) with 1 GB RAM, under Solaris 2.6. The reduction algorithms were imple-
mented in C++ on top of Ilog Solver 5.0 [11].

4.1. Test environment

To show the potential of the new propagation techniques, and to avoid cross talking
with other constraints, we decided to base the experiments on pure knapsack problems
only. Like that, we get a clear view on the performance of each filtering algorithm
without disturbing interferences that can evoke easily when using more complex settings
incorporating additional constraints. (For an example of a combination of the algorithms
presented here and a shortest path constraint we refer to [24,25].) Accordingly, we also
omit specially tailored tree search or branching strategies for pure KPs. Instead, we used
the default settings of the underlying CP library.

A word of care is necessary here: even though our experiments are based on pure
KP data, the filtering algorithms we developed are not suited for state-of-the-art KP
solvers. Also, we do not claim that the solvers we implemented are competitive to the



COST BASED FILTERING 87

best KP solvers (see section 1.3). Our focus here is clearly on constrained knapsack
problems.

A weak propagation algorithm, if started from scratch, will obviously need more
choice points to find an optimal or near optimal solution of the problem than a good one.
Therefore, to make the comparison fair, we initialize the lower bound with the optimal
objective value B ∈ R and just measure the time and the number of choice points that
each approach takes to prove optimality.

The generator code of David Pisinger [20] was used to produce random instances
of two different classes of knapsack problems where the weights wj are randomly dis-
tributed in [1, 1000], and the profits pj are chosen as given below:

• uncorrelated: pj randomly distributed in [1, 1000],
• weakly correlated: pj randomly distributed in [wj − 100, wj + 100] ∩ [1, 1100].

In all cases, the knapsack capacity is chosen asC = 1
2

∑n
j=1wj . The problem sizes

range from 10 to 20 000 items, and 100 knapsack problems were generated for each size
and class.

We omit the classes of strongly correlated data (pj = wj + 10) and subset-sum
data (pj = wj ). It is known that the bounds described in section 2.3 are not suited for
these classes (which is easy to see as ∀k: pk/wk ≈ 1). For them, bounds based on
cardinality constraints have shown to be effective [14,17]. In the application area that
we focus on (see section 1.2), however, it is justified to assume that the evolving KPs are
more likely to fall into one of the classes we used for our tests.

4.2. The opponents

The algorithms referred to as linU1 and linU2 are based on the amortized linear time
reduction method described in section 3.1, and use bounds U1 and U2, respectively.
Methods DHR, and MTR have been described in section 2.4. We implemented all algo-
rithms in the same CP environment. Table 1 summarizes the major characteristics for the
candidates used in the experiments. All methods needO(n)memory for the propagation
stack and for the different orderings used. Within a choice point, only O(1) memory is
required additionally.

Notice, that in our experiments we do not evaluate the filtering algorithm based
on a mixture of bound U2 and U3 that was sketched in section 3.2. The propagation
algorithm based on this mixed bound visits only slightly fewer choice points than linU2,

Table 1
Characteristics of the four algorithms used in the experiments.

Name See Bound Preproc time Time per node

DHR section 2.4 D/H -bound – �(n)

MTR section 2.4 U2 �(n log n) �(n log n)
linU1 section 3.1 U1 �(n log n) �(n)

linU2 section 3.1 U2 �(n log n) �(n)



88 FAHLE AND SELLMANN

Table 2
The pure CP approach for both problem classes. cp is the average number
of choice points, time the average time in seconds for 100 instances of

the given size.

Size Uncorrelated Weakly correlated
n cp time cp time

10 37.77 0.01 73.74 0.01
20 1 455.80 0.16 28 736.07 2.91
30 141 338.82 15.50 16 771 406.92 1641.94
40 10 311 820.44 1410.07 – –

but therefore requires a much higher computation time. Remember from section 3 that
the work that has to be done to perform propagation using bound U2 is almost the same
as using bound U1. But when using the mixed bound, the workload is twice as large as
that for bound U1.

As we will show in this section, we are facing a trade off between the time needed
per choice point and the reduction of choice points that can be achieved by using tighter
bounds. Within the test environment that we have chosen for our experiments, a slight
reduction of choice points does not justify a much higher effort undertaken in every
choice point. Therefore, the propagation algorithm based on the mixed bound is of in-
terest only in the context of a more complex CKP incorporating additional and possibly
hard side constraints that would make even small reductions of choice points more fa-
vorable. However, in the KP setting we use here to avoid cross talking with additional
constraints and to evaluate the pure performance of the different propagation algorithms,
the algorithm developed in section 3.2 is not competitive.

4.3. Numerical results

The simple approach for solving a CKP in a CP context would be to introduce a sum-
constraint (i.e.

∑
j wjxj � C) plus a constraint stating that we are only looking for

improving solutions (i.e.
∑
j pjxj > B). However, as shown in table 2, that approach

cannot compete at all with the other propagation methods. Both the number of choice
points and the CPU time grow exponentially when the problem size increases. A dash
means that the average calculation for a test instance takes more than two hours. For both
classes, only small problems with not more than 40 items can be solved within that time
limit. The poor performance of the pure CP approach shows the need for sophisticated
filtering techniques when knapsack constraints occur in a CP model. As will be shown
in the following, more elaborate techniques are able to tackle problems of several 1000
items in a few seconds, generating only relatively few choice points.

4.3.1. Small instances
Tables 3 and 4 show the average results of 100 different instances of the same data
size n. We present the running time in seconds, and the number of choice points cp that



COST BASED FILTERING 89

Table 3
Uncorrelated data instances. We give the average numbers for 100 test sets per size. time is the time in

seconds, cp the number of choice points.

Size DHR linU1 linU2 MTR
n cp time cp time cp time cp time

10 2.43 0.00 0.87 0.00 0.67 0.00 0.67 0.00
20 5.47 0.00 2.68 0.00 2.35 0.00 2.35 0.00
40 7.20 0.00 3.61 0.00 3.22 0.00 3.22 0.00
60 10.18 0.00 6.07 0.00 5.26 0.00 5.26 0.00
80 13.96 0.01 8.43 0.00 7.04 0.00 7.04 0.00

100 14.21 0.01 8.20 0.00 6.75 0.00 6.75 0.00
200 24.85 0.02 17.16 0.02 14.47 0.01 14.47 0.01
300 32.47 0.04 22.57 0.03 18.76 0.02 18.76 0.02
400 38.19 0.05 27.69 0.04 23.28 0.04 23.28 0.04
500 46.50 0.08 33.64 0.06 28.68 0.05 28.68 0.05
600 63.61 0.11 48.67 0.09 40.95 0.08 40.95 0.08
700 54.67 0.11 41.16 0.09 34.53 0.08 34.53 0.08
800 69.92 0.16 51.76 0.13 42.38 0.11 42.38 0.11
900 68.89 0.17 51.76 0.14 42.35 0.13 42.35 0.12

1000 97.83 0.26 72.38 0.21 59.73 0.17 59.73 0.18

Table 4
Weakly correlated data instances. We give the average numbers for 100 test sets per size. time is the time

in seconds, cp the number of choice points.

Size DHR linU1 linU2 MTR
n cp time cp time cp time cp time

10 10.42 0.00 6.31 0.00 5.42 0.00 5.42 0.00
20 20.41 0.00 13.82 0.00 11.35 0.00 11.35 0.00
40 33.26 0.01 23.42 0.01 19.87 0.01 19.87 0.00
60 37.69 0.01 26.69 0.01 22.52 0.01 22.52 0.01
80 56.07 0.02 40.10 0.01 33.21 0.01 33.21 0.01

100 61.60 0.02 45.49 0.02 37.94 0.02 37.94 0.02
200 103.85 0.06 77.05 0.05 64.33 0.05 64.33 0.04
300 162.20 0.13 123.11 0.11 99.67 0.10 99.67 0.09
400 202.23 0.21 151.50 0.17 118.71 0.15 118.71 0.14
500 226.36 0.29 161.80 0.23 122.57 0.19 122.57 0.18
600 286.40 0.42 207.56 0.33 158.92 0.27 158.92 0.26
700 345.28 0.58 252.25 0.45 185.42 0.36 185.42 0.35
800 314.00 0.61 214.64 0.44 151.34 0.34 151.34 0.33
900 428.16 0.89 300.34 0.67 210.06 0.51 210.06 0.49

1000 451.74 1.04 313.50 0.78 220.33 0.60 220.33 0.57

the method visits. Table 5 shows a comparison of the different methods regarding the
time per choice point for uncorrelated and weakly correlated data.

The Dembo/Hammer based propagation method needs to visit the largest amount
of choice points among the four propagation algorithms tested. This matches the ex-



90 FAHLE AND SELLMANN

Table 5
Uncorrelated and weakly correlated data instances. We give the aver-

age time per choice point in milliseconds for 100 test sets per size.

Size Type DHR linU1 linU2 MTR
n time/cp time/cp time/cp time/cp

500 uncorrelated 1.72 1.78 1.74 1.74
500 correlated 1.28 1.42 1.55 1.47

1000 uncorrelated 2.66 2.90 2.85 3.01
1000 correlated 2.30 2.49 2.72 2.59

pected behavior of a method that prunes with respect to weaker bounds. Due to the
short time per choice point, though, it is only slightly slower than the other methods on
uncorrelated data. Thus, the numerical results reflect the expected trade-off between an
effective filtering and the time needed for it. In the presence of additional constraints
(causing higher times spent per choice point that is needed for propagation), it is likely
that a smaller number of choice points will result in a faster overall computation. linU1

uses fewer choice points than DHR, but is not as effective as the U2 based algorithms,
MTR and linU2. For the big instances, these two only visit between 50% and 65.6% of
the choice points needed by DHR.

For weakly correlated data, linU2 only visits at most 69.7% of the choice points
of the DHR routine. Moreover, linU2 slightly outperforms DHR with respect to the
total running time. Notice that the time per choice point spent by linU2 for weakly
correlated instances is smaller than for uncorrelated data. The reason for this is, that
the preprocessing time for initializing the more complex data structures for linU2, and
for sorting the items according to weight and efficiency is spread over a much higher
amount of choice points.

4.3.2. Big instances
To get a clearer insight into the characteristics of the different algorithms, we performed
some tests on bigger instances. Going up to 10 000 items, the disadvantages of the
poor bounds used by linU1 and especially DHR become obvious. Due to a much higher
amount of choice points, the total running times exceed those of linU2 and MTR (see
table 6).

Still, MTR and linU2 need about the same time on average. We assume that for
smaller test instances, the binary search performed by MTR is faster than the more com-
plex book keeping of linU2. As the problem size increases, however, the difference in
efficiency becomes more noticeable, and linU2 outperforms MTR (see tables 7 and 8).

A drawback of the new methods is the need for an initial sorting step in the pre-
processing in which a profit and a weight ordering of all items are calculated. However,
timing experiments show, that this initial step costs about 0.06 seconds for 10 000 items
and takes less than 0.01 seconds for 1000 items. According to table 6, the total run-
ning time for these problem sizes is much higher. Hence, the preprocessing time can be
neglected in practice.



COST BASED FILTERING 91

Table 6
Uncorrelated data. Comparison of running times for the new amortized linear time propagation algorithms
and implementations of DHR, and MTR. We give the average time in seconds as well as the number of

choice points for 100 test sets per size.

Size DHR linU1 linU2 MTR
n cp time cp time cp time cp time

1000 97.83 0.26 72.38 0.21 59.73 0.17 59.73 0.18
2000 161.48 0.79 120.64 0.65 100.38 0.51 100.38 0.56
3000 202.34 1.59 148.43 1.31 118.90 1.00 118.90 1.06
4000 291.00 3.17 205.16 2.43 146.58 1.73 146.58 1.82
5000 360.47 4.82 245.32 3.79 184.83 2.65 184.83 2.98
6000 534.61 9.46 376.69 7.81 197.43 3.84 197.43 4.30
7000 620.48 12.90 431.55 10.11 294.18 6.78 294.18 7.57
8000 823.34 21.08 567.43 16.47 285.22 8.19 285.22 9.23
9000 1051.72 31.76 712.51 23.74 435.65 14.50 435.65 15.46

10 000 1143.54 38.39 797.58 30.21 620.35 22.71 620.35 24.99

Table 7
Uncorrelated data. Comparison of running times per choice point
for the new amortized linear time propagation algorithm based on
bound U2 and the implementation of MTR. We give the average

time per choice point in milliseconds for 100 test sets per size.

n linU2 (time per cp) MTR (time per cp)

500 1.74 1.74
1000 2.85 3.01
2000 5.08 5.58
4000 11.80 12.42
8000 28.71 32.36

16 000 71.71 75.42

Table 8
Comparison of running times of linU2 and MTR on uncorrelated and weakly correlated data. cp is the

number of choice points, time the running time in seconds.

Uncorrelated Weakly correlated
Size linU2 MTR linU2 MTR
n cp time time cp time time

10 000 620.35 22.71 24.99 1626.78 60.98 66.58
11 000 629.43 26.38 28.76 2572.45 110.47 121.08
12 000 604.87 28.04 32.31 2590.45 125.40 137.21
13 000 1341.42 69.30 77.31 2694.07 142.13 156.26
14 000 875.71 50.42 56.96 3520.18 206.68 228.54
15 000 1041.80 64.60 70.74 2818.97 185.33 204.80
16 000 1256.73 90.12 94.78 2164.99 154.56 172.14
17 000 1670.81 124.53 139.63 3145.36 250.59 276.93
18 000 2580.28 205.81 227.81 2980.91 251.43 279.63
19 000 2870.68 243.05 274.93 4871.67 435.33 476.97
20 000 2750.36 256.88 288.15 4319.27 405.56 452.50



92 FAHLE AND SELLMANN

5. Conclusions

We proposed a formal definition of optimization constraints and relaxedL/U -consistency.
Propagation based on these concepts has proven to be quite successful in recent years.
Based on relaxation bounds for KP, we introduced a new reduction algorithm that runs
in amortized time �(n) for �(log n) calls. This algorithm can be used efficiently as
propagation routine when solving the CKP in a CP context.

In a CP search, the efficiency of the algorithm developed depends on the number
of choice points and the time needed per choice point: The more choice points are inves-
tigated during the search, the less dominant are the preprocessing times for initialization
and sorting. And if more time per choice point is spent by other routines – that propagate
additional constraints of the CKP or calculate expensive bounds on the objective – the
more important is an effective pruning behavior that justifies a higher effort spent per
choice point.

Experiments show that, in a tree search, the algorithm is as effective as another
method based on a reduction technique previously proposed by Martello and Toth for
KP. However, theoretical analysis and numerical comparisons show, that the new method
is asymptotically more efficient. Finally, the routines presented have already been used
successfully in combination with other constraints in a Lagrangian relaxation based ap-
proach for a multimedia application [24,25].

Acknowledgments

We would like to thank two anonymous referees for their helpful comments.

References

[1] E. Balas and E. Zemel, An algorithm for large-scale zero–one knapsack problems, Operations Re-
search 28 (1980) 119–148.

[2] A. Caprara, D. Pisinger and P. Toth, Exact solution of the Quadratic Knapsack Problem, INFORMS
Journal on Computing 11 (1999) 125–137.

[3] C. Chu and J. Antonio, Approximation algorithm to solve real-life multicriteria cutting stock prob-
lems, Operations Research 47(4) (1999) 495–508.

[4] G.B. Dantzig, Discrete variable extremum problems, Operations Research 5 (1957) 266–277.
[5] R.S. Dembo and P.L. Hammer, A reduction algorithm for knapsack problems, Methods of Operations

Research 36 (1980) 49–60.
[6] T. Fahle, U. Junker, S.E. Karisch, N. Kohl, M. Sellmann and B. Vaaben, Constraint programming

based column generation for crew assignment, Journal of Heuristics 8 (2002) 59–81.
[7] D. Fayard and G. Plateau, An algorithm for the solution of the 0–1 knapsack problem, Computing 28

(1983) 269–287.
[8] F. Focacci, A. Lodi and M. Milano, Cost-based domain filtering, in: Proceedings of the CP’99, Lec-

ture Notes in Computer Science, Vol. 1713 (Springer, Berlin, 1999) pp. 189–203.
[9] F. Focacci, A. Lodi and M. Milano, Cutting planes in Constraint Programming: A hybrid approach,

in: Proceedings of the CP-AI-OR’00 (2000) pp. 45–51.
[10] P.D. Hudson, Improving the branch and bound algorithm for the knapsack problem, Queen’s Univer-

sity Research Report, Belfast (1977).



COST BASED FILTERING 93

[11] ILOG, ILOG SOLVER, Reference manual and user manual, V5.0, ILOG (2000).
[12] G.P. Ingargiola and J.F. Korsh, A reduction algorithm for zero–one single knapsack problems, Man-

agement Science 20 (1973) 460–463.
[13] U. Junker, S.E. Karisch, N. Kohl, B. Vaaben, T. Fahle and M. Sellmann, A Framework for Constraint

programming based column generation, in: Proceedings of the CP’99, Lecture Notes in Computer
Science, Vol. 1713 (Springer, Berlin, 1999) pp. 261–274.

[14] S. Martello, D. Pisinger and P. Toth, Dynamic programming and tight bounds for the 0–1 knapsack
problem, Management Science 45 (1999) 414–424.

[15] S. Martello and P. Toth, An upper bound for the zero–one knapsack problem and a branch and bound
algorithm, European Journal of Operational Research 1 (1977) 169–175.

[16] S. Martello and P. Toth, A new algorithm for the 0–1 knapsack problem, Management Science 34
(1988) 633–644.

[17] S. Martello and P. Toth, Upper Bounds and Algorithms for hard 0–1 knapsack problems, Operations
Research 45(5) (1997) 768–778.

[18] S. Martello and P. Toth, Knapsack Problems – Algorithms and Computer Implementations (Wiley
Interscience, New York, 1990).

[19] G. Ottosson and E.S. Thorsteinsson, Linear relaxation and reduced-cost based propagation of contin-
uous variable subscripts, in: Proceedings of the CP-AI-OR’00 (2000) pp. 129–138.

[20] D. Pisinger, An expanding-core algorithm for the exact 0–1 knapsack problem, European Journal of
Operational Research 87 (1995) 175–187.

[21] D. Pisinger, An exact algorithm for large multiple knapsack problem, European Journal of Operational
Research 114 (1999) 528–541.

[22] O. Porto, M. de Moraes and A. Lucena, A relax and cut algorithm for the quadratic knapsack prob-
lem, in: Proceedings of the ISMP’00, 17th International Symposium on Mathematical Programming,
Atlanta (2000).

[23] J.-C. Régin, A filtering algorithm for constraints of difference in CSPs, in: Proc. of the 12th National
Conference on Artificial Intelligence (AAAI-94) (1994) pp. 362–367.

[24] M. Sellmann and T. Fahle, Constraint programming based Lagrangian relaxation for a multimedia
application, in: Proceedings CP-AI-OR’01, Ashford/UK (April 2001).

[25] M. Sellmann and T. Fahle, Coupling variable fixing algorithms for the automatic recording problem,
in: 9th Annual European Symposium on Algorithms (ESA 2001), Lecture Notes in Computer Science,
Vol. 2161 (Springer, Berlin, 2001) pp. 134–145.

[26] M. Trick, A dynamic programming approach for consistency and propagation for knapsack con-
straints, in: Proceedings of CP-AI-OR’01, Ashford/UK (April, 2001).

[27] P.R.C. Villela and C.T. Bornstein, An improved bound for the 0–1 knapsack problem, Report ES31-
83, COPPE-Federal University of Rio de Janeiro (1983).


