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Abstract. Constraint propagation is aimed at removing from variable
domains combinations of values which cannot appear in any consistent
solution. Pruning derives from feasibility reasoning. When coping with
optimization problems, pruning can be performed also on the basis of
costs, i.e., optimality reasoning. Propagation can be aimed at removing
combination of values which cannot lead to solutions whose cost is bet-
ter then the best one found so far. For this purpose, we embed in global
constraints optimization components representing suitable relaxations of
the constraint itself. These components provide efficient Operations Re-
search algorithms computing the optimal solution of the relaxed problem
and a gradient function representing the estimated cost of each variable-
value assignment. We exploit these pieces of information for pruning and
for guiding the search. We have applied these techniques to a couple of
ILOG Solver global constraints (a constraint of difference and a path
constraint) and tested the approach on a variety of combinatorial opti-
mization problems such as Timetabling, Travelling Salesman Problems
and Scheduling Problems with setup. Comparisons with pure Constraint
Programming approaches and related literature clearly show the ben-
efits of the proposed approach. By using cost-based filtering in global
constraints, we can optimally solve problems that are one order of mag-
nitude greater than those solved by pure CP approaches, and we outper-
form other hybrid approaches integrating OR techniques in Constraint
Programming.

1 Introduction

Finite Domain Constraint Programming (CP) has been recognized as a pow-
erful tool for modelling and solving combinatorial optimization problems. CP
tools provide global constraints offering concise and declarative modelling capa-
bilities together with efficient and powerful domain filtering algorithms. These
algorithms remove combinations of values which cannot appear in any consistent
solution.

When coping with optimization problems, an objective function f is defined
on problem variables. With no loss of generality, we restrict our discussion to
minimization problems. CP systems usually implement a Branch and Bound al-
gorithm to find an optimal solution. The idea is to solve a set of satisfiability
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problems (i.e., a feasible solution is found if it exists), leading to successively
better solutions. In particular, each time a feasible solution s* is found (whose
cost is f(s*)), a constraint f(x) < f(s*) is added to each subproblem in the re-
maining search tree. The purpose of the added constraint, called upper bounding
constraint, is to remove portions of the search space which cannot lead to better
solutions than the best one found so far. The problem with this approach is
twofold: (7) only the upper bounding constraint is used to reduce the domain of
the objective function; (i) in general, the link between the variable representing
the objective function and problem decision variables is quite poor and does not
produce effective domain filtering.

As concerns the first point, previous works have been proposed that com-
pute also lower bounds on the objective function by (possibly optimally) solving
relaxed problems [2,5], [21,22].

Concerning the second point, two notable works by Caseau and Laburthe
([6] and [7]) embed in optimization constraints lower bounds from Operations
Research and define a regret function used as heuristic information. Here we
propose a further step in the integration of OR technology in CP, by using well
known OR techniques, i.e., lower bound calculation and reduced cost fixing [15],
for cost-based propagation. We embed in global constraints an optimization com-
ponent, representing a proper relaxation of the constraint itself. This component
provides three information: (¢) the optimal solution of the relaxed problem, (i7)
the optimal value of this solution representing a lower bound on the original
problem objective function, and (iii) a gradient function grad(V,v) which re-
turns, for each possible couple variable-value (V,v), an optimistic evaluation of
the additional cost to be paid if v is assigned to V. The gradient function extends
and refines the notion of regret used in [6] and [7]. We exploit these pieces of
information both for propagation purposes and for guiding the search.

We have implemented this approach on two global constraints in ILOG
Solver [18]: a constraint of difference and a path constraint. The optimization
component used in both constraints embeds the Hungarian Algorithm [4] for
solving Assignment Problem (AP) which is a relaxation of the problem repre-
sented by the path constraint and exactly the same problem as the one modelled
by the constraint of difference. The Hungarian Algorithm provides the optimal
solution of the AP, its cost and the gradient function in terms of reduced costs
matrix. Reduced costs provide a significant information allowing to perform cost-
based domain filtering, and to guide the search as heuristics. In general however,
any relaxation can be used, e.g., a LP relaxation or a spanning tree (spanning
forest) for the path constraint, provided that it produces the information needed
(i-e., the lower bound and reduced costs).

We have used the resulting constraints to solve Timetabling Problems, Trav-
elling Salesman Problems and Scheduling Problems with setup times (where the
path constraint has been interpreted and adapted to be a multi-resource tran-
sition time constraint). By using the cost-based domain filtering technique in
global constraint, we achieve a significant computational speedup with respect
to traditional CP approaches: in fact, we can optimally solve (and prove optimal-
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ity for) problems which are one order of magnitude greater than those solved by
pure CP approaches. Also, comparisons with related literature describing other
OR-based hybrid techniques show that integrating cost-based reduction rules in
global constraints gets unarguable advantages.

2 DMotivations and Background

In this section, we present the main motivation of this paper. We start from
the general framework, Branch & Infer, proposed by Bockmayr and Kasper [3],
which unifies and subsumes Integer Linear Programming (ILP) and Constraint
Programming (CP). In a constraint language, the authors recognize two kind
of constraints: primitive and non primitive ones. Roughly speaking, primitive
constraints are those which are easily handled by the constraint solver, while
non primitive ones are those for which it does not exist a (complete) method for
satisfiability, entailment and optimization running in polynomial time. Thus,
the purpose of a computation in a constraint-based system is to infer primitive
constraints p from non primitive ones c.

As mentioned, when solving optimization problems, CP systems usually per-
form the branch and bound method. In particular, each time a feasible solution s*
is found (whose cost is f(s*)), a constraint f(x) < f(s*) is added to each sub-
problem in the remaining search tree. The purpose of the added upper bounding
constraint is to remove portions of the search tree which cannot lead to better
solution than the best one found so far. Two are the main limitations of this
approach: (i) we do not have good information on the problem lower bound, and
consequently, on the quality of the solutions found; (i7) the relation between the
cost of the solution and the problem variables is in general not very tight, in the
sense that is usually represented by a non primitive constraints.

Many works have been proposed in order to solve the first problem by com-
puting a lower bound on the problem, thus obtaining in CP a behaviour similar
to the OR branch and bound technique. In global constraints, for example, a
lower bound is computed on the basis of variable bounds involved in the con-
straint itself, see for instance [22]. Alternatively, Linear Programming (LP) [3]
can be used for this purpose as done for example in [2,5,21].

The second problem arises from the fact that in classical CP systems primitive
constraints are the following:

Prim={X <u,X >b,X #0v,X =Y, integral(X)}

where X and Y are variables, u, v, b are constants. All other constraints are non
primitive. The branch and bound a-la CP would be very effective if the upper
bounding constraint would be a primitive constraint. Unfortunately, in general,
while the term f(s*) is indeed a constant, the function f(x) is in general not
efficiently handled by the underlying solver.

For example, in scheduling problems, the objective function may be the
makespan which is computed as the max;crqsp{St; + d;} where St; is a variable
representing the start time of Task ¢ and d; its duration. In matching, timetabling
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and travelling salesman problems, each variable assignment is associated with a
cost (or a penalty), the objective function is the sum of the assignment costs. In
these cases, the function f representing the objective function makes the upper
bounding constraint a non primitive one.

The general idea we propose is to infer primitive constraints on the basis of
information on costs. We use optimization components within global constraints
representing a proper relaxation of the problem (or exactly the same problem)
represented by the global constraint itself. The optimization component provides
the optimal solution of the relaxed problem, its value and a gradient function
computing the cost to be added to the optimal solution for each variable-value
assignment. In this section, we provide an intuition on how this information is
exploited. In section 3 we formally explain the proposed technique.

With no loss of generality, we consider here as optimization component a Lin-
ear Program (LP) representing a (continuous) linear relaxation of the constraint
itself. The optimal solution of the relaxed problem can be used as heuristic infor-
mation as explained in section 4. The optimal value of this solution improves the
lower bound of the objective function and prunes portions of the search space
whose lower bound is bigger than the best solution found so far. The reduced
costs associated to linear variables is proportional to the cost to be added to
the optimal solution of the relaxed problem if the corresponding linear variable
becomes part of a solution. If this sum is greater than the best solution found so
far, the linear variable can be fixed to 0, i.e., it is excluded from the solution.
This technique is known in OR as variable fixing [15]. Given a mapping between
LP and CP variables, we have the same information for CP variable domain val-
ues. Thus, we can infer primitive constraints of the kind X # v, and we prune
the subproblem defined by the branching constraint p = (X = v).

The advantage of this approach is twofold. First, we exploit cost-based infor-
mation for domain filtering in global constraints. The advantage with respect to
traditional OR variable fixing technique is that in our case domain filtering usu-
ally triggers propagation of other constraints thanks to shared variables. Second,
we do not need to define each time a proper relaxation of the original problem,
but we associate a proper relaxation to each global constraint which can be
written once for all for optimization purposes. A complementary approach could
instead generate a single linear program containing a linearization of the inequal-
ities corresponding to the whole set of constraint representing the problem as
done in [21]. This would allow to have one single global optimization constraint
in the form of LP. However, it can be applied only if we consider as a relaxed
problem a linear problem, while our approach is more general and we can apply
more sophisticated techniques such as additive bounds [10].

3 Global Optimization Constraints

In this paper we apply our ideas on two global constraints of ILOG solver: a
constraint of difference (I1cA11Diff) and a path constraint (IlcPath) which
was extended in order to handle transition costs depending on the selected path.
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The constraint I1cA11Diff [19] applied to an array of domain variables
Vars = (X1,..., X,,), ensures that all variables in Vars have a different value.

The constraint I1cPath ensures that, given a set of nodes I, a maximum
number of paths NbPath, a set of starting nodes S and a set of ending nodes F,
there exists at most NbPath paths starting from nodes in S, visiting all nodes
in I and ending at nodes in E. Each node will be visited only once, will have
only one predecessor and only one successor. The constraint works on an array of
domain variables Next, each representing the next node in the path (Next[i] = j
if and only if node ¢ precedes j in the solution).

In both cases, as LP relaxation we use the Assignment Problem (AP) solved
by the Hungarian algorithm described in [4]. We have chosen the AP solver as a
Linear Component for two reasons: (i) it is a suitable relaxation for the I1cPath
constraint and exactly the same problem represented by I1cA11Diff constraint;
(i) we have a specialized, polynomial and incremental algorithm (the Hungar-
ian method) for solving it and computing the reduced costs'. Notice that the
proposed approach is independent from the used relaxation. In fact, the algo-
rithm providing lower bound values and reduced costs can be seen as a software
component, and it can be easily substituted by other algorithms. For example,
an algorithm which incrementally solves the Minimum Spanning Arborescence
can be easily used instead of the Hungarian algorithm for computing the lower
bound and the reduced costs for the path constraint as shown in [13].

Two important points that should be defined are (i) the mapping between
variables appearing in the global constraint and variables appearing in the AP
formulation; (i7) the cost based propagation.

In the next sections, we formally define the Assignment Problem, the map-
ping and the cost-based propagation.

3.1 The Assignment Problem as Optimization Component

The well known Linear Assignment Problem (AP) (see [9] for a survey) states
as follows. Given a square cost matrix ¢;; of order n, the problem is to assign to
each row a different column, and vice versa in order to minimize the total sum
of the row-column assignment costs.

This problem can be seen as the Minimum Cost Perfect Matching problem.
Let G = (V UT,A) be a bipartite graph where V and T are the vertex sets
and |V]| = |T| = n, A = {(i,j)i € V.j € T} the arc set, and ¢;; is the cost
of arc (i,7) € A. The minimum cost perfect matching gives the solution to the
AP. Vertex i € V corresponds to row i and vertex j € T to column j. A classic
Integer Linear Programming (ILP) formulation for the AP is:

Z(AP) = minZZCij Tij (1)

i€V jET
! Note that the AP can be formulated as an Integer Linear Program. However, being

the cost matrix totally unimodular, the LP relaxation of the AP always provides an
integer (thus optimal) solution.
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subject to Z xij =1, jeT (2)
iev
Y wmy=1, i€V (3)
JET
xij integer, 1 € V5 €T (4)

where z;; = 1 if and only if arc (¢, j) is in the optimal solution. Constraints (2)
and (3) impose in-degree and out-degree of each vertex equal to one.

Alternatively, AP can also be defined on a digraph (of n vertices) as the graph
theory problem of finding a set of disjoint sub-tours such that all the vertices in
the digraph are visited and the sum of the costs of selected arcs is a minimum.

It is well-known that the AP optimal solution can be obtained through a
primal-dual algorithm. We have used a C++ adaptation of the Hungarian algo-
rithm described in [4]. The solution of the AP requires in the worst case O(n?),
whereas each re-computation of the optimal AP solution, needed in the case
of modification of one value in the cost matrix, can be efficiently computed in
O(n?) time through a single augmenting path step.

The information provided by the Hungarian algorithm is the AP optimal
solution and a reduced cost matrix ¢. In particular, for each arc (i,j) € A
the reduced cost value is defined as ¢;; = ¢;j — u; — vj, where u; and v; are
the optimal values of the Linear Programming dual variables associated with
the i-th constraint of type (2) and the j-th constraint of type (3), respectively.
The reduced cost values are obtained from the AP algorithm without extra
computational effort during AP solution. Each ¢;; is a lower bound on the cost
to be added to the optimal AP solution if we force arc (7, 7) in solution.

3.2 Mapping

In this section, we define the mapping between variables and constraints used in
our optimization component and those used in the CP program. The mapping
between the ILP formulation and the CP formulation is straightforward and has
been previously suggested in [21]. In CP, we have global constraints involving
variables X7, ..., X, (in the path constraints they are called Next;), ranging on
domains D1, ..., Dy, and cost ¢;; of assigning value j € D; to X;. Obviously, the
cost of each value not belonging to a variable domain is infinite. The problem
we want to solve is to find an assignment of values to variables consistent with
the global constraint, and whose total cost is minimal. If an ILP variable z;; is
equal to 1, the CP variable X; is assigned to the value j, z;; = 1 < X; = j.
Constraints (2) and (3) correspond to a constraint of difference imposing that
all CP variables assume different values. The ILP objective function corresponds
to the CP objective function.

It is worth noting that the AP codes work on square matrices, while, in gen-
eral, in the CP problem considered, it is not always true that the number of
variables is equal to the number of values. Thus, the cost matrix of the original
problem should be changed. Suppose we have n variables X1, ..., X,, and sup-
pose that the union of their domains contains m different values. A necessary
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condition for the problem to be solvable is that m > n. The original cost ma-
trix has n rows (corresponding to variables) and m columns (corresponding to
values). Each matrix element ¢;; represents a cost of assigning j to X if value j
belongs to the domain of X;. Otherwise, ¢;; = +I/NF. In addition, we have
to change the matrix so as to have a number of rows equal to the number of
columns. Thus, we can add to the matrix m — n rows where each value ¢;; =0
foralli =n-+1,...,mand for all j = 1,...,m, obtaining an m X m cost matrix.
The addition of these m — n rows brings the algorithm to a time complexity
of O(mn?) (and not O(m?)), whereas each re-computation of the optimal AP
solution requires only O(nm) time.

Note that the constraint of difference and the AP component have exactly
the same semantics: they compute a solution where all variables are assigned to
different values. Thus, each solution of the AP is feasible for the constraint of
difference. In general, in a CP program the same variables appear in different
constraints. Thus, the constraint of difference alone (and the AP component
alone) can be seen as a relaxation of a more general problem. As a consequence,
the AP optimal solution Z; g is a lower bound on the optimal solution of the
overall problem. On the contrary, when used within a path constraint, the AP
component represents a relaxation of the constraint itself (where sub-tours may
appear) and it is no longer true that the optimal solution of the AP is feasible
for the path constraint. In this case, the AP optimal solution Z;p is a lower
bound of the sum of the arcs appearing in the path constraint.

As already mentioned, the AP provides a reduced cost matrix. Given the
mapping between LP and CP variables, we know that the LP variable x;; corre-
sponds to the value j in the domain of the CP variable X;. Thus, the reduced cost
matrix ¢;; provides information on CP variable domain values, grad(X;, j) = ;.

3.3 The Cost-Based Propagation

In this section we describe filtering techniques based on the information provided
by the optimization component. We have a first (trivial) propagation based on
the AP optimal value Z; . At each node of the search tree, we check the con-
straint Zpp < Z where Z is the variable representing the CP objective function.
This kind of propagation generates a yes/no answer on the feasibility of the cur-
rent node of the search tree; therefore it does not allow any real interaction with
the other constraints of the problem.

More interesting is the second propagation from reduced costs ¢ towards
decision variables X7, ..., X, referred to as RC-based propagation. This filtering
algorithm directly prunes decision variables X1, ..., X;, domains on the basis of
reduced costs ¢. Suppose we have already found a solution whose cost is Z*. For
each domain value j of each variable X;, Z, Bx,—; = Z1B + € is a lower bound
value of the subproblem generated if value j is assigned to X;. If Zrp, _; Is
greater or equal to Z*, j can be deleted from the domain of X;. This filtering
algorithm performs a real back-propagation from Z to X;. Such domain filtering
usually triggers other constraints imposed on shared variables, and it appears
therefore particularly suited for CP. Indeed, the technique proposed represents
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a new way of inferring primitive constraints starting from non primitive ones. In
particular, primitive constraints added (of the form X; # j) do not derive, as in
general happens, from reasoning on feasibility, but they derive from reasoning on
optimality. Furthermore, note that the same constraints of the form X; # j are
also inferred in standard OR frameworks (variable fixing). However, this fixing
is usually not exploited to trigger other constraints, but only in the next lower
bound computation, i.e., the next branching node.

When the AP is used as optimization component, an improvement on the
use of the reduced costs can be exploited as follows: we want to evaluate if
value j could be removed from the domain of variable X; on the basis of its
estimated cost. Let X; = k and X; = j in the optimal AP solution. In order to
assign X; = j, a minimum augmenting path, say PTH, from [ to k& has to be
determined since [ and k must be re-assigned. Thus, the cost of the optimal AP
solution where X; = j is Zpp + ¢;; + cost(PTH), by indicating with cost(PTH)
the cost of the minimum augmenting path PTH. In [13], two bounds on this
cost have been proposed, whose calculation does not increase the total time
complexity of the filtering algorithm (O(n?)). We will refer to this propagation
as improved reduced cost propagation (IRC-based propagation).

3.4 Propagation Events

In this section, we describe the data structures which should be built and main-
tained by the global constraints, and the events triggering propagation.

When the constraint is stated for the first time, the cost matrix is built and
the Hungarian Algorithm is used to compute the AP optimal solution and the
reduced cost matrix in O(n?). Each time the AP optimal solution is computed,
the lower bound of the variable representing the objective function is updated
and the RC-based propagation is performed (or IRC-based if the corresponding
flag is set). The constraint is triggered each time a change in a variable domain
happens and each time the upper bound of the objective function is updated.
Each time a value j is removed from the domain of variable X;, the cost matrix
is updated by imposing c;; = +oo, ie., x;; = 0. If value j belongs to the
solution of the AP (and only in this case), the lower bound Zp is updated
by incrementally re-computing the assignment problem solution in O(n?). The
AP re-computation leads to a new reduced cost matrix. Thus, the RC-based
propagation (or IRC-based) is triggered and some other values may be removed.

Note that since the re-computation of the AP solution is needed only if
the value removed from the domain of a variable is part of the current AP
solution, it is possible to write the optimization constraint in such a way that
whenever a value is assigned to a variable only one incremental re-computation is
needed. Each time the objective function upper bound is updated, the RC-based
propagation (or IRC-based) is triggered.
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4 Heuristics

The optimal solution of a relaxed problem, the lower bound value, and the set
of reduced costs can be used for the heuristics during the search for a solution.
Different examples of such use are described in the next section where three
combinatorial problems are considered. In general, we can say that the gradient
information (reduced costs) can be used to calculate a regret function (see for
example [7] for the definition of regret) useful for the variable selection, whereas
the optimal assignment in the relaxed problem can be used for the value selection,
and finally the lower bound value can be used to select a working subproblem
in a local improvement framework, as described in section 5.3.

5 Computational Results on Different Problems

In this section we present the empirical results on different problems for which
the linear assignment problem turns out to be a relaxation. We report comput-
ing times (given in seconds on a Pentium IT 200 MHz) and number of fails. We
refer to different strategies: (i) a pure CP approach exploiting the Branch &
Bound a-la CP; (i7) a strategy exploiting the LB-based propagation, referred to
as ST1; (iti) a strategy exploiting both the LB-based and RC-based propaga-
tion, referred to as ST2; (iv) a strategy exploiting the LB-based and IRC-based
propagation, referred to as ST3. Also comparisons with related approaches on
the same applications (if any) are shown. The problems considered are: Travel-
ling Salesman Problems instances taken from the TSP-1ib and solved also in [6],
Timetabling problems described in [7]. Scheduling Problems with setup times
are finally considered and solved using a local improvement technique.

Travelling Salesman Problems have been chosen because standard CP tech-
niques perform very poorly on these problems; we are able to solve problems
which are one order of magnitude greater than those solved by a pure CP ap-
proach. Caseau and Laburthe in [7] have already shown the advantages of CP
techniques in Timetabling problems w.r.t. pure OR approaches. Here we show
that the tighter integration proposed outperforms their approach. Indeed, the
modelling uses different constraints of difference embedding information on cost.
These constraints represent different relaxations of the same problem on shared
decision variables. Thus, they smoothly interact with each other and with the
entire set of problem constraints allowing to efficiently solve the problem. Finally,
preliminary results obtained on Scheduling Problems with setup times show the
generality of the approach, and propose a new method for modelling and solv-
ing such problems. Implementation details, and more computational results on
the TSP and Timetabling problems presented can be found respectively in [13]
and [L11].

5.1 TSPs

TSP concerns the task of finding a tour covering a set of nodes, once and only
once, with a minimum cost. The problem is strongly NP-hard, and has been
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deeply investigated in the literature (see [14] for a survey). Although CP is far
from obtaining better results than the ones obtained with state of the art OR
technology, it is nevertheless very interesting to build an effective TSP con-
straint; in fact, many problems contain subproblems that can be described as
TSPs, e.g., Vehicle Routing Problem (VRP), Scheduling Problems, and many
variants of TSP are also interesting, e.g., TSP with Time Windows (TSPTW).
In these cases the flexibility and the domain reduction mechanism of Constraint
Programming languages can play an important role, and hybrid CP-OR systems
could outperform pure OR approaches (as shown in [16] and [17]).

In this section, a set of symmetric TSP instances (up to 30 nodes, from
TSP-lib [20]) is analyzed. The pure CP approach has not been reported because
it is not able to prove optimality within 30 minutes on none of the instances
considered. Our results have been compared with those achieved by Caseau and
Laburthe [6] and reported in row CL97, Table 1. The computing times of this
last row are given in seconds on a Sun Sparc 10.

Problem grl7 gr2l gr24 fri26 bayg29 bays29
Time [Fails |Time [Fails |[Time |Fails |[Time [Fails |[Time |Fails [Time |Fails
ST1 8.79 |13k 0.11 |96 1.7 1.5k [19.88 |16.6k [89.4 |79.8k |135.7 [112.8k
ST2 0.71 |758 0.05 |31 0.28 (145 3.68 [1.8k [10.6 [9.4k [15.4 [10.8k
ST3 0.66 [646 0.06 |31 0.27 |120 2.86 [1.6k [11.09 |7.8k [13.7 |8.8k
CL97 3.10 |[5.8k |7.00 |12.5k [6.90 |6.6k [930.0 |934k [4.4k [4.56M |1.2k [1.1M

Table 1: Results on small symmetric TSP instances.

The search strategy used exploits the information coming from the optimiza-
tion component. It implements a sub-tour elimination branching rule often used
in OR-based Branch and Bound algorithm for the TSP. In any stage of the
search tree, we consider the solution of the AP, we choose a tour belonging to
the optimal AP solution, and we branch by removing one arc of the tour in each
branch. Note that the tour chosen, infeasible for the TSP, will not appear in any
of the generated branches.

Results show that the use of the back propagation from the objective function
to the decision variables (strategies ST2 and ST3) turns out to be very important
for efficiently solve optimization problems.

As previously mentioned, one of the interests in solving TSP by Constraint
Programming is the flexibility of CP that allow the immediate addition of fur-
ther constraints to the original problem, e.g., Time Windows, by performing
separate propagation on them. In [12] we have shown how to optimally solve
TSP with Time Windows by using the path constraint embedding cost-based
domain filtering together with well known CP propagation algorithms deriving
from the field of scheduling. The resulting algorithm achieves the best known
results on some instances, thus being competitive with pure OR approaches.

5.2 Timetabling Problems

The timetabling problems considered have been described in [7]. The problems
consist in producing a weekly schedule with a set of lessons whose duration
goes from 1 to 4 hours. Each week is divided in 4-hours time slots and each
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lesson should be assigned to one time slot. The problem involves disjunctive
constraints on lessons imposing that two lessons cannot overlap and constraints
stating that one lesson cannot spread on two time slots. The objective function
to be minimized is the sum of weights taking into account penalties associated
to pairs lesson-hour. We have modelled the problem by considering: (i) an array
of domain variables Start representing the course starting times; (i¢) an array of
variables Slot representing the slot to which the course is assigned; (iié) an array
of variables SingleHours representing the single hours of each course. Different
variables are linked by the following constraints:

Start[i] mod 4 = Slot[i]

Start[i] = SingleHours[i] [0]

Two different matching problems representing two relaxations of the timetabling
problem have been modelled by two constraints of difference embedding an op-
timization component. The first one is the linear assignment relaxation arising
when lessons are considered interruptible involving variables SingleHours. The
cost of assigning each SingleHours[i] variable to a value H is the cost of assign-
ing the corresponding course to the time slot H mod 4 divided by the duration
of the course. The second relaxation considers variables Slot for courses last-
ing 3 and 4 hours. The corresponding problem is an AP since two 3 or 4 hours
courses cannot be assigned to the same slot for limited capacity. The cost of
assigning a course to a slot is defined by the problem. The interesting point here
is that different problem relaxations coexist and easily interact through shared
variables.

In Table 2 we report, in addition to the results of the four described ap-
proaches, the results obtained by the constraint Min WeightAllDifferent described
by Caseau and Laburthe [7]. (In the last row of Table 2, we refer to row 4 of
Table 6 of [7], and the corresponding computing times are given in seconds on a
Pentium Pro 200 MHz.)

Problem Problem 1 Problem 2 Problem 3
Time Fails Time Fails Time Fails
Pure-CP [3.77 5.4k 5.50 8.5k 11.20 14.5k
ST1 0.70 213 0.15 58 7.60 2.5k
ST2 0.70 199 0.10 30 4.00 1.3k
ST3 0.90 182 0.16 28 6.10 1.2k
CL [7] 29.00 3.5k 2.60 234 120.00 |17k

Table 2: Results on timetabling instances.

Table 2 shows that for these instances ST2 outperforms in terms of comput-
ing times other approaches, although ST3 has more powerful propagation (less
number of fails). In this case, in fact, the reduction of the search space does not
pay off in terms of computing time.

We have used the information provided by the AP solution also for guiding
the search. Defining the regret of a variable as the difference between the cost of
the best assignment and the cost of the second best, a good heuristic consists in
selecting first variables with high regret. In [7] the regret has been heuristically



200 F. Focacci et al.

evaluated directly on the cost matrix as the difference between the minimum cost
and the second minimum of each row (despite of the fact that these two minimum
could not be part of the first best and the second best solutions). Reduced cost
provide a more accurate computation of the regret: for each variable, a lower
bound on the regret is the minimum reduced cost excluding the reduced cost
of the value in the AP solution. This regret is then combined in a weighted
sum with the size of the domain (following the First-Fail principle), and such
a weighted sum is used in the variable selection strategy. Concerning the value
selection strategy for variable X;, we have used the solution of the AP.

5.3 Scheduling with Set Up Times

We are given a set of n activities Aj,..., A, and a set of m unary resources
(resources with maximal capacity equal to one) Ry, ..., R,,. Each activity A; has
to be processed on a resource R; for p; time units. Resource R; can be chosen
within a given subset of the M resources. Activities may be linked together by
precedence relations. Sequence dependent setup times exist among activities.
Given a setup time matrix S* (square matrix of dimension equal to n), sf;
represents the setup time between activities A; and A; if A; and A; are scheduled
sequentially on the same resource Ry. In such a case, start(A4;) > end(A4;) + sfj
Also a setup time su? before the first activity A; can start on resource Rj may
exist. A teardown time td? after the last activity 4; ends on resource Rj may
exist.

Constraints of the problem are defined by the resource capacity, the temporal
constraints, and the time bounds of the activities (release date, and due date).
The goal is to minimize the sum of setup time, given a maximal makespan.

A multiple-TSP M-TSP can model a relaxation of the scheduling problem
where each resource, and each activity are represented by nodes and arc costs
are the setup times. The solution of the M-TSP provides both an assignment of
activities to resources and their minimum cost sequencing. Again, the AP can be
used to calculate a lower bound on the optimal M-TSP, thus to perform pruning
on problem variables, and to guide the search.

In the following, we will give some preliminary results. The scheduling prob-
lem analyzed were solved in two phases: we first looked for a feasible solution,
and then we iteratively select a small time window T'W;, we freeze the solution
outside TW;, and perform a Branch and Bound search within the selected win-
dow. The scheduling problem considered consists in 25 job of 6 activities each.
The activities of each job are linked by temporal constraints and the last activity
of each job is subject to a deadline. Each activity requires a set of alternative
unary resources and a discrete resource with a given capacity profile.

Makespan Total Setup CPU Time
First Sol. 2728 930 8
Pure-CP 2705 750 386
ST2 2695 600 249

Table 3: Results on a Scheduling Problem with setup times.
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The first solution (first row of Table 3) produces a makespan equal to 2728 and a
total setup time equal to 930. This first solution is used as starting point for the
local improvement phase. The second row of Table 3 reports the improvement
on the first solution obtained using a pure CP approach, while the third row
reported the results obtained using the optimization constraint (LB-based and
RC-based propagation). Both approaches used the same search strategy. The use
of the optimization constraint played an important role in the local improvement
phase. In fact for a given time window T'W;, the lower bound gives very good
information on the local optimal solution because the scheduling constraints
(relaxed on the M-TSP) are locally not tight. Indeed, in some cases the gap
between the value of the lower bound calculated at the root node and the value
of the local optimal solution found is zero.

In this application the optimization constraint is also very important for the
selection of the time window T'W;. For each time window T'W; we calculate the
gap between the current cost and the lower bound. Such a value is used to select
the time window in which running the Branch and Bound optimization. In fact,
the higher the gap is, the more chances we have to obtain a good improvement
on the solution.

It is important to stress that in this case the optimization constraint inter-
acts with all the scheduling constraints (time bounds, precedence relationship,
capacity constraints) thought shared variables. The Edge Finder [1] constraint
may, for example, deduce that a given activity A; must precede a set of other
activities, and this information is made available to the optimization constraint.

6 Conclusion and Future Work

In this paper, we have proposed the use of an optimization component such
as a Linear Program in global constraints. For feasibility purposes, global con-
straints represent a suitable abstraction of general problems. For optimization
purposes embedding OR methods in global constraints is a necessary condition
for efficiently handle objective functions.

The advantages of the proposed integration are that we are able to infer
primitive constraints starting from non primitive ones on the basis of lower
bound and reduced costs information. This enhances operational behaviour of
CP for optimization problems by maintaining its flexibility and its modelling
capabilities.

Although most of the OR techniques used are fairly standard in the OR
community we believe that their introduction in CP global constraints leads
to significant new contributions. We greatly powered the CP constraints for
optimization problems. We also powered the back-propagation from the objective
function to the decision variables; such propagation is limited in a pure OR
framework since pure OR branch and bound does not have a constraint store
active on shared variables. This last point, in particular, allowed us to easily
model and solve problems whose pure OR modelling would lead to very complex
algorithms. Finally, the different prospective in which reduced cost fixing is used
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brought (and may bring) to new contributions such as the improved reduced cost
propagation.

Future work concern further generalization of the method by integrating
in global constraint a general LP solver providing information on lower bound
and on reduced costs. Also, we are currently investigating the use of additive
bounds [10] and other specialized cost-based methods in global constraints.
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