Graeko-Latin Squares









Arrange the playing cards in a 4 by 4 grid such that
each value occurs once in each row and once in each column
and
each suit occurs once in each row and once in each column
(problem is due to Jacques Ozanam 1725).
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Graeco-Latin square

From Wikipedia, the free encyclopedia

This article includes a list of references, related reading or external links, but its sources remain
| ? ‘ unclear because it lacks inline citations. Please improve this article by introducing more precise
— citations. (November 2010)

In mathematics, a Graeco-Latin square or Euler square or orthogonal Latin squares of order n over two sets S and
T, each consisting of n symbols, is an n=n arrangament of cells, each cell containing an ordered pair (5,f), where sis in Aw|By C:ﬁ
Sand tisin T, such that every row and every column contains each element of 5 and each element of T exactly once, Bﬁ Col Ay
and that no two cells contain the same ordered pair. :

:-'I.r s i-
The arrangement of the s-coordinates by themselves (which may be thought of as Latin characters) and of the < jkﬁ Bc
coordinates (the Greek characters) each forms a Latin square. A Graeco-Latin square can therefore be decomposed Orthogonal o
into two "orthogonal” Latin squares. Orthogonality here means that every pair (s, f) from the Cartesian product S=T L atin squares of

occurs exactly once. order 3
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History [edit]

Crthogonal Latin squares have been known to predate Euler. As described by Donald Knuth in Volume 4A, p 3, of TADOCP, the construction of
dx4 set was published by Jacques Ozanam in 1725 (in Recreation mathemabiques et physigues) as a puzzle involving playing cards. The
problem was to take all aces, kings, queens and jacks from a standard deck of cards, and arrange them in a 4x4 grid such that each row and
each column contained all four suits as well as one of each face value. This problem has several solutions.

A commeon variant of this problem was to arrange the 16 cards so that, in addition to the row and column constraints, each diagonal contains
all four face values and all four suits as well. As described by Martin Gardner in Gardner's Workout, the number of distinct solutions to this
problem was incorrectly estimated by Rouse Ball to be 72, and persisted many years before it was shown to be 144 by Kathleen Ollerenshaw.
Each of the 144 solutions has 8 reflections and rotations, giving 1152 solutions in total. The 144x8 solutions can be categorized into the
following two classes:

Solution Hormal form

Ed Ew Q% Jb
i T4 Lw Eé
J¥ Q4 Fde L4
F4 2 J& ¥

Solution #1

Dd Ew Q% J

Jé# i K& Lw
Solution #2

Ed 24 J¥ O

¥ Ja ik 4

For each of the two solutions, 24x24 = 576 solutions can be derived by permuting the four suits and the four face values independently. Mo
permutation will convert the two solutions into each other.

The solution set can be seen to be complete through this proof outline:

1. Without loss of generality, let us choose the card in the top left comer to be As.
2. Mow, in the second row, the first two squares can be neither ace nor spades, due to being on the same column or diagonal
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In April 1953, Parker, Bose, and Shrikhande presented their paper showing Euler's conjecture to be false for all n = 10. Thus, Graeco-Latin
squares exist for all orders n = 3 except n = 6.

Applications [edit]

Graeco-Latin squares are used in the design of experiments, tournament scheduling and constructing magic squares. The French writer
Georges Perec structured his 1978 novel Life: A User's Manual around a 10=10 orthogonal square.

Mutually orthogonal Latin squares [edi]

Mutually orthogonal Latin squares arise in various problems. A set of Latin squares is called mutually orthoganal if every pair of its elemeant
Latin squares is orthogonal to each other.

Any two of text, foreground color, background color and typeface form a pair of orthogonal
Latin squares:

e
incley [ fawbor BRI

qiviut| zincky BEIERY jawkex |
phicsm | [£jords | jawbox
L phiegm | wivimt | fjords.

The above table shows 4 mutually orthogonal Latin squares of order 5, representing respectively:

s the text: fords, jawbox, phlegm, giviut, and zincky
« the foreground color: white, red, lime, blue, and yellow
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Numbering

(Z010)/n,Z[1][]%n)

T

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)
(2,0) (2,1) (2,2) (2,3)
(3,0) (3,1) (3,2) (3,3)




Numbering




Solution n=4

0 51015
6 312 9
1114 1 4
13 8 7 2




Solution n=4

(0,0) (1,1) (2,2) (3,3)
(1,2) (0,3) (3,0) (2,2)
(2,3) (3,2) (0,1) (1,0)
(3,1) (2,0) (1,3) (0,2)




Solution n=4

(0,0) (1,1) (2,2) (3,3)
(1,2) (0,3) (3,0) (2,2)
(2,3) (3,2) (0,1) (1,0)
(3,1) (2,0) (1,3) (0,2)




Model O

Latin
All different in a row
All different in a column

1 2 3
0 3 2
3 0 1
2 1 0




Model O

Greek
All different in a row
All different in a column

1 2 3
3 0 1
2 1 0
0 3 2




Model O

0,00 1(1,1) |(2,2) |(3,3)
1,2) |0,3) |30 |21 Graeco-Latin
2,3) 13,2 |(0,1) |(1,0
(3,1) (2,00 |(1,3) |(0,2)
2 3 0 3
3 2 2 1
0 1 3 0
1 0 1 2




Model O

Z
(0,00 [(1,2) [(2,2) |(3,3)
(1,2) |1(0,3) [(3,0) |(2,1)
2,3) [(3,2) |(0,1) |(1,0)
(3,1) |(2,0) |(1,3) |(0,2
2 3 0 1
3 2 2 3
0 1 3 2
1 0 1 0




Model O

Z[I]0] = 4.X[101 + Y[I0

Z
0 5 10 15
6 3 12 9
11 14 1 4
13 8 7 2
2 3
3 2
0 1
1 0




public class HMOLSO {

public =static vold main(String args[]) {

int n = Integer.parselnt(arg=s[0]):

Model model = new CPModel():
IntegerVariable[][] Z = makeIntVarirray ("Z2",n,n,0,n*n-1);
IntegerVariable[][] Zt = mew IntegerVariable[n] [n]:
IntegerVarizkble[]1[] X = makeIntVarhirray ("X",n,n,0,n-1);
IntegerVariable[][] Xt = mnew IntegerVariable[n][n]:
IntegerVariable[]1[]1 ¥ = makeIntVarirray("Y",n,n,0,n-1)
IntegerVariakle[1[] ¥t = mew IntegerVarizble[mn][mn]:
IntegerVariable[] flatZ = new IntegerVariable[n*n]:

int k = 0;
for (int i=0;i<n;i++)
for (int j=0;j<n:j++) {

Ztljlli] = Z[1i][3]+
xc[31[1] = X[1][3]-
¥o[31[1i] = ¥[1i1[31-
flatZ[k] = 2[1i]1[3]1:
kE++:

model . addConstraint (allDifferent (ElatZ) ) ;

for (int i=0;i<m;i++){
model.addConstraint (allDifferent (X[1]))
model . addConstraint (allDifferent (Xt [i]))
model .addConstraint (allDifferenc (Y[i])) :
model.addConstraint (allDifferent (YT [1]))

Jf tie ¥ and Y together
for (int i=0;i<n;i++)
for (int j=0;j<n:;j++)
model .addConstraint (eq(Z[1]1[J],plus (mulc (X[i)[3),n) Y L[i1[31))):



Solver =0l = new CPSolwver():
gol.read (model) ;
IntDomainVar [] v = sol.getWVar(flati):
gol.setVarIntSelector (new MinDomain(sol,v)):
System.out.println{"=soclved: " + =so0l.solve(fal=e));
for (imt i=0;i<n;i++) 4
for (int J=0;j<n;j++)
System.out.print (" (" + sol.getWVar(X[1i]1[j]) .getVall)
+", "+ sol.getVar(Y[1i]1[1]) .getWal ()
Syvetem.out.println{)
H
sol.printRuntimeSatistic=s()

another wview
for (int i=0;i<n;i++)}{
for (int J=0:;j<n:;j++)
System.out.print (sol.getVar (Z[1]1[]j]) .getVal() +" "):
System.out.println{):

+H:| "};



Model 1

Can fix first row

Z[I]0] = 4.X[101 + Y[I0

Symmetry Z

0 5 10 15
6 3 12 9
11 14 1 4
13 8 I 2

0 2 3

1 3 2

2 0 1

3 1 0




Model 1

Symmetry Z
0 ) 10 15
6 3 12 9
11 14 1 4
13 8 7 2
Can fix first column
0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

Can fix first row

Z[I]0] = 4.X[101 + Y[I0






Magic?

Z
0 5 10 15
6 3 12 9
11 14 1 4
13 8 7 2

Model 2

Z[I]0] = 4.X[101 + Y[I0

Observe sum of each row and sum of each column






Channeling

Z
0 5 10 15
6 3 12 9
11 14 1 4
13 8 7 2

Flatten Z, Z

Model BMS




Channeling

Z
0 5 10 15
6 3 12 9
11 14 1 4
13 8 7 2

location

Model BMS




Channeling

Z
0 5 10 15
6 3 12 9
11 14 1 4
13 8 7 2

Z'[i] = x < loc[x] = i

Model BMS

Channeling constraint



Z
0 5 10 15
6 3 12 9
11 14 1 4
13 8 7 2

Z'[i] = x < loc[x] = i

Model BMS

Channeling constraint

Can then do away with an allDiff on Z’



