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Abstract

In the two centuries since Euler first asked about mutually orthogonal latin squares,
substantial progress has been made. The biggest breakthroughs came in 1960 with the
celebrated theorems of Bose, Shrikhande, and Parker, and in 1974 in the research of
Wilson. Current efforts have concentrated on refining these approaches, and finding
new applications of the substantial theory opened. This paper provides a detailed list
of constructions for MOLS, concentrating on the uses of pairwise balanced designs
and transversal designs in recursive constructions as pioneered in the papers of Bose,
Shrikhande, and Parker. In addition, several new lower bounds for MOLS are given
and an up-to-date table of lower bounds for MOLS is provided.

1 An Historical Introduction

In 1779, Fuler began a study of a simple mathematical puzzle, the 36 Officers Problem.
Thirty-six officers drawn from six different ranks and six different regiments (one of each
rank from each regiment) are to be arranged in a square so that in each horizontal and
vertical line there are six officers from each rank and each regiment. Recording just the
ranks of the officers, the square obtained is a latin square. Recording just the regiments, it is
again a latin square. But the two latin squares have the property that, when superimposed,
every ordered pair occurs exactly once. Thus the squares are orthogonal. A set of latin
squares L1, ..., L, is mutually orthogonal, or a set of MOLS, if for every 1 <: < j <m, L;
and L; are orthogonal. N(n) is the maximum number of latin squares in a set of MOLS of
side n.

Euler [47] knew of course that N(2) = 1, and after much computation strongly suspected
that N(6) = 1. He also established that N(4n) > 2 and that when n is odd, one also has
N(n) > 2. On this basis, he made a conjecture that became the source of a huge literature:

Conjecture 1.1 [fn =2 (mod 4), then N(n) = 1.
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Euler’s conjecture rested comfortably for an extended period while the nascent field of
combinatorics evolved tools to attack it. In 1850, Kirkman [63], for example, explored the
existence of projective planes for prime order (in a different vernacular). At the turn of the
century, Tarry [104] undertook a lengthy case analysis to prove that N(6) = 1. At the same
time, Moore [73] established that N(nm) > max(N(n), N(m)). This was later discovered
independently by MacNeish [68]. MacNeish mistakenly believed that he had proved Euler’s
conjecture, and so advanced a stronger one:

Conjecture 1.2 Let n = q1qy- - - q5 where s > 1 and each ¢; is a power of a different prime.
Then if g1 < ¢; forall2 <:<s, N(n)=¢ — 1.

Levi [65] details the error in MacNeish’s putative proof. MacNeish’s conjecture strength-
ens Euler’s because ¢ = 2 when n = 2 (mod 4). It is difficult to say who first noticed
that N(¢) = ¢ — 1 when ¢ is a prime power. Bose [19] derives this explicitly, but it appears
already by Moore [73] in 1896.

Bose’s work revealed dramatic and surprising connections with a wide variety of previous
researches in algebra, geometry, number theory, and combinatorics, providing a fertile ground
for combinatorial design theory to grow.

The challenge of the Euler and MacNeish conjectures was next taken up by Parker [82].
Parker devised a construction that uses balanced incomplete block designs to provide a
framework (a “master design”); he established that N(21) > 4, and thanks Stein for pointing
out that this disproves MacNeish’s conjecture. (Indeed, if MacNeish’s conjecture were true,
one ought to have N(21) = 2.)

Bose and Shrikhande [22] saw Parker’s work and made a remarkably astute generalization,
replacing the block design by a pairwise balanced design. This yielded the first ‘Euler
spoiler’, the proof that N(22) > 2 (indeed, they showed also that N(66) > 5, for example,
demonstrating the power of their technique). Bose and Shrikhande introduced the notion of
Fulerian numbers, those singly even numbers for which Euler’s conjecture does hold. But,
teaming up with Parker for the coup de grace, they [23] showed that N(n) > 2 for all n = 2
(mod 4), n > 10, and hence that there were no Eulerian numbers other than 2 and 6. The
10 x 10 mutually orthogonal latin squares are the real Euler spoiler. This got their picture
in the New York Times on 26 April 1959.

The machinery developed by Bose, Shrikhande, and Parker provided an end to Fuler’s
conjecture, but opened an even more challenging line of investigation: What then is N(n)?
This problem is so well connected in mathematics, so rich in applications, and so easy to
understand, that Mullen [74] has proposed it as the “next Fermat problem”.

The ideas initiated by Parker, and extended in elegant ways with Bose and Shrikhande,
led to a new class of constructions developed by Wilson [111]. Often we treat these as
separate constructions entirely, but the remarkable developments in Wilson’s methods are
often heralded by special cases treated in the work of Bose, Shrikhande, and Parker.

Since Wilson’s 1974 paper, much effort has gone into refining both the original Bose—
Shrikhande—Parker technique, and the constructions of Wilson. Indeed so many generaliza-
tions of one kind or another have been devised that we cannot do much more than state



them here, and refer the interested reader to the large and informative literature. We refer
the reader to [35] for a more detailed presentation of constructions, and for a description of
their use in determining lower bounds on N(n) via a massive computer program.

In this paper we provide a detailed list of constructions for MOLS, concentrating on the
uses of pairwise balanced designs and transversal designs in recursive constructions.

We begin, however, with an up-to-date table of values of lower bounds for N(n), for
1 < n < 200. This updates Table 11.2.72 of The CRC" Handbook of Combinatorial Designs
[4] for values of 1 < n < 200. The new values are indicated with a box around them and the
constructions for these values can be found in §7.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Ojcc o« I 2 3 4 1 6 7 8 2 10 5 12 3 4 15 16 3 18
2004 5 3 22 5 24 4 2 5 28 4 3031 5 4 5[6] 36 4 [5]
40 7 40 5 42 5 6 4 46 [7] 48 6 5 5 52[5] 5 7 7T 5 58
60 4 60 4 663 7 5 66 5 6 6 70 7 72 5 5 6 6 6 78
80| 9 80 8 8 6 6 6 6 7 8 6 T 6 6 6 6 7T 96 6 8
100 8100 6102 7 7 6 ws 6108 6 6 13112 6 7 6 8 6 6
120 7120 6 6 6124 6 126127 7 6130 6 7 6 7 7136 6 138
1400 6 7 6 1010 7 6 7 6 s 6150 7 8 8 T 6156 7 6
1600 9 7 6162 6 7 6166 7168 6 8 6172 6 6 14 9 6 178
180 6180 6 6 7 9 6 10 6 8 6190 7192 6 7 6196 6 198

Table 1: Lower bounds on N(n)

2 Definitions

In order to describe the many constructions for sets of orthogonal latin squares, we must
first establish the mathematical framework in which we work.
A transversal design of order or groupsize n, blocksize k and index A, denoted TD, (k,n),

is a triple (V, G, B), where
1. V is a set of kn elements;
2. G is a partition of V into k classes (called groups), each of size n;
3. B is a collection of k—subsets of V' (called blocks);

4. every unordered pair of elements from V is either contained in exactly one group, or
is contained in exactly A blocks, but not both.

When A = 1, one writes simply TD(k, n).



A TD(k,n) is equivalent to the existence of k& — 2 mutually orthogonal latin squares of
order n, and the various generalizations of transversal designs all have reasonably natural
interpretations in that formulation. An orthogonal array OA(k,s) is a k x s? array with
entries from an s-set S having the property that in any two rows, each (ordered) pair of
symbols from S occurs exactly once. A TD(k,n) is also equivalent to an OA(k,n).

These equivalences are straightforward. That MOLS and OAs are equivalent can be
seen as follows. Let {L;, : 1 < ¢ < k} be a set of & MOLS on symbols {1,...,n}. Form
a (k+2) x n? array A = (a;;) whose columns are (2,7, L1(7,7), L2(2,7), ..., Lx(z,7))T for
1 <4,5 < k. Then A is an orthogonal array, OA(k + 2,n). This process can be reversed
to recover k MOLS of side n from an OA(k + 2,n), by choosing any two rows of the OA to
index the rows and columns of the k squares. That OAs and TDs are equivalent can be seen
as follows. Let A be an OA(k,n) on the n symbolsin X. On V = X x {1,...,k} (a set of
size kn), form a set B of k-sets as follows. For 1 < j < n? include {(q;;,7):1 <7 <k} in
B. Then let G be the partition of V whose classes are {X x {¢}:1 <¢ < k}. Then (V,G,B)
is a TD(k,n). This process can be reversed to recover an OA(k,n) from a TD(k,n). We
choose to remain with one notation as much as possible, and use the language of transversal
designs.

An incomplete transversal design of orderor groupsize n, blocksize k., index A\, and holesizes

bi,...,bs, denoted ITD,(k, n; by, ..., bs) for short, is a quadruple (V, G, H, B), where
1. V is a set of kn elements;
2. G is a partition of V into k classes (groups), each of size n;

3. H is a set of disjoint subsets Hy,..., Hs of V', with the property that, foreach 1 < < s
and each G € G, |G N H;| = b;

4. B is a collection of k—subsets of V' (blocks);
5. every unordered pair of elements from V' is

e contained in a hole, and contained in no blocks; or
e contained in a group, and contained in no blocks; or

e contained in neither a hole nor a group, and contained in A blocks.

When > 7, b; = n, an ITD(k,n;by,....,b,) is a partitioned ITD, or PITD(k, n;by,. .., bs).
We often write the list by,...,b, in “exponential notation”, so that z{" - --x¥ signifies that
there are y; holes of order x;, for each 1 <7 < s.

Again, when A = 1, it can be omitted from the notation. Another notation that we
employ for an ITD\(k,n; by,...,bs) is TD\(k,n) —> ", TD(k, b;). It is trivial that the hole
sizes could in fact be written in any order, and so when one refers to a specific hole size such
as by, one is really speaking of an arbitrary hole size.



3 Filling, Truncation and Inflation

First we introduce the easiest of the constructions, treating some basic equivalences.

Lemma 3.1 A TD(k,n) is equivalent to an ITD(k,n; by, ..., bs) for any nonnegative integers
bi,...,bs with > °_ b <1.

Actually, holes of order 0 can be assumed present or absent to suit our purposes. Holes
of size 1, on the other hand, can always be assumed absent if we choose, because the hole
can always be replaced by a block; one cannot, however, assume them to be present unless
there is a suitable block available for deletion to form the hole. It is convenient to make a
simple convention which avoids treating holes of size 0 and 1 as special cases in each result,
namely:

Convention 3.2 For all nonnegative integers k, there exists a TD(k,0) and a TD(k,1).
More than one hole of size one can occasionally be assumed:
Lemma 3.3 [30] A ITD(k,n;h) is equivalent to a ITD(k,n;h,1,1) when (k—1)h <n. In
particular, a TD(k,n) is equivalent to a TD(k,n) — 3T D(k,1) when k < n.
At this point, it is sensible to remark on the basic necessary condition:

Lemma 3.4 An ITD(k,n;h) exists only if h =n or (k—1)h <n. When (k—1)h =n, all

blocks have exactly one point in the hole.

The case when h = n corresponds to an incomplete transversal design which has no
blocks at all, just one big hole. Nevertheless, to be explicit, we state the following:

Convention 3.5 There exists a TD(k,n) — TD(k,n) whenever n is a positive integer and
k is a nonnegative integer.

When (k — 1)h 4+ 1 = n, simple counting shows that each element not in the hole lies on
exactly one block that does not meet the hole. Deleting these blocks, we obtain:

Lemma 3.6 An ITD(k,(k—1)h+1;h) is equivalent to a PITD(k,(k—1)h41; B 1(E=2)h+1),

Lemma 3.3 has a number of generalizations. One can remark, for example, that a simple
greedy strategy always produces 14 [#=1] disjoint blocks in a TD(k, n), which can improve
upon Lemma 3.3 when k is “small” relative to n. In addition, we can examine what happens
when there are two or more holes assumed:

Lemma 3.7 An ITD(k,n;by, ..., bs) always satisfies (k — 1)by + by < n (in particular, this
holds when by and by are orders of the largest and second largest hole, respectively). Moreover,
the ITD always has a block missing the first two holes, unless (k— 1)by + by =n, by = bs =
co.=bs and n =377 b;. Consequently, an ITD(k,n;by,by) with by > by > 0 is equivalent
to an ITD(k,n; by, by, 1).

We collect some other easy constructions in three main categories.
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3.1 Filling

The basic result for filling an incomplete transversal design is:

Lemma 3.8 If an ITD(k,n; b, ..., bs) exists, and an ITD(k,by;aq,...,a,) exists, then an
ITD(k,n;aq, ... a,,ba,... bs) exists.

For partitioned I'TDs, one can fill in a more general way:

Lemma 3.9 Suppose there is a PITD(k,n;by,...,bs). Let ¢ be a nonnegative integer, and
suppose that, for each 2 <1 < s, there is a

TD(k,bj+¢e)—TD(k,e).

Then there exists a TD(k,n+¢) —TD(k,by +¢).

3.2 Truncation

Truncation is the operation of removing some points from a group. Here we examine the
simplest form of truncation, when all points in a single group are deleted.

Lemma 3.10 [If a TD(k + 1,n) exists, then a TD(k,n) —nT D(k,1) exists.

Lemma 3.11 If a TD(k + 1,n;h) exists, then a TD(k,n) — TD(k,h) — (n — )T D(k,1)

exists.

Removing a level of an ITD also has quite a useful consequence, which has been little
exploited previously:

Lemma 3.12 Suppose that an ITD(k + 1,n;b1,...,bs) exists and Y i_, b; < n. Suppose
further that, for 1 <1 <'s, there exists TD(k,b;). Then there exists a TD(k,n) —nTD(k,1).
If instead there exists TD(k,b;) for 2 <i < s, then there exists a

TD(k,n)—TD(k,by) — (n—b)TD(k,1).
A somewhat similar operation can be done with partitioned ITDs:

Lemma 3.13 Suppose that a PITD(k + 1,n;b1,...,bs) exists, with by > 0. Suppose further
that, for 2 < i < s, there exists TD(k,b;). Then there exists a TD(k,n) —TD(k,by) — (n —
b))T' D(k,1).



3.3 Inflation

The main form of inflation is a simple direct product:

Lemma 3.14 Suppose that an I[TD(k,n;by,...,bs) and a TD(k,w) both exist. Then a
ITD(k,wn;wby, ..., wby) exists.

It bears frequent repetition that filling followed by inflation is weaker than inflation
followed by filling. To see that it is no stronger, it suffices that each ingredient can be
inflated by the same factor and the filling operation remains possible. That it is on occasion
weaker follows from the fact that the ITD on wn points may exist, even when the ITD on n
points does not exist.

4 PBDs, GDDs and the Bose—Shrikhande—Parker The-
orem

A pairwise balanced design of orderv and blocksizes K, denoted (v, K)-PBD, is a pair (X, D).
X is a set of v elements, and D is a set of subsets (blocks) of X for which |D| € K for each
D € D. For every 2-subset of elements {x,y} C X, there is exactly one block containing x
and y.

A clear set in a PBD is a set of pairwise disjoint blocks (also called a partial parallel
class). A near clear set in a PBD (X, D) is a subset D° C D defined as follows. For every
block D € D¢, there is a distinguished element ep € D, the tip of D. The set D¢ is near
clear if, for each * € X contained in ¢, blocks of D¢, z is the tip of at least ¢, — 1 blocks in
De.

This definition seems unnaturally complicated, so perhaps some examples are needed. A
set of blocks that all intersect in a single element, and are otherwise pairwise disjoint, is near
clear: Simply taking the common element to be the tip of each block. A different example
arises from three blocks which pairwise intersect in one point, but the common intersection
is empty. Choosing the three intersection points to be the tips of the three blocks shows that
this structure is near clear.

Let us denote a (v, K)-PBD (X, D) with a near clear set D¢ as a (v, K3, K.)-PBD, where
K. is the sizes of the blocks that actually arise in the near clear set, and K, is the sizes of the
blocks that actually arise among the remaining blocks (note that K, U K. C K, but equality
is not necessary, as a (v, K )-PBD need not in general realize every block size in K).

4.1 First Constructions Using PBDs and GDDs
Now to the basic (Bose-Shrikhande-Parker) construction:

Theorem 4.1 Suppose that a (v, Ky, K.)-PBD exists. Suppose that, for everym € Ky, there
exists a PITD(k,m;1™). Further suppose that, for every m € K., there exists a TD(k,m).
Then there exists a TD(k,v).



Theorem 4.1 is a fairly standard Wilson-type construction using weight k for pairwise
balanced designs [112]. The unusual feature is the use of near clear sets rather than clear
sets. We content ourselves with remarking that for blocks in the near clear set, the ingredient
used is actually a TD(k,m) — TD(k, 1), and the TD(k, 1) is chosen to coincide with the k
copies of the tip element. In this vein, when ingredients exist with more than one hole of
size 1, one could permit the blocks of the near clear set to have more than one tip; this
would extend the definition of near clear set. However, we know of no applications of this
generalization, so we omit it.

When we have a certain types of near clear sets (clear sets being one example), we can
say something about incomplete TDs as well:

Theorem 4.2 Let (X, D) be a PBD of order v. Suppose that for some subset D° C D of
blocks, we have that there is one element x € X, so that for D, D" € D°, DN D" C {z}.
Suppose that for every D € D\ D¢, there exists a PITD(k,|D|;1P1). Fiz a block F € D,
and suppose that for every block D € D\ {F'}, there exists a TD(k,|D|).

Then there exvists a TD(k,v)—TD(k,|F]).

Next we constrain the near clear set to be a clear set to obtain:

Theorem 4.3 Let (X, D) be a PBD of order v. Suppose that some subset D¢ C D of blocks
is a clear set. Suppose that for every D € D\ D¢, there exists a PITD(k,|D];1Pl). Then
there exists a TD(k,v) = pepe TD(k, |F]).

In fact, letting f = > pepe |[F|, we obtain the stronger conclusion that there exists the
partitioned 1TD

TD(k,v)— (v — [)TD(k, 1) = Y TD(k,|F|).

FeDe

Theorem 4.4 Let (X,D) be a PBD of order v. Suppose that some subset D° C D of
blocks is a clear set. Let I' € D\ D°. Suppose that for every D € D\ D¢, there exists
a PITD(k,|D[;11P1).  Further suppose that for every D € D\ (D U {F}), there exists a
TD(k,|D|). Then there exists a TD(k,v) —TD(k,|F]).

When the clear set is spanning (i.e., the union of the blocks is the set X of all elements
in the PBD, or it is a parallel class), more flexibility exists. We introduce the appropriate
language. A group-divisible design of order v, blocksizes K, and type T = (11,...,t,), denoted
(v, K)-GDD of type T, is a triple (X,C, D), where X is a set of v elements, C is a partition
of X into g classes (groups) G, ...,G,, where |G;| = t;; and D is a set of subsets (blocks) of
X, with the property that when D € D, we find |D| € K. Moreover, every pair of elements
appears together exactly once, either in a group or in a block. Often the type is written in
exponential notation.

Now a (v, K)-PBD is equivalent to a (v, K)-GDD of type 1¥. A TD(k,n) is equivalent
to a (kn,{k})-GDD of type n*. Also, converting the groups of a (v, K)-GDD of type T into
blocks, we obtain a (v, K UT)-PBD in which the images of the groups form a parallel class
of blocks. Then restating Theorem 4.3 when the clear set is a parallel class is equivalent to:
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Theorem 4.5 Suppose that there is a (v, K)-GDD of type T = (t1,...,t5). Suppose that,
for each m € K, there is a PITD(k,m;1™). Then there exists a PITD(k,v;ty,... t5).

Theorem 4.5 shows that one can employ the presence of a single parallel class. How can
we use the presence of further parallel classes?

A PBD or GDD with element set X and block set B is resolvable it B can be partitioned
into parallel classes. The partitioning into parallel classes is a resolution. Intermediate
between GDDs and resolvable PBDs, we may have a PBD in which some, but not all, of the
blocks are partitioned into parallel classes. Since resolvable PBDs form a special case, we
treat this more general situation.

Theorem 4.6 Let (X,D) be a PBD of order v. Suppose that D is partitioned into r + 1
classes Dy, ..., Doy, where D; is a parallel class for1 <1 <r, and D,y is arbitrary (possibly
even empty). Suppose that, for each D € D,yq, there is a PITD(k,|D|; 11P].

Now for 2 <1 <r, let ¢; be a nonnegative integer. Suppose that, for each 2 <1 < r, and
each D € D;, there exists a

TD(k,|D|+¢e;) —TD(k,e;) —|D| TD(k,1).
Let 0 =% '_,e;. Then there exists a

TD(k,v+0)—TD(k,0)— Y _ TD(k,|D]),

DEDl

a partitioned ITD.

Theorem 4.6 applies equally well to resolvable GDDs, or GDDs with parallel classes;
simply treat the groups as blocks forming a parallel class of an equivalent PBD.

4.2 Incomplete PBDs

Group-divisible designs are pairwise balanced designs with a spanning set of holes (the
groups). Here we treat pairwise balanced designs with one hole. An incomplete PBD of
order n, blocksizes K, and a hole of order h ((v, h, K)-IPBD) is a triple (V, H,B). |V| = v,
|H| = h,and H C V. Bis a set of subsets of V, for which B € B implies | B| € K. Moreover,
(V,BU{H})is a (v, KU{h})-PBD. Since any single block can be taken to form a clear set,

we obtain from Theorem 4.3:

Corollary 4.7 Suppose there exvists a (v, h, K)-IPBD. Suppose that for each m € K, there
evists @ PITD(k,m;1™). Then there exists an ITD(k,v;h), and in fact there exvists a
PITD(k,v; h*1v=h).

In a (v, h, K)-IPBD (V, H,B), a holey parallel class is a set P of disjoint blocks, none of
which meet the hole, and for which V' = H U|Jpcp P. One simple way to produce IPBDs
with a holey parallel class is the following:



Lemma 4.8 [f there exists a (v, K)-GDD of type T = (t1,t2,...,15), then there exists a
(v,t1, K U{ta,...,t:})-IPBD with a holey parallel class with block sizes in {ty, ..., 15}.

Later we see other ways to produce IPBDs that have many holey parallel classes, so here
we examine a method to use their presence:

Theorem 4.9 Let (V, H,B) be an (v, h, K)-IPBD, with blocks partitioned into classes Py,..., Pr, Q
so that, for 1 < < r, P; ts a holey parallel class. For 2 < ¢ < r, let ¢; be a nonnegative
integer. Now suppose that, for each B € Q, there exists a PITD(k,|B|; 11B). Purther sup-

pose that, for each 2 < i <r, and each B € P;, there exists a PITD(k,|B| + ¢;;e!11P1). Let
o=>_,¢ci. Then there exists a partitioned 1TD

TD(k,v+0) = TD(k,o+h)— > TD(k,|B).
BeP;

Actually, we could take 2 = 0; then the IPBD would be a PBD and the holey parallel
classes would be parallel classes. Theorem 4.9 would then reduce to Theorem 4.6.

A (v, h, K)-IPBD can have both parallel classes and holey parallel classes. If such an
event occurs, we can proceed as follows:

Theorem 4.10 Let (V,H,B) be an IPBD with |V| = v and |H| = h. Suppose that B
has a partition into classes {P1,..., P, Q1,...,Qs, R}, where the {P;} are parallel classes,
the {Q;} are holey parallel classes, and R is the remaining set of blocks (possibly empty).
Suppose that s > 1. Suppose that, for every B € R, there exists a PITD(k,|B|;1171).

Choose nonnegative integers ¢; for 1 <@ < r, and suppose that, for every B € P;, there
evists a PITD(k,|B| + &;e111Bh). Let 0 =>0_, &,

Choose nonnegative integers v; for 2 <1 < s, and suppose that, for every B € Q;, there
evists a PITD(k,|B| + v;; 7 1B, Let o' = >0 ;.

Then two outcomes are possible:

1. If there exists a TD(k,o + o') — T D(k,0'), then there exists a

TD(k,v+0+0')=TD(k,h+0')y = Y TD(k,|B).

Bed;
2. If there exists a TD(k,h + o') — T D(k,0'), then there exists a

TD(k,v+0+0')=TD(k,o+0')— > TD(k|B]).

Be@,

Some variants are possible. Prior to choosing the two outcomes, we find that two holes,
one of size h + ¢’ and the other of size o + ¢’, intersect in ¢’ elements. The last ingredients
used to “break the tie” could themselves have holes, which would lead to even more holes in
the final result. We do not pursue this.

However, it is necessary to explore what happens when we save back a parallel class
instead of a holey parallel class. That leads to the next result:
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Theorem 4.11 Let (V,H,B) be an IPBD with |V| = v and |H| = h. Suppose that B
has a partition into classes {P1,..., P, Q1,...,Qs, R}, where the {P;} are parallel classes,
the {Q;} are holey parallel classes, and R is the remaining set of blocks (possibly empty).
Suppose that v > 1. Suppose that, for every B € R, there exists a PITD(k,|B|; 1151).

Choose nonnegative integers ¢; for 2 <@ < r, and suppose that, for every B € P;, there
evists a PITD(k,|B| + e;; et 1Bl Let 0 =37, ;.

Choose nonnegative integers v; for 1 <@ < s, and suppose that, for every B € Q;, there
evists a PITD(k,|B| + ;711 Let o/ = >7_ 7.

Suppose that a PITD(k,h+ o'; (o)1 1") exists.

Then there exists a partitioned ITD,

TD(k,v+0+0')=TD(k,o+0') = Y TD(k,|B|).
BeP;

One way to construct suitable IPBDs for Theorems 4.10 and 4.11 is to use the following
result:

Lemma 4.12 Let (V,B) be a resolvable PBD with resolution {P1,...,P.}. Choose B € Py.
Then (V, B,B\ {B}) is an IPBD whose blocks are partitioned into one holey parallel class
Pi\{B}, and r — 1 parallel classes Py, ..., Ps.

One can go further, and consider structures in which there are many holes, and holey
parallel classes associated with each. In this direction, one might consider “frames”, for
example. However, we do not explore this extension.

4.3 Making PBDs and GDDs

Making pairwise balanced designs and group-divisible designs is an industry in itself. Since
Wilson’s pioneering work on the asymptotic existence of designs (see [112]), constructions of
PBDs and GDDs have flourished. Indeed one of the main reasons to construct incomplete
transversal designs is to use them in constructing various other classes of designs.

We make no effort in this paper to describe all of the available constructions for PBDs
and GDDs. Instead, we describe here some constructions from ITDs; in §5 we see a number
of other constructions from other classes of designs.

Let us start with easy things. A TD(k,n) is itself a (nk,{k,n})-PBD; in fact, it is a
(nk, {k})-GDD of type n*.

Deleting any set of elements from a PBD produces another PBD, in which each deleted
element is simply omitted from each block in which it occurred (blocks of size 0, 1, or 2
may result; blocks of size 0 or 1 can be omitted if we choose). Thus every PBD gives an
enormous variety of smaller PBDs by this puncturing process. However, it should be clear
that puncturing a TD randomly typically leads to a PBD with many block sizes. Since we
are interested in being able to apply the theorems given earlier, we are concerned primarily
with the cases when puncturing leads to relatively few block sizes.
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We describe some concrete instances here. The first is obtained by puncturing points
from ¢ of the groups.

Lemma 4.13 Suppose that a TD(k + (,n) exists. Choose integers by, ..., by so that 0 <
b; <n for1 <i< /(. Then there exvists a (kn + Ele b, Ak, k+1,....k+(})-GDD of type
nFbibl - bl

Of course, in Lemma 4.13, blocks of sizes {k, k+1,..., k+(} are all possible. But whether
a block of a particular size arises depends on the structure of the TD and the actual points
deleted. Nevertheless, we can apply Theorem 4.5 to this GDD. Knowing the actual block
sizes could result in a stronger application of that theorem. We return to this point in §6.7.
Truncating a single group can yield useful IPBDs:

Lemma 4.14 Suppose that a TD(k+1,n) exists. Let0 < p <n—1. Then a (kn+p,p,{k, k+
1,n})-IPBD exists having one holey parallel class of type n*, n — p parallel classes of type
k™, and the remaining pn blocks of size k.

An extreme case of Lemma 4.14 is when the whole group is deleted. This is equivalent
to the following well-known result:

Lemma 4.15 A resolvable TD(k,n) is equivalent to a TD(k + 1,n).
Puncturing partitioned I'TDs leads to GDDs with groups arising from the holes:

Lemma 4.16 Suppose that there exists a PITD(k + 1,n;1"). Let 0 < o < n. Then there
exists a (nk+a,a,{n, k+1,k})-IPBD with a holey parallel class of type n*, a parallel class
of type (k + 1)*k"=%, and all other blocks of sizes k (whenever a < n) and k4 1 (whenever
a>0).

Puncturing one group of an incomplete TD with one hole leads to:

Lemma 4.17 Suppose that there exists an ITD(k 4+ 1,n;h). Let 0 < o < h. Suppose that
there exists @ PITD(k,k + 1;1%*Y) and a PITD(k, k;1%). Then there exists a PITD(k,nk +
a, (kh + oz)lk”_h).

Actually, more can be said since h — « holey parallel classes of blocks of size k missing
the hole of size kh + « are present, and we have used only a single one here.

We see more sophisticated ways to puncture a TD in §6.7; we give one of the simpler
cases here:

Lemma 4.18 Suppose that a TD(k + (,n) exists with { > 2. Let 1 < o < n. Then a
(nk+a+0—1,{kk+1,k+2k+(})-GDD of type n"a' 171 exists.

Using resolvable TDs, we also obtain:

12



Lemma 4.19 Suppose that a TD(k+(+1,n). Then there is a (nk+ 0, k+ 0, {k,k+1,n})-

IPBD having a holey parallel class of type k™', a parallel class of type n*1°, and n — 1

parallel classes of type (k + 1) k"~".
Another useful puncture is to delete points from a block, rather than from a group:

Lemma 4.20 Suppose that a TD(k,n) exists. Let p be an integer satisfying0 < p < k. Then
there exists a (k(n—1)+p, p, {k,k—1,n,n—1})-IPBD and a (k(n—1)+p,{k,k—1,p})-GDD
of type n?(n — 1)k=¢.

In the IPBD, blocks of size n appear only if p > 0 and blocks of size n — 1 appear only
if p < k. In both the IPBD and the GDD, blocks of size k — 1 appear if and only if p < k;
blocks of size k appear if and only if p > 0 or k < n.

Deleting a whole block gives, on two occasions, PBDs that ought to be noted.

Lemma 4.21 If a TD(n + 1,n) eaists, then there is a (n? — 1,{n})-GDD of type (n —
)™ (In fact, they are equivalent.) Further deleting all elements in one group, we obtain

a resolvable (n(n — 1), {n — 1})-GDD of type n"~*.

When a block is deleted from a resolvable TD, information about parallel classes can be
retained:

Lemma 4.22 Suppose that a TD(k + 1,n) exists. Let p be an integer satisfying 0 < p < k.
Then there exists a (k(n — 1) 4+ p,p,{k,k — 1,n,n — 1})-IPBD having one holey parallel

class of type k"1, one parallel class of type (n — 1)Pn*=*, and n — 1 parallel classes of type
Erokte(f — 1)k=r,

4.4 The Bose—Shrikhande—Parker Theorem

The (general form of the) Bose-Shrikhande-Parker theorem [23, 30] exploits additional struc-
ture occurring in some PBD. We generalize the notion of parallel class. An a-parallel class
in a PBD (V,B) is a set C C B of blocks, with the property that every # € V appears in
exactly a blocks of C. Evidently, a 1-parallel class is just a parallel class.

An a-parallel class C is symmetric if every block in C has size a. It is easy to verify in
this case that the number of blocks in C coincides with the number of elements in V — hence
the term symmetric.

A separable PBD is one whose blocks can be partitioned into 1-parallel classes and
symmetric parallel classes; within each class, all blocks have the same size.

Now we can state the Bose—Shrikhande—Parker theorem:

Theorem 4.23 Let (V,B) be a (v, K)-PBD, and suppose that B can be partitioned into
classes Py,..., P.,S1,...,8s. For1 <o < r, P; is a parallel class. For 1 <1 < s, §;
is a symmetric o;-parallel class. Now let ¢; € {0,1} for 1 < i < s, and suppose that a
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PITD(k,a; 1) eaists if e; = 0, and that a PITD(k,c; + 1; 1% exists if e; = 1. Let
g = Ef:l E; Q0.

Let ~; be a positive integer, for 2 < ¢ < r. Suppose that, for 2 < ¢ < r and for each
B € P;, there exists a PITD(k,|B|+ ;7 1IBl) exists. Let o' = >_ ;.

Then, if r > 1, there exists the partitioned 11D

TD(k,v+0+0')=TD(k,o+0') = Y TD(k,|B|).
BeP;

If r =0, we instead obtain the partitioned I'TD

TD(k,v+0)—TD(k,o)—vTD(k,1).

4.5 Making Separable PBDs

The Bose—Shrikhande—Parker theorem is a generalization of Theorem 4.6 to separable PBDs.
However, it is difficult to find examples of separable PBDs that are not resolvable. We see
in §5 that examples arise from cyclic block designs and symmetric block designs. The only
other general construction for separable PBDs is due to Brouwer [27]:

Theorem 4.24 Let q be a prime power, and let 0 < t < ¢*> — g+ 1. Then there exists a
separable (t(¢* + q + 1), {t,q + t})-PBD which has a partitioning with ¢* — q+ 1 —t parallel
classes of blocks of size t, and one symmetric (¢ + t)-parallel class.

5 Steiner Systems, Symmetric Designs and Difference
Sets

A Steiner system of order v and blocksize r, denoted S(2, k,v), is a (v, {x})-PBD. (This is
actually a Steiner 2-design, but we only have occasion to use the case of t = 2 here; it is
also a (balanced incomplete) block design, but we only treat the case when A = 1. For these
reasons, we have adopted the Steiner system notation here.)

v(v—1)

An S(2,k,v) is symmetric when the number of blocks in the design, namely (1)
equal to v (i.e., v = k(k — 1)+ 1). A symmetric S(2, k,v) is equivalent to a projective plane
of ordern = k — 1, with v = n? 4+ n + 1 elements (and n? + n + 1 blocks or lines). In a
projective plane, every two distinct blocks intersect in one element.

An S(2,k,v) is cyclic when there is an automorphism of the design that is a v—cycle.

First, the basics:

is

Lemma 5.1 Removing one element from a projective plane of order n, and treating the
resulting blocks of size n as groups, a TD(n + 1,n) is produced.

We can also remove a whole block:

14



Lemma 5.2 Removing one block from a projective plane of order n (or one group from a
TD(n + 1,n), a resolvable TD(n,n) (affine plane of order n, or S(2,n,n?)) results.

Moreover, every TD(n,n) is resolvable and can be extended to a projective plane.

5.1 Arbitrary S(2,k,v)

An S(2,k,v) is, of course, itself a PBD. However, sometimes truncating this special type of
PBD can lead to extra information. We can truncate points from a single block:

Lemma 5.3 If an S(2,k,v) exists, then for 0 <@ <k, a (v — 2,k —x,{k,k — 1})-IPBD
exists having x holey parallel classes of type (k — 1)/ [t has blocks of size k unless

r =k and the S(2,k,v) is symmetric.
Next we delete a small number of points, not all from the same block.

Lemma 5.4 [fan S(2,k,v) exists, then there exists a (v—3,{k—2,k—1,£})-PBD in which
there are exactly three blocks of size k — 2, and they form a near clear set.

If an S(2,k,v) exists, then there exists a (v —4,{rk — 2,k — 1,k})-PBD in which there
are exactly four blocks of size kK — 2, and they form a near clear set.

We can naturally delete points all over if we so desire, but to obtain useful results we
want to minimize the number of different block sizes. With this in mind, we give another
definition. If A is a set of s points, no three of which lie on a block, then A is an s—arec.

Lemma 5.5 [f an S(2,k,v) exists having an s-arc, then for all 1 < x < s, there exists a
(v—a,{xk — 2,k —1,k})-PBD. Blocks of size k — 2 always occur when x > 1. Blocks of size
k — 1 appear unless v =14 (& — 1)(k — 1). Blocks of size £ always appear.

Examples of designs with useful arcs appear in §5.3.

Existence of block designs is a central problem in combinatorial design theory, and there
is a huge literature. For existence results, see [T1]. Much is known about resolvability of
block designs, furnishing many examples of resolvable PBDs.

5.2 Cyclic S(2,k,v)

Cyclic S(2, k,v)s have been studied extensively; see [3]. A cyclic S(2, k,v) can exist only if
v=1,k (mod k(k —1)). When v =1 (mod k(x — 1)), all block orbits under the cyclic
automorphism have length v (they are full). When v =k (mod k(s — 1)), one block orbit
has length = (it is short), and the rest are full.

A full orbit of blocks can be easily checked to be a k-parallel class. Hence every cyclic
S(2, k,v) is separable, with Lﬁj k-parallel classes, and one parallel class if the short orbit
is present, none otherwise. We can therefore apply the Bose-Shrikhande—Parker theorem to
cyclic S(2,k,v)s.
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5.3 Symmetric Designs

First we remark on a basic filling result that does not follow from filling the corresponding

PBD [67].
Lemma 5.6 [f a symmetric S(2,k,v) exists and a TD(k, r) exists, then a TD(k,v) exists.

Next observing that a symmetric design S(2, k, v) is itself a single ((v—1)/(xk—1))-parallel
class, we can apply the Bose—Shrikhande—Parker theorem to obtain:

Lemma 5.7 If a symmetric S(2,k,v) exvists and a PITD(k,x + 1;1%t1) exists, then a
TD(k,v + =L) — TD(k,“=L) exists.

r—1 r—1

See also [67].

Certain projective planes have large arcs:

Theorem 5.8 The desarguesian projective plane of order ¢ (a prime power) contains a
(¢+ 1)—arc (an oval) if ¢ is odd, and contains a (¢ + 2)—arc (a hyperoval) if q is even.

5.4 Line—flips in Affine Planes

Suppose that a TD(n,n) exists; this is an affine plane of order n. Now choose an integer x
with 1 < & < n, and choose one block B. Delete all points from = of the groups except those
on block B. Next delete all points on block B in the remaining n — « groups. The resulting
PBD has blocks of five types:

1. a single block on x points, which is the truncation of B;

2. n— 1 disjoint blocks each of size n — x, which are the truncations of the blocks disjoint
from B in the affine plane;

3. n — x disjoint blocks each of size n — 1, which are the truncations of the remaining
groups;

4. blocks of size n — x — 1 that do not intersect the truncation of B (in the affine plane,
they did intersect B);

5. blocks of size n — x + 1 that do intersect the truncation of B.

Types (1) and (2) form a parallel class; so also do types (1) and (3). Thus adding
a point at infinity to the blocks of type (1) and (2), called a type A extension, gives a
{n—2 —1,n—a+ 1}-GDD of type (n — 1) *(z + 1)'. On the other hand, adding a
point at infinity to blocks of types (1) and (3) gives a {n — « — 1,n,n —a + 1}-GDD of
type (n — )" '(x + 1)* (a type B extension). Greig [49] observes that either GDD can be
extended with a further point at infinity to form a PBD on (n —x)(n — 1) + 2 + 2 with block
sizes {n,n —x —1,n—x+1,(x +2)*}. The superscript » indicates that a block of size x + 2
is present, and that all other blocks have sizes from {n,n —z — 1,n —x + 1}.
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5.5 Difference Sets

Singer [94] showed that the desarguesian projective plane of order ¢ (a prime power) has
a representation as a cyclic difference set. This provides a mechanism for finding other
configurations in desarguesian planes.

Let 7 be an additively written group of order v. A k-subset D of 7 is a (v, k, A)-difference
set of order n = k — X if every nonzero element of 7 has exactly A representations as a
difference d — d' of distinct elements from D. The difference set is abelian or cyclic if the
group 7 has the corresponding property.

The development of a difference set D under the action of the group 7 is a symmetric
design; when A = 1, it is a projective plane of order n. Thus our earlier remarks apply to
the symmetric design. But here we may obtain more information.

We consider a (¢* + ¢+ 1,¢ + 1,1)-difference set D over the cyclic group Z,24,41, using
the usual representation over the integers modulo ¢? + ¢ + 1. For any divisor d of ¢* + ¢+ 1,
denote by D; 4 the elements of D that are congruent to 2 modulo d. For an arbitrary subset
TcC{0,1,...,d =1}, let Drg = {J;er Dia- Then we have the following result, first studied
by Brouwer [27] and later extended by Greig [49]:

Theorem 5.9 Let D be a (¢*+q+1,q+1,1)-difference set over the integers modulo ¢*+q+1.
Let d be a divisor of ¢* +q+ 1, and T C {0,1,....d —1}. Then the collection of blocks

e +i}:0<i<¢*+¢q, v+imoddc T}
is a pairwise balanced design on |I|q2"?++1 elements.

The relevance of Theorem 5.9 is that it produces a PBD having at most d different block
sizes.

5.6 Configurations in Projective Planes

In §5.5, we saw that projective planes arising from difference sets can embed a pairwise
balanced design that often has “few” block sizes. We are interested in this phenomenon for
a number of reasons. It provides a way to construct pairwise balanced designs, of course.
But what is more critical for us is that it tells us something about the structure of the
TD(n + 1,n) that arises from the plane — and this information can be helpful in predicting
the block sizes that result when we puncture the TD. There is a third reason as well, namely
that when PBDs live in a projective plane, we can use this to produce more PBDs. We
pursue this in §5.7, but for now we explore results on when PBDs live in projective planes.

Ovals, Hyperovals and Denniston Arcs

Arcs (ovals and hyperovals) form one important class of pairwise balanced designs inhabiting
projective planes (Theorem 5.8), although the PBDs themselves are quite trivial. However,
associated with the exterior lines of a hyperoval are a number of important PBDs contained
in the plane [92]:
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Theorem 5.10 The desarguesian projective plane of order ¢ = 2% contains

1. a resolvable ((1),{%})-PBD;
2. a (<q+2>, {24+ 1,9+ 1})-PBD; and

2

3. a resolvable ((q";), 1,4})-PBD.
Denniston arcs [41] provide a generalization of these:

Theorem 5.11 The desargquesian projective plane of order ¢ = 2% contains, for every 1 <
B <a,

1. a resolvable (2°T7 — 2% + 2° {2°})-PBD;

2. q (22 4 201 _90k8 _ 98 1 {2 _ 9% 1 1,2* 1+ 1})-PBD; and
3. a resolvable ((2* — 2°)(2% + 1), {2 — 27 2°})-PBD.

Greig [49] employs ovals in planes of odd order to prove:

Theorem 5.12 If ¢ is an odd prime power, the desarquesian plane of order q contains

1. a GDD on (%) points with uniform group size %, and block sizes in {%, %}, and
2. a GDD on (q—|2'1> points with uniform group size %, and block sizes in {%, %}

Subplanes and Baer Subplanes

More complex examples are given by subplanes of a plane. Simple numerical arguments
show that a projective plane of order ¢ can have a projective subplane of order p only if
q > p*. In the positive direction, we have [18]:

Lemma 5.13 The desarquesian projective plane of order p® has a subplane of order p°
whenever (| a.

The extreme case when a = 2 is especially important. In this case, the subplane is a

Baer subplane, and some elementary counting arguments provide us with useful information.
Let ¢ = p” and ¢? = p?”. Let (V. B) be the plane of order ¢?, and (X, D) be its Baer subplane
of order g¢.

Lemma 5.14 1. Every point v € X lies on ¢ + 1 lines of B that intersect X in ¢+ 1
points, and on ¢* — q lines of B thal contain only x from X.

2. Every point of V \ X lies on one line of B that intersects X in ¢+ 1 points, and lies
on ¢* lines of B that intersect X in one poinl.
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3. Hence, all lines of B intersect X in either 1 or ¢ + 1 points.

Removing the points in X from the plane yields a (¢* — ¢, {¢* — ¢, ¢*})-PBD. Considering
any point * € X, we find that the blocks containing X form a parallel class of this PBD,
and hence we in fact obtain a (¢* — ¢, {¢* — ¢, ¢*})-GDD of type (¢* — q)q+1(q2)q2_q, (Y,C).

Now consider a block of size ¢* — ¢ in C. Tt cannot intersect any group of size ¢* — ¢ (lines
meet at a single point in the projective plane of order ¢?), so it must intersect all groups of
size ¢%. In fact, all blocks and groups of size ¢> — ¢ are disjoint, so we have [95]:

Lemma 5.15 If a projective plane of order ¢* has a Baer subplane of order q, there exists
2
a (¢* — ¢,{¢*})-GDD of type (¢*> — )7 +7+".

Now a block of size ¢* from C must intersect all groups of size ¢%, and precisely ¢ of the
groups of size ¢ — ¢q. Thus we can delete all but z of the groups of size ¢ to obtain:

Lemma 5.16 If a projective plane of order ¢* has a Baer subplane of order q, then for all
0 <z <¢*—q, there exist

Loa((q® =g+ 1) +2q* {q + 2,2})-GDD of type (¢* = )" (¢*)"; and

2 a (¢ = a)(a+1) +2¢* {a+2,¢°})-GDD of type (¢* — )"z,
Baer subplanes can be exploited further yet; see, for example, [59] for the following:

Lemma 5.17 The desarguesian projective plane of order ¢* can be partitioned into ¢*> —q-+1
element—disjoint Baer subplanes (each on ¢* + q+ 1 points).

Considering any line of the plane, simple counting shows that it intersects one Baer
subplane of this partition in ¢ + 1 points, and the remaining ¢* — ¢ subplanes in one point
each. So retaining points of ¢ of the subplanes in the partition, we obtain:

Lemma 5.18 Using the desarguesian projective plane of order ¢* (q a prime power), for
each 1 <t < ¢* — q, we obtain a (t(¢*+ g+ 1),{q+1t,t})-PBD in which the blocks of size t
are partitioned into ¢* — ¢ + 1 —t parallel classes.

Other specific planes have subplanes of interest: the Hughes plane of order 9 has a
subplane of order 2 [40]; indeed it has a partition into subplanes of order two [62]. The
Hughes plane of order 25 contains subplanes of orders 2 and 3 [85]. For every odd prime
power ¢, there is a non-desarguesian plane of order ¢* (the Hall plane) that contains a
subplane of order 2 [80]. A complete survey of subplanes is not attempted here.
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Affine Subplanes

Now we examine other structures in planes. In the direction of affine planes residing in
projective planes, Ostrom and Sherk [81] and Righy [86] proved:

Theorem 5.19 The desarquesian projective plane of order q (a prime power) contains an

affine plane of order 3 (an S(2,3,9)) if and only if ¢ =0,1 (mod 3).

The notion of “containment” in Theorem 5.19 is that a subset of the points is selected,
and the intersections of all lines with these points induce shorter lines; then keeping all such
truncated lines on two or more points gives the affine plane.

Subsquares

Often a subplane (projective or affine) is not present, but useful portions are. For example,
considering the standard construction of the desarguesian plane, we find [37]:

Lemma 5.20 In the desarguesian plane of order p*, for each 0 < f < «, there is embedded
a (3p° +1,{3,p° + 1})-PBD having three blocks of size p” + 1 meeting in a single point, and
all other blocks of size three.

Actually, a more convenient way to express this is to observe that, when we remove the
point common to the three “long” blocks, we form a TD(p® + 1,p*). Truncating to the
TD(3,p”) on the three special groups, and interpreting this TD as a latin square, we are
essentially noting in Lemma 5.20 that this latin square of size p® has a subsquare of size p°.

Using the structure of the finite field, one can extend this to obtain:

Lemma 5.21 In the desarguesian plane of order p*, for each 0 < < «, there is embedded
a((p+1)p° +1,{p+1,p° +1})-PBD having p + 1 blocks of size p° + 1 meeting in a single
point, and all other blocks of size p+ 1.

When 3 = a — 1 in Lemma 5.21, all lines of the plane meet the sub-TD in p® + 1, p+ 1,
or 1 points. The latter tangent lines induce a design in the dual plane; this tangent design
is a {p”, p* — p*’=* + 1}-GDD of type (p” — p*)*" " (p> — p>=F).

Blocking Sets and Generalizations

We can represent the desarguesian plane of order ¢ using elements ((GF(¢)U{oc}) x GF(¢))U
{o0}. Taking w as a primitive element, the lines are:

{00, (£,0), (&, w )7 (€ w77} for ¢ € GF(q)
{(0,0), (0, ), («” ) (w72 0)} ~ for £ € GF(q)
{(00,w?), (0,), (w 7€+w0+]) (W W) for (€ GR(g), 1<) <g—1

{00, (oo,()), (00, w?), ..., (co,wi™?}
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Write ¢ = ef 4+ 1, and consider the elements
{(vai)v(wivo)v(oov_wi) 1=0 (mOd f)}

When the lines of the plane are restricted to this set of 3s points, every line is truncated
to 0, 1, 3, or e points. Indeed the structure is a TD(3,¢e). It follows that a (¢* + ¢+ 1 —
3e,{¢+1,¢,9g—2,g+ 1 — €e})-PBD exists in which the three blocks of size ¢ + 1 — e form
a near clear set. Applications of this are described in [36] and [50]. When f = 2, adjoining
{00, (00,0),(0,0)} to the 3e points yields a minimal blocking set [31].

5.7 Line-flips in Projective Planes

When a PBD is embedded in a projective plane, we can exploit the structure of the enclosing
plane to form other PBDs. Simply taking all points of the plane not in the PBD, for example,
gives:

Lemma 5.22 [f a (v, K)-PBD is embedded in a projective plane of order n, and there is a
one—to—one correspondence between blocks of the PBD and lines of the plane so that each
block is extended to the corresponding line (which may require adding blocks of sizes 0 and 1
to the PBD), then there exists a (n* +n +1 — v,F)-PBD, where K = {n+1—-s:5€ K}.

In fact, the number of blocks of size n + 1 — s in the resulting PBD is the same as the
number of blocks of size s in the original PBD.

One can also do a “line—flip”, by choosing some block of the PBD, deleting the points on
this block and instead adding the points on the line of the plane which extends this block,
but not on the block itself [49]. One obtains the following:

Lemma 5.23 Suppose that a (v, K)-PBD is embedded in a projective plane of order n, and
there is a one—to—one correspondence between blocks of the PBD and lines of the plane so
that each block is extended to the corresponding line (which may require adding blocks of
sizes 0 and 1 to the PBD). Suppose further that the embedded PBD has a block of size s. Let
K= {s=1,s+1:s€ K}. Then there exists a (v+n+1—2s,n+1 —S,[/X\’)-[PBD.

Examples of PBDs that inhabit projective planes are given in §5.6, and also arise from

Theorem 5.9.

6 Wilson’s Theorem

Wilson’s theorem, and all of its variants discussed here, start with a transversal design (or
incomplete transversal design) of order ¢ of blocksize k + (. We refer to this design as the
master design.

The master design is always taken to be (V,G,B), although it may have additional
structure, or holes. Let G = {G4,..., Gy, Eq,..., B}, Let E; = {x;,...,24}. For each
T € Ule E;, let w;; be a nonnegative integer, the weight of x;;. For each block B € B, let
wP = w;; when BN E; = {z;;}.

K3
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6.1 Transversal Designs as Master Designs

First we give what has come to be accepted as the basic form of Wilson’s theorem, although
Wilson [111] gave it in the case that w;; € {0,1} forall 1 <¢ <, 1 <j <t and A=p=1.

Theorem 6.1 Suppose that a TD,(k+{(,t) exists. Suppose that for each B € B, there exists
¢ ¢
TD\(kym+ Y wP) =Y TDy(k,w?)
=1 i=
Then there exists a
¢t ¢ t
TD/\M(]C, mt + Z Z wij) — Z TD/\M(]C, Z wij)
=1 7=1 =1 7=1

Of course, if we can fill some or all of the holes, further incomplete transversal designs
result. When g = 1, we can obtain different holes as well:

Theorem 6.2 Suppose that a TDy(k + (,t) exists. Let F' € B. Suppose that for each
B € B\ {F}, there exists

l l
TD\(kym+ Y wf) =Y TDy(k,wf)
=1 =

Suppose that, for 1 < < {, there exists

TDy(k wa — TDy\(k,w).

Then there exists
¢t ‘
=1 j=1 =1

We now change the structure of some of the ingredients. Let By be the blocks B for
which 217 € B € B, and let By = B \ B;.

Theorem 6.3 Suppose that a TDy(k + (,t) exists. Suppose that for each B € By, there
exists

l l
TD\(kym+ Y wf) =Y TDy(k,wf)

=1
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Let oy, g, ..., be positive integers with Y '_, oy < m. Suppose that for each B € By, there
exists

l r l
TD\(k,m+ Y wf) =Y TDy(k,ai) = Y TDy(k,wf).
=1 =1

=1

Then there exists
l t r l t
TD/\(]C, mt + Z Z wij) — Z tTD/\(m, Oéi) — Z TD/\(]C, Z wij).
=1 j=1 =1 =1 7=1
Finally we change the structure of all of the ingredients:

Theorem 6.4 Suppose that a TD,(k + (,t) exists. Let aq,az,...,a, be positive integers
with Y i_, a; < m. Suppose that for each B € B, there exists

l r l
TDy\(k,m+ Y wP) =Y TD\(k,a;) = Y TDy(k,wf).
=1 =1

=1

Then there exists

l t T l t
TD/\M(]C, mt + Z Z wij) — Z TDM(m, Oéit) — Z TD/\M(]C, Z wij).
=1 j=1

=1 7=1 =1

6.2 Incomplete Transversal Designs as Master Designs

In the preceding constructions, we saw how incomplete transversal designs can be used in
conjunction with a master design that is a transversal design. Here we examine variants
where the master design itself is incomplete.

Theorem 6.5 Let 31, ..., 3, be positive integers with Y.\ _ B, < t. Suppose that there exists
a master design, a

TDu(k+ 1) = TD,u(k+(,B,).
a=1

For 1 < a < u, let O, be the points in the ITD that lie in the alh hole of size 3, (so that
O, contains ,(k + () elements in total). Let z;, = inje(EmOa) w;j. Suppose that for each
B € B, there exists

l l
TD\(k,m+ Y wP) =Y TDy(k,w?).
=1

=1
Suppose further that, for 1 < a < u, there exists

¢ ¢
TD/\M(kv mﬂa + Z Zia) - Z TD/\M(kv Zia)-
=1

=1
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Then there exists a

¢t ¢ ¢
T Dy, (k,mt+ Z Z wij) — Z T Dy, (k, Z w;j)
i—1 =1

i=1 j=1
Actually, the holes that arise on the extra ¢ levels, and the holes that arise from the holes
in the master design in the construction are not disjoint. In Theorem 6.5, we have elected to
fill the latter and leave the former. In Theorem 6.6, we do the opposite. Since the theorems
differ only in the last set of ingredients, they look cosmetically similar. Nevertheless, we
state the conditions of the theorem in their entirety.

Theorem 6.6 Let 3y, ..., 3, be positive integers with Y _ B, < t. Suppose that there exists
a master design, a

TD.(k+ 1) =Y TD,(k+L(,B,).
a=1

For 1 < a < u, let O, be the points in the ITD that lie in the alh hole of size 3, (so that
O, contains ,(k + () elements in total). Let z;, = inje(EmOa) w;j. Suppose that for each
B € B, there exists

¢ ¢
TD\(kym+ Y wf) =Y TDy(k,wf)
Suppose further that, for 1 <1 < /{, there exists

13 U
TD/\M(]C, Z wij) — Z TD/\M(]C, Zia)-

J=1

Then there exists a

l t U l
TD/\M(]C, mt + Z Z wij) — Z TD/\M(]C, mﬂa + Z Zia)-
a=1 =1

=1 7=1

6.3 Du Variations

Du [45] considers another use of incomplete transversal designs in Wilson’s theorem. De-
note by I'TD*(k,t; h) an I'TD(k,t; k) that has s disjoint holey parallel classes of blocks. An
ITD(k,; h) is equivalent to a PITD(k,t; A11'="). Then we have:

Theorem 6.7 Suppose that an ITD*(k,t;h) exists. Suppose that a TD(k,m) exists. Let
Wi, ..., ws be nonnegative integers, and suppose that an ITD(k,m 4 w;;w;) exists for each
i=1,...,s. Then a TD(k,mt+ 37 w;) —TD(k,mh+ 3 "_ w;) exists.

If w; =0 for some 1, 1 <1 < s, then the stronger result is obtained that a

D(k,mt + Z w;) —TD(k,mh + Z w;) — )T D(k,m)

=1

exists.
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6.4 Another Variant
Colbourn [34] establishes the following:

Theorem 6.8 [f there exists a ITD(k,n + h;h) for which (k —2)h = n, and there exists a
TD(k,m), then there exists an ITD(k,mn + (m — 1)h;n™(h(m — 1))').

6.5 Wojtas Structures

For ease of exposition, we assume henceforth that A = p = 1; the extensions to higher index
are, for the most part, routine.

An examination of the propositions used in Brouwer [25] reveals that many, due to
Wojtas, arise by inflating objects before filling them. We develop a framework here for
presenting such constructions generally.

A partial transversal design of orderor groupsizen, blocksize k, denoted here by PT D(k,n),
is a triple (V, G, B), where

1. V is a set of kn elements;
2. G is a partition of V into k classes (called groups), each of size n;
3. B is a collection of k—subsets of V' (called blocks);

4. every unordered pair of elements from V' is either contained in exactly one group, or is
contained in at most one block. Flements appearing together in a group do not appear
together in a block.

A hole H of order hin a PTD(k,n) (V,G,B)is aset H CV with |H NG| = h for each
GeG,and HN B ={ for each B € B.

Two holes Hy and Hy are compatible if Hy N Hy C G for some GG € G. Compatibility is a
weaker condition than disjointness. A Wojtas structure ot order n, blocksize k, and holesizes

M, denoted WS(k,n, M), is a PT D(k,n) (V,G,B) together with a set H of holes, so that

M= |k£| : H e H}.
In addition, every pair of distinct holes from H are compatible. Moreover, every pair {x,y} C
V' that does not appear in a group, either appears in exactly one block of B, or appears in
exactly one hole of H, but not both.
If, in the definition, we replaced the single word “compatible” by the stronger word
“disjoint”, we would repeat the definition of incomplete transversal design. We make some
simple (but important) observations.

Lemma 6.9 A WS(k,n,{1}) is equivalent to a TD(k,n).
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Lemma 6.10 If a WS(k,n, M) exists, and a TD(k,m) exists for each m € M, then a
TD(k,n) exists. Indeed, a TD(k,n) —TD(k,m) exists for every m € M.

Lemma 6.11 If WS(k,n, M) and TD(k,w) both exist, « WS(k,wn,{wm : m € M}) exists.

Of course, when the holes are all disjoint, we have incomplete transversal designs. Some-
times we can employ other useful patterns of holes as well. Many variations are possible,
but we just develop one generalization here.

A Wojtas structure WS(n, k, M) (V,G,H,B) is partitionable of type
(e1s... e N, 0),
denoted PWS(k,njer,...,eqN,c), if M =N U{er,..., e}, and the holes are
H={Ho Hepr ..., Hoo, JU{H; 1 <i<e,1<j<dl),

so that, for each 1 <7 <e¢, Hoyy Hooyy -+ -y Hoopy Hity Hiay - . ., Hig are all disjoint, N contains
all hole sizes among the {H;;}, and, for all 1 < <, U§:1 H, U U;l:l H;; = V. Moreover,
H.; is a hole of size e,.

One might think about the {H,; : 1 <j < d}, 1 < ¢ < ¢ as being “partial parallel classes
of holes”; each, together with the special holes {H., }, forms a “parallel class of holes”.

In fact, we have the following equivalence:

Lemma 6.12 A PITD(k,n;by, ..., bs) is equivalent to a
PWS(kyn;by, ... bs;0,¢)
for all e¢. For every 0 < < s, it implies the existence of a
PWS(k,n;byy ..o b {bigr, ... b5}, 1),
Lemma 6.13 A resolvable TD(k,n) is equivalent to a PWS(k,n;0;{1},n).
Inflation, as in Lemma 6.11 works again, but we obtain a stronger result:

Lemma 6.14 [f a PWS(k,n;eq, ..., e M*, ¢) exists and a TD(k,w) exists, so also does a
PWS(k,wn;weyq,...,we;{wm :m e M*},c).

Naturally, since a PWS is a WS, one can apply Lemma 6.10 to fill the holes. However,
the structure of the partitioning can be exploited to obtain a more sophisticated result:

Lemma 6.15 Suppose that there exvists a PWS(k,njeq,...,es; M*,¢). Let v1,...,7. be
nonnegative integers, and write o = Y ., v;. Suppose that, for every m € M*, and every
1 << U, there exists

TD(k,m +~;) —TD(k,~).
Suppose further that, for 2 <1 < {, there exists

TD(k,e; +0)—TD(k,o).

Then there exists

TD(k,n+0)—TD(k,e1 + o).
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Again, we have the phenomenon that in the middle of the construction, we have ¢ holes
of sizes 0 +¢; for 1 <1 < /0, but they all intersect in a hole of size o. Lemma 6.15 gives one
way to fill all but one of the holes. Here is another:

Lemma 6.16 Suppose that there exvists a PWS(k,njeq,...,es; M*,¢). Let v1,...,7. be
nonnegative integers, and write ¢ = Y :_, v;. Suppose that, for every m € M*, and every
1 << U, there exists

TD(k,m +~;) —TD(k,~).

Suppose further that, for 1 <1 < {, there exists
TD(k,e; +0)—TD(k,e;).

Then there exists

l
TD(k,n+0)—> TD(ke,).
=1

When ¢ =1 and M = {m}, we can also avoid filling one of the parallel classes of holes,
to obtain:

Lemma 6.17 Suppose that a PWS(k,n;e;{m},c) exists. Let v1,...,7. be nonnegative in-
tegers, and write o =Y ;_, vi. Suppose that there exists, for every 1 <i<e¢, a

TD(k,m +~;) —TD(k,~).

Then there exists

(n=e)/m
TD(k,n+0)=TD(k,e+0)— Y TD(km).

=1

The power of Wojtas structures in general is that, rather than filling them immediately,
one can inflate them and then fill them. This can often yield better results than are obtained
by filling them and then inflating.

The additional power of partitioned Wojtas structures is the more sophisticated manner
in which they can be filled.

It appears that Wojtas structures and partitioned Wojtas structures can lead to new
incomplete transversal designs, but of course we have seen no ways to construct them except
via equivalences to transversal designs and incomplete transversal designs.

6.6 Making Wojtas Structures

By now, it should come as no surprise that one way to construct Wojtas structures is to use
Wilson’s theorem in its many disguises. But an easier way to get some Wojtas structures is
by removing one group from incomplete TDs:
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Lemma 6.18 1. [fa TD(k + 1,n) exists, then a PWS(k,n;0;{1},n) exists.

2. If an ITD(k + 1,n;h) exists, then a PWS(k,n;h;{1},h) exists. If in addition a
TD(k,h) exists, then a PWS(k,n;0;{1},n — h) exists.

3. If an ITD(k 4+ 1,n;by,...,bs) exists, and TD(k,b;) exist for 2 < i < s, then a
PWS(k,n;bi; {1}, b1) exists.

Using Wilson—type constructions, more general Wojtas structures can be made. Here is
a variant of Theorem 6.1, using the same notation:

Theorem 6.19 Suppose that a TD(k + (,t) exists. Let D C B. so that if BN D C FE; for
distinet B,D € D and 1 <1 < (, then w? = 0. Suppose that for each B € B\'D, there exists

l l
TD(k,m+> wP)=> TD(k,w?).
=1

=1
Suppose that for each 1 <1 < (, there exists a

t

TD(]C, zt: wij) — Z TD(]C, wij).

7=1
Then there exists a ,
¢
WS(]C, mi 4+ Z Z Wij, M)
=1 7=1

where M = {m +>'_, wP : B € D}.
When a single level is used, one can in fact make partitioned WSs:

Theorem 6.20 Suppose that a TD,(k + 1,t) exists. Suppose that for each B € B, there
exists
TDy(k,m + w) — TDy\(k,wp),

whenever w? is nonzero. Let ¢ be the number of {wy; : 1 < j <t} which are zero. Then we

obtain a Wojtas structure WS(mt + 2221 w;j, {1, m, 2221 w;;)} in which all blocks of size m
form C holey parallel classes for the hole of size 2221 W

Numerous variants are possible as well, but we do not consider them here.
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6.7 Thwarts

Naturally, applications of Wilson’s theorem depend on the presence of appropriate ingredi-
ents, and a natural question is to determine the ways in which the blocks of a TD(k + ¢, 1)
intersect the points of nonzero weight in the ¢ “extra” groups. With this in mind, we
give a definition. Let ¢ be a nonnegative integer, and let Z = {iy,... 15} with 0 <
i1,02, -ty < (. Further suppose that 0,sy,89,---,5, < t. Let (X,G,B) be a TD(k + (,1)
with G = {G1,..., Gy, Ey, ..., FE}. Then an ((,7, 51, 82,...,5) -thwart is a set S = U§:1 Sy,
where S; C E; with |5;| = s; for each 1 < j </, such that for every B € B, |BN S| € T.

Thwarts provide a convenient notation for simpler applications of Wilson’s theorem, in
which it is sufficient to know the number of points of intersection of each block with the
points of nonzero weight in the extra groups. When different weights are chosen, however,
more detailed structural information is required. Here we consider the structure of various
thwarts. Given a set Z, let Z, = {{ —i:i € I}.

Lemma 6.21 If a TD(k + (,t) contains an ((,T,s1,...,s:)-thwart, it also contains an
(0, Tt — s1,...,1 — sp)-thwart.

Levels

The simplest thwarts are found by simply truncating ¢ groups in each possible way to obtain:

Lemma 6.22 Let { be a positive integer, and let a TD(k+(,t) exist. Then for all choices of
integers sq,..., 80 satisfying 0 < s; <t for 1 <i <, the TD contains a ((,{0,1,2,...,0 —
1,0}, 81, .., 80)—thwart.

Often we refer to such a thwart as £ levels in the TD.

Spikes and Stairs

If all of the points of nonzero weight are on a single block, we obtain an (¢,{0,1},1,1,...,1)-
thwart, which we call a spike. Every TD(k + (,t) contains such a spike.

We can choose one point to be of nonzero weight on each level, so that no block in-
tersects the points of nonzero weight in more than two points. We call the resulting
(0,{0,1,2},1,1,...,1)~thwart a stair. Stairs are essentially the analogue of arcs in pro-
jective planes. In fact, if the TD(k + ¢, 1) is the truncation of the TD(¢ + 1,¢) arising from
the desarguesian plane, the existence of an oval in the plane ensures that the stair is present
for all choices of (. If the TD(k + ¢,1) arises in another way, we cannot assume to inherit
the structure of a plane. Nevertheless, if (%1) < t, simple counting ensures that the stair is
present.

One can find an intermediate structure between spikes and stairs. Suppose that one point
of nonzero weight is chosen on each extra group so that there are s blocks that are disjoint
on the extra levels and intersect the extra levels in xq,...,x, positions, respectively. This
is an (0,{0,1,2,2q,...,25},1,1,...,1)-thwart, provided that no block intersects one of the
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s chosen blocks in more than two points of nonzero weight in the extra levels. Call this a
generalized stair, and use the notation ((;xy,...,xs)-stair. The presence of such thwarts is
not as easily checked, but when s = 1 it suffices to ensure that <£;1> — (?) +1 < t. Another
case is when s = 2 and xy + x5 = {; then the thwart is always present.

Stairs, Spikes and Levels

One can take a stair, spike or generalized stair on some levels, and truncate the remaining
levels. For example, a spike involving u levels and a v disjoint levels truncated to sq1,..., s,
points leads to a (u+v,{0,1,..., v+ 1, v+u}, 1“s;182- - s,)-thwart, in which only one block
of size v 4+ w is present if u > 1.

Similarly, one can take a stair or generalized stair together with some truncated levels.
For example, to an ({;x)-stair, we can append a truncated level on s < ¢ — (5) + (g) +1
points in a TD(k,t) to obtain a (¢ + 1,{0,1,2},1*s')~thwart (in other words, adding a
truncated level does not introduce a new intersection, provided that the truncated level is
short enough).

Numerous variations are possible; the stair or spike can meet the added level(s) in one
(or more) point(s). An ({;xq,xz)-stair could also have a further truncated level, and the
blocks of size z; and z5 could each meet or miss the truncated level.

Subplanes

When a projective plane of order ¢ contains a subplane of order s, the corresponding TD(# +
1,t) contains an (s + 1,{0,1,s 4+ 1},s,s,---,s)-thwart. If the subplane is a Baer subplane,
then the “0” can be omitted.

Instead deleting a point outside the subplane from the projective plane, we obtain an

(s 4+ s+ 1,{0,1,s +1};1°+s+1) thwart.

Subsquares

When a TD(k,t) contains a TD(3,¢) having a “subsquare”, i.e. a sub-TD(3,s), then the
TD(k,t) contains a (3,{0,1,3},s,s,s)-thwart. When ¢t = 2s, the “0” can be omitted.
Affine Subplane

When a projective plane of order ¢ contains an affine subplane of order s, the TD(¢ + 1,1)
contains a (s +1,{0,1,s},s —1,s —1,---,s — 1)-thwart.

Trinity

Wojtas [115] observed that one can truncate three levels but obtain a thwart with blocks
intersecting in 1, 2 and 3 points only — none in 0 points. The precise condition under

which one can obtain such a (3,{1,2,3},s1, 59, s5)-thwart is open for TD(k,?) in general,
although some bounds on sy, $2, 85 are given in [37]. When the TD(3,¢) involved arises from
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a cyclic latin square (which can be assumed if we are free to choose three groups of the
TD(t + 1,t) from the desarguesian plane of prime order t), a sufficient condition is that
81+ $2 4 83 > 2t — 1. The conditions for arbitrary TD(k, n) seem very difficult; see [37] for
some other observations in this regard.

7 Direct Constructions

Until this point, we have concentrated on recursive methods, and despite a large collection
of constructions being introduced, we have failed to construct any examples. Let us remedy
that situation. Lemma 5.1, together with the well-known fact that projective planes exist
(at least) for all prime power orders, gives the main set of basic ingredients:

Theorem 7.1 [ft is a prime power, a TD(t + 1,t) exists.

Surprisingly little else in the way of general direct constructions is known, although much
is known from clever hand and machine computations in specific cases. The main device
used is to assume that the TD has a “reasonably large” automorphism group acting on it,
and to use the structure of the automorphisms to reduce the computational search.

We require some basic definitions. Let (7,®) be a group of order g. A (g, k; \)-difference
matriz is a k X gA matrix D = (d;;) with entries from 7, so that for each 1 <¢ < j <k, the
multiset

{dM@d]‘_gl:ngSg)‘}

contains every element of 7 A times. When 7 is abelian, typically additive notation is used,
so that differences d;y — d;; are employed.

A (g, k; A, s w)-quasi-difference matric (QDM) is a matrix @ = (¢;;) with & rows, with
each entry either empty (usually denoted by —) or containing a single element of 7. Each
row contains exactly Au empty entries, and each column contains at most one empty entry.
Furthermore, for each 1 <1 < 7 <k, the multiset

{qir — qjo: 1 << Mg — 1+ 2u) + p, with ¢ and ¢j» not empty}

contains every nonzero element of 7 A times, and contains 0 g times.
The essential connections with transversal designs follow:

Lemma 7.2 1. A (g, k; X)-difference matriz gives a TD\(k +1,¢).
2. A (g, k; N, p; u)—quasi—difference matriz with @ < X\ gives a TDy\(k, g+ u) — T D\(k,u).
3. A (g,k;1,0;u)—quasi—difference matriz gives an ITD*""F=2(k, g + u;u).

The latter statement gives means to construct master designs for Du’s variation, Theorem
6.7. We can now give the constructions for four new difference matrices. Fach of these yield
improvements to the lower bound for N(n) given in [4].
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Theorem 7.3 (Abel [2]) There exists a (36,7,1)-difference matriz. Hence there exists a
TD(8,36), implying that N(36) > 6.

Proof: To construct a (36,7,1) difference matrix over 7 = Zy x Zgy X Z3 x Zs. Consider the
following 7 x 12 array over 7:

0000 0000 0000 0100 0100 0100 1000 1000 1000 1100 1100 1100
0100 1020 1120 0100 1010 1110 0100 1010 1110 0100 1020 1120
0100 1000 1122 1122 0102 1020 1020 1112 0101 1021 1111 0101
1000 1102 0102 0100 1001 1102 1101 0121 1010 1012 1111 O110
1000 1122 0112 1010 1102 0110 1020 1110 0112 0101 1022 1111
0100 1022 1110 1012 1110 0102 1101 0101 1001 1110 0101 1002
1100 0110 1010 1002 1122 0112 0120 1011 1112 1011 1121 0101

Use each column [(ay1, by, c1,d1), (ag, by, ez, dy), ..., (ar, by, ez, d7)]T to generate two others:

[(015101d1)(025202d2+1)(a3b303+1d1)(a4b4c4+2d4+1)(asbscs-l-st+2)(a6b606+2d6)(a7b707+1d7-|-1)]T
and
[(a1b101d1)(a2b202d2—|—2)(a3b303—|—2d1)(a4b404—|—1d4—|—2)(a5b505—|—1d5—|—1)(a6b606—|—1d6)(a7b707—|—2d7—|—2)]T.
The resulting 36 columns form a (36,7,1) difference matrix.

Theorem 7.4 (Abel [2]) There exists a (39,6, 1)-difference matriz. Hence there exists a
TD(7,39), implying that N(39) > 5.

Proof: To construct a (39,6, 1)-difference matrix over 7 = Zsg, let

1 0O 0 0 0 0 0
16 4 23 13 5 12 11
922 95 11 22 34 23 6
A= - and Ay =0 o0 7 15 99
38 27 21 8 16 19 26
23 16 19 34 38 26 21

Define automorphisms «, 3 (acting on the columns of A; and A,) by a(a,b,c,d, e, f)T =
(16¢, 16a, 166,16 f,16d,16¢)T and B(a,b,c,d, ¢, f)T = (—a,—b, —c, —d, —e, — f)T.

Apply the group of order 2 generated by 3 to the column of A; and the group order 6
generated by « and 3 to the columns of A;. Finally, append a column of zeros to obtain a
(39,6,1)-difference matrix.

Theorem 7.5 (Wotjas [122]) There exists a (48,8, 1)-difference matriz. Hence there exists
a TD(9,48), implying that N(48) > 7.
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0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
2000
2001
2010
2011
2100
2101
2110
2111
3000
3001
3010
3011
3100
3101
3110
3111
4000
4001
4010
4011
4100
4101
4110
4111
5000
5001
5010
5011
5100
5101
5110
5111

0000
0010
0011
0001
1000
1010
1011
1001
0100
0110
0111
0101
2100
2110
2111
2101
4000
4010
4011
4001
5000
5010
5011
5001
5100
5110
5111
5101
1100
1110
1111
1101
4110
4100
4101
4111
3110
3100
3101
3111
2010
2000
2001
2011
3010
3000
3001
3011

0000
0011
0111
0100
0010
0001
0101
0110
2000
2011
2111
2100
4010
4001
4101
4110
1100
1111
1011
1000
4100
4111
4011
4000
2010
2001
2101
2110
5010
5001
5101
5110
5100
5111
5011
5000
1110
1101
1001
1010
3010
3001
3101
3110
3000
3011
3111
3100

0000
3000
0001
3001
0011
3011
0010
3010
1010
4010
1011
4011
5000
2000
5001
2001
3100
0100
3101
0101
0111
3111
0110
3110
5011
2011
5010
2010
2100
5100
2101
5101
4101
1101
4100
1100
2110
5110
2111
5111
4111
1111
4110
1110
4001
1001
4000
1000

0000
3001
3011
0010
2111
5110
5100
2101
5001
2000
2010
5011
2001
5000
5010
2011
4111
1110
1100
4101
0011
3010
3000
0001
3110
0111
0101
3100
4110
1111
1101
4100
0100
3101
3111
0110
4000
1001
1011
4010
4001
1000
1010
4011
2110
5111
5101
2100

0000
3010
0101
3111
5101
2111
5000
2010
3000
0010
3101
0111
4101
1111
4000
1010
3011
0001
3110
0100
1110
4100
1011
4001
3100
0110
3001
0011
4011
1001
4110
1100
2001
5011
2100
5110
5010
2000
5111
2101
5001
2011
5100
2110
1000
4010
1101
4111

Table 2: (48,8, 1)-difference matrix
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0000
3011
3110
0101
4010
1001
1100
4111
5111
2100
2001
5010
1000
4011
4110
1101
5011
2000
2101
5110
3100
0111
0010
3001
4001
1010
1111
4100
2110
5101
5000
2011
3000
0011
0110
3101
0001
3010
3111
0100
2111
5100
5001
2010
1011
4000
4101
1110




Proof: Let ? = Zg X Zg X Zz X Zy. Transpose the array in Table 2 to obtain a (48,8, 1)-
difference matrix.

Theorem 7.6 (Abel [2]) There exvists a (45,7;1,1;9)-quasi—difference matriz. Hence there
exists a TD(7,54), implying that N(54) > 5.

Proof: Consider the matrices

0 0 0 0
1 27 16 7 3
A= 24 40 1 35 and As = 7
10 30 22 44 7
5 18 14 33 3
30 16 33 27 0

As in Theorem I1.2.54 of [4] replace each column of [A1] — A1]|Az] by its 7 cyclic shifts. This
gives a (45, 7;1, 1;9)-quasi—difference matrix.

One important device for constructing quasi—difference matrices is the use of V(m,1)
vectors. See [33] for a definition, and for the following:

Theorem 7.7 A V(m,t) vector gives a (mt+1,m+2;1,0;t)-QDM. A V(m,1) vector exists

if m and t are not both even,

1. whenever mt 4+ 1 <5000, m —1 <t, m <10 and mt + 1 is prime, except when m =9
and t =8, as no V/(9,8) exists.

2. whenever mt +1 <5000, m —1 <+t, m <6 and mt+ 1 is a prime power, except when
m =3 andt=>5, as no V(3,5) exists.

Related computational constructions for (mt + 1,m + 2;1,0;¢)-QDMs are reported in
[34]. Building on these, V(m,)s have now been shown to exist whenever mt + 1 is a prime
power, m < 6, and m >t — 1, except when (m,t) = (3,5) [66]. Abel [2] found another useful
family:

Theorem 7.8 For 11t 4+ 1 a prime, there exists a (11t + 1,k;1,0;¢)-QDM exists for k =11
if 198 < 11t +1 < 600 and for k =12 if 600 < 111 + 1 < 992.

He also found (9 -4+ 1,9;1,0;4)— and (9-8+1,9;1,0;8)-QDMs.

Despite these few more general computational results, most direct constructions are one—
of—a—kind. For TD, we summarize in Table 3 known direct constructions, not obtained by
one of the three previous constructions of QDMs.

In some cases, a direct construction yields an idempotent TD(k, ¢) , which is a PITD(k, ¢; 1%).
In Table 4, direct constructions of idempotent TDs having the same blocksize as the largest

34



Order | Blocksize | Reference(s) Order | Blocksize | Reference(s)
6 3 [104] I 5 [109]
10 4 [23] 44 6 [9]
12 7 [61] 48 9 [122]
14 5 [105] 51 7 2]
15 6 91] 52 6 1]
8 5 [109] 54 7 2]
20 6 [106] 55 7 72]
21 7 79] 56 9 [72]
2 5 [109] 30 1 5]
24 7| [, 87, 119] 112 | 15 [5]
26 6 32] 160 | 11 (5]
28 6 1, 88] 176 | 16 (5]
30 6 9] 208 | 16 (5]
33 7 2] 24 | 15 [5]
34 6 2] 352 | 20 (5]
35 7 [120] 46 | 20 (5]
36 8 2] 544 | 20 (5]
38 6 (9] 640 | 11 (5]
39 7 2] 896 | 15 (5]
40 9 [5]

Table 3: Direct Constructions for TDs
Order | Blocksize | Reference(s) || Order | Blocksize | Reference(s)
6 3 - 34 6 B
10 4 [48] 38 6 2]
14 5 [16] 42 5 [16]
18 5 [124] 44 6 2]
20 6 2] 52 6 2]
22 5 1] 55 7 2]

Table 4: Direct Constructions for Idempotent TDs

ITD(4,6;2)
ITD(6,10; 2)
PITD(5,11;2'1%) [100]
PITD(5,12;2°)
PITD(5, 14; 3'1')

[47]
28]

[15]
7]

ITD(5,8;2)  [99]
PITD(5,9;2'17) [126]
ITD(5,12;3)  [99]
ITD(6,15;3)  [34]

Table 5: Some Incomplete TDs
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known TD on the same parameters are reported. Ganter, Mathon and Rosa [48] actually
construct a TD(4,10) having four disjoint parallel classes, the maximum known to date.

A large number of ad hoc constructions for incomplete TDs appear in the literature; we do
not attempt to catalogue them all here. In Table 5, we report some of the small incomplete
TDs that have been constructed directly.

Of course, many more incomplete TDs have been constructed directly. Some construc-
tions of TDs have proceeded by making an ITD with a hole and filling the hole; see
[1, 9, 32, 109]. For ITD(4,¢;h)s, see [57] and references therein. For ITD(5,1;h)s, see
[7, 45, 46] and references therein for a number of direct constructions. For ITD(4, hn; h™)s,
see [43, 101]. For ITD(5, hn; h™)s, see [15, 17, 64, 78, 100]; Dinitz and Stinson [43] also give
some [TD(6,2n;2")s and ITD(8, 2n;2")s.

Colbourn [33] gives a number of constructions for QDMs leading to [TDs, and some spo-
radic examples appear in [75]. Sporadic designs that find uses include the elliptic semiplane

of Baker [13], which is a {7}-GDD of type 3'*; and the {9}-GDD of type 3** by Mathon [70].
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