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1. Optimal design problems

Consider the linear model

y(x) = �T (x)� + �(x),

where the components of �T (x) = (�1(x), . . . ,�k(x)) are k linearly independent continuous functions on some compact space
�, � = (�1, . . . ,�k) is a vector of unknown parameters to be estimated and the error terms �(x) are assumed uncorrelated and
homoscedastic.

1.1. Exact design problem

An exact design is defined by a set of experimental conditions x̃1, . . . , x̃N , which are not necessarily distinct atwhich observations
are to be taken.

If the x̃i's are taken on J distinct values xj, j= 1, . . . , J and if the point xj appears nj times in the design, j= 1, . . . , J, we denote the
design by

� =
{
x1 x2 . . . xJ
n1 n2 . . . nJ

}
.

Clearly gj = nj/N will be the proportion of experimental runs at xj. Conversely given a probability measure �(x) on � an exact
design of N runs can be approximately defined by �(x) = N�(x). Rounding will be necessary to convert �(x) to a non-negative
integer vector ∀x ∈ �. The exact design problem can be viewed as one of determining these proportions optimally subject to
them being rational. In contrast the approximate or continuous optimal design problem relaxes this condition. The calculus
of the general equivalence theorem (see Whittle, 1973) can then be brought to bear in determining conditions of optimality;
in particular conditions defining optimal weights. In this paper we use an idea presented by Torsney (2007) to deal with the
problem of constructing both types of design. One aspect is the transformation of the exact design problem to one of determining
optimally a different set of namely proportions of the design space. We first outline the approximate design problem.

1.2. Approximate design problem

Following Kiefer (1971) any probability measure, � on � with finite support is called an approximate design; e.g.

� =
{
x1 x2 . . . xJ
p1 p2 . . . pJ

}
,

where �(xj) = pj define design weights and satisfy the conditions pj �0, j = 1, . . . , J and
∑

pj = 1. The x′
is now are said to be the

design or support points. The per observation information matrix is defined by

M(�) =
J∑

j=1

�(xj)�
T (xj)pj = VPVT ,

where P = diag(p1, p2, . . . , pJ) and the ith column of the matrix V is �(xi) denoted by vi = v(xi). That is M(�) =∑
j I(�, xj)pj, where

I(�, x) is the expected information matrix of a single observations under the linear model, I(�, x) = �(x)�T (x).
We note that non-linear models of the form, y(x) = �T (x,�) + �(x) can be subsumed here with �(x) as above. These models

depend non-linearly on the values of the parameters �. It is common to replace them by their linear approximations in terms of
a Taylor expansion about a prior point estimate �0. In this way the corresponding information matrix isM(�)=∑N

j=1 g(xj)g
T (x)jpj

where g(x) = (��(x,�)/��)�=�0 . If we have heteroscedastic errors with variances known up to a constant, then M(�) has the form

M(�)=∑N
j=1 g(xj)g

T (x)j�jpj. Also for a class of generalized linear models the information matrix has the same form with weights
�j depending on the linear predictor; see Ford et al. (1992).

For an N-point exact design �N we can without loss of generality assume, J = N,pj = 1/N, so

M(�N) = 1
N
V VT ∝ V VT .

An optimal design maximizes an appropriate function of the information matrix, say 	(�) = 
[M(�)]; these functions are
homogeneous and concave. Standard criteria are D-optimality, c-optimality and A-optimality which, respectively, maximize
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[M(�)]=log det[M(�)],
[M(�)]=−cTM−1(�)c,
[M(�)]=−tr(M−1).Wenote that in the case of the approximate design problem,
we have, for fixed x1, x2, . . ., xJ , an example of the following type of problem:

Maximize a criterion 	(p) overP= {p = (p1, . . . ,pJ) : pj �0,
∑

pj = 1}.
Conditions of optimality are needed to identifywhen a design �∗(x)=p∗ is optimal for a given problem.Wedefine the necessary

first-order conditions in terms of point to point directional derivatives. The directional derivative F	(p, q) of a criterion function
	(·) at p in the direction of q is defined as

F	(p, q) = lim
�↓0

	{(1 − �)p + �q} − 	(p)

�
= �	

��

∣∣∣∣∣
�=0+

.

This derivative exists even if 	(·) is not differentiable but if it is then the directional derivative can be written as follow:

F	(p, q) = (q − p)′
�	
�p

=
J∑

j=1

(qj − pj)dj where dj =
�	
�pj

, j = 1, . . . , J.

Let ej be the j th unit vector in RJ . The vertex directional derivative of	(·) at p is defined to be Fj = F	(p, ej)=dj −
∑

pjdj. Note that
F	(p, q) =∑

j
qjFj. From this it follows that if 	(·) is differentiable at p∗, a necessary condition for 	(p∗) to be a local maximum is

F∗
j = F	(p

∗, ej) =
{ = 0 for p∗

j >0,
� 0 for p∗

j = 0.

Furthermore if 	(·) is concave on its feasible region then this condition is both necessary and sufficient for optimality. This of
course is the general equivalence theorem in the design context (Whittle, 1973; Kiefer, 1974).

The efficiency of a design � with respect to the criterion 
 will be

eff = 
[M(�)]

[M(�∗)]

.

Thus if a design has 70% efficiency then the optimal design �∗ will produce the same precision as � with 30% fewer observations.
In this paper we show how a new approach combined with a multiplicative algorithm can be used to construct optimal

designs in a wide variety of situations. We provide an exploration of the consequences of this idea with numerous examples.
The approach involves transforming the values of design points to proportions of the design interval. We then choose these
proportions optimally to determine exact designs or choose both these proportions and design weights optimally to determine
approximate designs. Section 2 gives a summary of the properties of the multiplicative algorithm and a brief discussion of its
history. In Section 3 the new approach combined with the algorithm is presented in order to compute exact designs and designs
for models with correlated observations. Section 3 also addresses the computation of designs with two-factor models where the
construction of optimal designs is more complicated. (See Schwabe, 1996). In Section 4 further modifications and extensions
of the new approach of Section 3 are discussed in order to calculate approximate optimal designs. The last section provides
conclusions and comments on most of the results.

2. Algorithms

2.1. Brief review

In general numerical techniques are needed to determine optimal designs, be they exact or approximate. Different techniques
have been developed for each.

Approximate design theory is used to helpwith themore intractableN-trial exact design problems. These designs can be found
by integer approximation to the approximate designs in several ways (see Fedorov, 1972, p. 157). However if N is not too large
then a poor approximation is obtained. Many numerical algorithms for the construction of exact designs are based on exchange
schemes and have been proposed to construct D-optimal designs (Fedorov, 1972, p. 164; Mitchell andMiller, 1970;Wynn, 1970),
the DETMAX algorithm of Mitchell (1974), the modified Fedorov algorithm of Cook and Nachtsheim (1980), the KL-exchange
algorithm of Atkinson and Donev (1989) which is another modification of the Fedorov's algorithm. Haines (1987) applied the
annealing algorithm to construct D-optimal designs, Meyer and Nachtsheim (1995) described a cyclic coordinate-algorithm for
constructing D-optimal and linear-optimal experimental designs for continuous design spaces.

For the case of D-optimality for constructing approximate designs algorithms have been provided and investigated by Wynn
(1970, 1972) and Fedorov (1972, p. 102). They are called Wynn–Fedorov algorithms; so also did Silvey and Titterington (1973),
Wu (1978) andWu andWynn (1978). To accelerate algorithms forD-optimumdesigns Pronzato (2003) andHarman and Pronzato
(2007) proposed some inequalities in order to remove non-optimal support points.

So separate methods are available for the two types of design problem. Below we advocate a method which can be used for
both problems. It exploits a multiplicative algorithm developed for the approximate case.



3950 B. Torsney, R. Martín-Martín / Journal of Statistical Planning and Inference 139 (2009) 3947 -- 3961

2.2. Multiplicative algorithms

By a multiplicative algorithm we mean one which updates all weights simultaneously according to the multiplicative form

p(r+1)
j =

p(r)j f (d(r)j ,�)∑J
i=1 p

(r)
i f (d(r)i ,�)

or p(r+1)
j =

p(r)j f (F(r)j ,�)∑J
i=1 p

(r)
i f (F(r)i ,�)

,

where f (x,�) is positive, �f (x,�)/�x>0 and, if � = 0, f (x,�) is constant. Properties of this iteration, which can be seen at Torsney
(2007), are

1. p(r) is always feasible, i.e., p(r) ∈P.
2. F	(p(r),p(r+1))�0, with equality when the d′

js corresponding to nonzero p′
js have a common value d(=∑ pidi), in which case

p(r) = p(r+1).
3. If � = 0 there is no change in p(r), given f (x,�) = constant.
4. So the algorithm should be monotonic for small positive �.
5. An iterate p(r) is a fixed point of the iteration if derivatives d(r)j corresponding to nonzero p(r)j are equal; i.e., if corresponding

vertex directional derivatives F(r)j are zero.
A proof of the second statement follows given that:

F	(p
(r),p(r+1)) = Cov(D, f (D,�))

E(f (D,�))
,

where D is a discrete random variable with probability distribution P(D= d(r)j )= p(r)j . It can then be argued that Cov(D, f (D,�))>0

if �f (D,�)/�D>0, while E(f (D,�))>0 if f (D,�)>0.
This class of algorithm evolved from a result of Fellman (1974). This was devoted to linear criteria, not algorithms, but in

effect he proved that f (d,�) = d� with � = 1
2 yields monotonicity for c-optimality. We note that all design criteria have positive

derivatives. Torsney (1983) extends this result to A-optimality, while Titterington (1976) proved monotonicity of f (d,�) = d�

with � = 1 for D-optimality. This latter choice is also monotonic for finding the maximum likelihood estimators of the mixing
weights, given data from amixture of distributions. Indeed it is an EM algorithm; see Torsney (1977). Both choices also appear to
be monotonic in determining, respectively, c-optimal and D-optimal conditional designs, i.e., in determining several optimizing
distributions; see Martín-Martín et al. (2007).

Finally Silvey et al. (1978) is an empirical study of the choice of � in f (d,�)= d�. Note that this is a feasible choice for standard
design criteria and the mixture likelihood since they enjoy positive partial derivatives.

Other choices of f (·,�) are needed if 	(p) can have negative derivatives, as in somemaximum likelihood estimation problems,
or if the partial derivatives dj are replaced by the vertex directional derivatives Fj. Torsney (1988) considers the case of f (d,�)=e�d,
while objective bases for choosing f (x,�) are to be found in Torsney and Alahmadi (1992), Torsney andMandal (2004) andMandal
and Torsney (2006). Also Torsney andMandal (2001) apply these algorithms to finding constrained optimal designs,whileMandal
and Torsney (2006) explore their use in a clustering approach under which designs points are collected into sets. The algorithm
is then used to determine an optimal marginal design across sets and optimal conditional designs within sets. This is similar in
spirit to the approach now proposed.

In a new approach to determine optimal designs, in particular optimal support points of exact or approximate designs, we
generate another example of the above problem, but one in which 	 is not guaranteed to have positive derivatives; so we need
to choose an f (x,�), which is defined for negative x.

3. A novel approach for determining support points

In optimal experimental design observation are usually taken at a small subset of points in a continuous design interval. If
these points were known or we could remove some of them the problem could be simplified; see Pronzato (2003) and Harman
and Pronzato (2007). In Torsney (2007) a new idea is proposed for determining support points. Consider a linear model with one
design variable x, to be selected from a design interval �= [a, b]. A simple case is the determination of the best N-point 	-optimal
design. Let x1, x2, . . . , xN be its support points. Let

Wt = xt − xt−1

b − a
, t = 1, . . . ,N + 1,

where x0 = a and xN+1 = b.
We have linearly transformed from N variables to (N + 1) variables, W ,W = ATx + c where x = (x1, . . . , xN)

T ,

A = 1
b − a

[(IN|0N) − (0N|IN)],
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with 0N = (0, 0, . . . , 0)T ∈ RN , IN is identity matrix of order N and c = (1/(b − a))(−a, 0, 0, . . . , 0, b) ∈ RN+1. These must satisfy

Wh �0,
N+1∑
h=1

Wh = 1.

We note that it follows that these variables are invariant to prior linear transformations of x; also Wh = 0 if xh+1 = xh, i.e., two
potentially distinct design points coincide.

Now consider maximizing the 	 criterion with respect toW1,W2, . . . ,WN+1, subject to these constraints.
Thus the optimization problem for a general criterion can be stated as a problem in the new variables Wh. We need to

choose W1, . . . ,WN+1 optimally and our problem is of the form: maximize a criterion 	(W) over P = {W = (W1, . . . ,WN+1) :
Wh �0,

∑N+1
h=1 Wh = 1}, where 	(W) = 	(ATx + c) = 	x(x) = 
[M(�N)].

The first-order conditions for a local maximum are

F∗
h = F	(W

∗, eh) =
{ = 0 for W∗

h >0,
� 0 for W∗

h = 0,
(1)

where eh is the h th unit vector in RN , Fh = F	(W , eh) = dh −∑N
h=1 Whdh with

dh = �	
�Wh

=
N∑
i=1

�	x

�xi

�xi
�Wh

=
N∑
i=1

�

�xi

�xi
�Wh

, h = 1, . . . ,N (2)

and

�

�xi

=
∑
r

∑
s

�

�Mrs

�Mrs

�xi
.

It is to be noted that we did not need to define WN+1. Since there exists a one to one transformation between x1, . . . , xN and
W1, . . . ,WN the transformed criterion, say 	, does not explicitly depend onWN+1. So it is a fact that �	/�WN+1 = dN+1 = 0.

We note two consequences of this transformation:

1. Condition (1) offers a set of first-order conditions for local optimality of exact designs, an advantage, we argue, over other
approaches where equivalence theorems cannot be applied.

2. The above class of multiplicative algorithm can be used to determine optimizingW, namely

W(r+1)
h = W(r)

h f (F(r)h ,�)∑N+1
t=1 W(r)

t f (F(r)t ,�)
,

where Fh is the h th vertex directional derivative of 	(·) atW and one choice of f is f (F,�)= �(�F) where �(·) is the c.d.f. of the
standard normal distribution. We choose the first arguments of f (·,�) to be the vertex directional derivatives, so that we are
centering partial derivatives with respect to W on zero.
We note that when the partial derivatives are always positive, as in the case of design criteria, we can consider f (d,�) defined
for positive d such as f (x,�) = f (d,�) = d�. However here derivatives with respect to Wi are not guaranteed to be positive.
Torsney and Mandal (2004, 2006) consider this issue and make recommendations for objective choices of f (x,�). We opt for
f (F,�) = �(�F), and always take W(0) to be uniform.

3.1. Computing exact D-optimal designs

We now use these ideas for the construction of exact optimum designs. The exact D-optimum designs measure �∗
N maximizes

the determinant of the matrix M = V VT where VT is the design matrix. In order to compute the directional derivatives we need
to calculate dh which, as seen in (2), depends in turn on �
/�xr . In general

�

�xr

=
∑
i

∑
j

�

�Mij

�Mij

�xr
= tr

{
�

�M

�M
�xr

}
. (3)

Consider the D-optimal criterion function 
[M] = log det(M),

�

�xr

=
∑
i

∑
j

M−1
ij

�Mij

�xr
= tr

{
M−1 �M

�xr

}
.

After some algebra (see Appendix) the vector of these derivatives is

�

�x

= 2Diag(VTM−1D),

where D = (d1, d2, . . . ,dN) with dr = �vr/�xr .
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Table 1
Number of iterations needed to achieve max{Fh} �10−n and support points and efficiencies with respect to D-optimal global approximate design.

N n Iterations Support points Eff.

4 1 12 0.1156 0.4089 0.7439 0.9991
2 34 0.0894 0.3871 0.7374 0.9999
3 68 0.0823 0.3815 0.7347 1 1.0000

6 1 31 0.0563 0.2137 0.3915 0.5554 0.7733 0.9999
2 175 0.0367 0.2036 0.3999 0.6615 0.7839 1
3 519 0.0378 0.2057 0.4089 0.6924 0.7718 1 0.9560

8 1 31 0.0526 0.1286 0.2953 0.4021 0.5404 0.7166 0.8220 0.9999
2 311 0.0531 0.0812 0.2779 0.3648 0.4812 0.7282 0.7613 1
3 851 0.0621 0.0735 0.2718 0.3733 0.4653 0.7362 0.7496 1 0.9353

Note: In all examples we start from uniform values of W(0)
h (and latter of p(0)j ).

Example 1. Wynn's quadratic/trigonometric example.

We consider the trigonometricmodel proposed byWynn (1972), E[y(x)]=f T (x)�, where the vector function f (x)=(x, x2, sin 2x,
cos 2x)T and the design space is the interval � = [0, 1]. We run the algorithm to find the best N-point D-optimal exact design for
N=4, 6, 8with f (F,�)=�(�F),�=0.1. In Table 1we report for n=1, 2, 3 the number of iterations needed to achievemax{Fh} �10−n

and the support points.
We note that the global D-optimal design has four support points with equal weights. This is the design to which we have

converged in the case of N = 4. We cannot converge to this design in the case N = 6 equally weighted points since this is not a
multiple of 4, whereas we could have done so when N = 8. This has not happened, an issue that we address in the Discussion.
However the D-efficiency of the 8 point design is 93.5%.

3.2. Two-factor models

In many practically relevant experimental situations models with more than one factor are more appropriate than models
with a single factor. Thus in a wide range of technical and industrial applications these models are suitable (Schwabe, 1996).

The calculation of optimum designs for such models is more complicated than for models with one factor.
For illustrative purposes we consider the second-order polynomial regression model in order to extend the new approach of

the multiplicative algorithm presented above.

Example 2. Second-order polynomial regression model.

Consider the non-additive model for second-order response surface in two factors

E[y(x)] = �0 + �1x1 + �2x2 + �12x1x2 + �11x
2
1 + �22x

2
2, (x1, x2) ∈ �1 × �2 = [−1, 1]2.

Here we have a two dimensional design space. We need to extend our W-transformation to this case. To avoid imposing
constraints on the design we consider transforming x1-values, say x(1)i , i = 1, . . . ,N, to a marginal distribution or set of weights
W1h, h = 1, . . . ,N + 1, and transforming the x2-values paired with each value of x1 to a conditional distribution or set of weights
W2s|1i. Since the model is symmetric in x1 and x2, the roles of the two variables could be reversed without loss or gain. We wish
to choose all these conditional and marginal distributions optimally. In the interests of simplicity we consider the case of one
x2-value, namely x(2)j|i matched with each x(1)i so that j = 1, for all i. This is illustrated in Fig. 1 and leads to the following N + 1
simultaneous multiplicative iterations:

W(r+1)
1h = W(r)

1h f (F
(r)
1h ,�1)∑N+1

t=1 W(r)
1t f (F

(r)
1t ,�1)

, h = 1, . . . ,N + 1,

W(r+1)
2s|1i =

W(r)
2s|1if (F

(r)
2s|1i,�2)∑2

l=1 W
(r)
2l|1if (F

(r)
2l|1i,�2)

, s = 1, 2, i = 1, . . . ,N.

Table 2 shows the exact optimumdesign found forN=6, 7, 8, 9.We find the same design as in Atkinson et al. (2007, p. 170).We
have also explored the cases N = 10, 11, 12. We note that in these cases and as illustrated in Table 2, the simplifying assumption
of one x2-value matched with one x1-value does not prevent convergence to designs with replication of at least one value of both
variables.
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Fig. 1. Partition of the design space in models with two factors when design points are considered to be distinct.

Table 2
Optimal exact designs for second-order response surface in two factors.

N 6 7 8 9
|M(�)| 5.590 6.888 7.767 8.553
Support points −1 1 −1 −1 −1 −1 −1 −1

−1 −0.393 −1 −0.067 −1 1 −1 0
−0.396 −1 −1 1 −0.215 0 −1 1
0.131 0.131 −0.070 −1 0.082 −1 0 −1
1 −1 0.098 0.091 0.082 1 0 0
1 1 1 −1 1 −1 0 1

1 1 1 0 1 −1
1 1 1 0

1 1

3.3. An algorithm for models with correlated observations

Methods for the construction of optimal experimental designs for models under the presence of correlated errors have
been studied in the literature. Thus Brimkulov et al. (1980) proposed an exchange algorithm to compute D-optimal designs.
Näther (1985) suggested some improvements. Müller and Pázman (1999) suggested an alternative algorithm based upon a new
interpretation of design measures. López Fidalgo et al. (2008) modified Brimkulov's algorithm when some of the factors in the
model are not under the control of the experimenter.

In this section we propose the above transformation and multiplicative algorithm in order to compute D-optimal designs in
the presence of correlation.

We assume an isotropic covariance structure on the responses, say Cov(yi, yj)= �2C(|xi − xj|, r). Let C be the covariance matrix
of the observations with these entries. As in López Fidalgo et al. (2008) two design approaches are possible, either considering
covariance parameters as a nuisance quantity, assumed known or as parameters of interest which need to be estimated. For the
first approach the inverse of the Fisher information matrix has the standard meaning as being asymptotically proportional to the
covariance matrix of the estimators. Nevertheless, within the second approach this property is not guaranteed in general. Thus,
optimization based on the Fisher information matrix may be inappropriate.

In any case the traditional approximate design theory cannot be applied here any more. This is because we should not have
more than one observation at each design point, since two such observations are perfectly correlated. So exact designs must be
considered and the new approach and algorithm can again be applied.
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Table 3
Number of iterations needed to achieve max{Fh} �10−n and determinant of the information matrix.

r 1 5 50

N n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

5 67 84 100 69 98 114 71 135 315
1.9144 1.9247 1.9249 3.3213 3.4239 3.4242 3.7756 3.9103 3.9203

10 113 303 364 126 340 360 200 354 568
3.0212 3.1468 3.1472 7.4327 10.4556 10.4557 9.7064 10.3728 10.4056

15 128 583 736 195 656 706 150 463 735
3.6061 3.7018 3.7026 16.7357 18.2962 18.2963 25.0320 28.0349 28.1817

20 111 917 1246 153 596 643 160 601 902
3.9030 3.9875 3.9886 23.5919 25.9392 25.9522 46.6411 52.5384 52.8201

Assuming �2 = 1 and VT = {�j(xi)} = {��(xi,�)/��(j)}, as in Section 1.2, the information matrices for � only and r only are,
respectively (Stehlík, 2006)

M�(N) = VC−1VT ,

Mr(N) = 1
2
tr

{
C−1 �C

�r
C−1 �C

�rT

}
,

while, when both parameters are of interest,

M(N) =
(
M�(N) 0

0 Mr(N)

)
.

3.3.1. Trend parameters of interest only
In this case the function to be maximized is


[M�(N)] = log det{M�(N)}.

As in (3) we have to compute

�

�x

= tr

(
M−1 �M

�x

)
.

The derivatives obtained are (see Appendix)

�

�x

= 2Diag(C−1VTM−1D − C−1VTM−1VC−1G),

where D = (d1,d2, . . . ,dk) with dr = �vr/�xr and G = (g
1
, g

2
, . . . , g

k
) with g

r
= �cr/�xr and C = (c1, c2, . . . , ck).

Example 3. A consecutive chemical reaction.

Consider the model introduced by Box and Lucas (1959) of two consecutive first-order chemical reactions A
�1−→B

�2−→C. Given
the initial concentrations of the substances A, B and C, the concentration of B as a function of time is given by

�(t,�) = �1

�1 − �2
(e−�2t − e−�1t), t ∈ T = [0, 30],

where �1 and �2 are the rates of the reaction.
Assume, as in Uci �nski and Atkinson (2004), that the reaction is run only once and the measurements are taken at different

times during the same reaction. Thus a correlation structure between these observations must be appropriate; we assume
Cov(�(t1),�(t2)) = e−r|t1−t2|.

The algorithm was applied for the cases of 5, 10, 15 and 20 measurements, respectively, and for different values of the
covariance parameter, taking 0.7 and 0.2 as initial values of �1 and �2 and � = 1

10 . In Table 3 for n = 1, 2, 3 it is shown that the
larger is N the larger the number of iterations needed for convergence.

In Fig. 2weplot the determinant of the informationmatrices for 1� r�50 in increments of 0.1. Eachwas determinedusing the
algorithm. For N = 10, 15, 20 we see that there is a slight but noticeable decrease in the criterion values occurring approximately
at r = 6, 7, 8, respectively. This may be an indication that a local optimum has been found or possibly the algorithm needs to be
run for longer to achieve max{Fh} �10−n for n larger than 3. We also note that we are determining exact designs of a given size.
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Fig. 2. Determinant of the information matrix of 5, 10, 15 and 20 points, respectively, against the values of the covariance parameter, r.

So at some correlation values there will be discrete changes to the support points. So for a given N it cannot be guaranteed that a
design criterion will be a continuous increasing function of the correlation.

3.3.2. Covariance parameter of interest only
Since the covariance matrix depends on only one parameter, namely r, the only possible criterion to be maximized is


[Mr(L)] = 1
2
tr

{
C−1 �C

�r
C−1 �C

�r

}
.

Once again in order to apply the algorithm the derivatives �
/�xr are required (see Appendix).
After some algebra we obtain

�

�x

= 2Diag

(
C−1 �C

�r
C−1H

)
− 2Diag

(
C−1 �C

�r
C−1 �C

�r
C−1G

)
,

where H = (h1, . . . ,hk) with hr = �mr/�xr with �C/�r = (m1, . . . ,mk) and G = (g
1
, g

2
, . . . , g

k
) with g

r
= �cr/�xr and C = (c1, c2, . . . , ck).

Example 4. Exponential covariance structure.

Consider the model E[y(x)] = �1 + �2x, x ∈ � = [−1, 1]. In this case we have computed D-optimal designs for the covariance
parameter r under the exponential covariance structure Cov(y(x), y(z)) = �2e−r|z−x| if z − x�0. As is shown in Fig. 3 these designs
collapse to one point designs as others have experienced, e.g. Stehlík et al. (2008). One solution to this behavior is to extend the
covariance function to include a nugget effect of the form

Cov(y(x), y(z)) =
{
�2�e−r|z−x| if z − x>0,
�2(1 − �) if z = x,

with �2 = 1.

3.3.3. Optimal design for both sets of parameters
We note that the criterion 
 must depend on M(L)

M(L) =
(
M�(L) 0

0 Mr(L)

)
.

For the D-optimal case it is straightforward to obtain from the above results the derivatives needed for the algorithm, namely

�

�x

= 1
|M�(L)|

�|M�(L)|
�x

+ 1
|Mr(L)|

�|Mr(L)|
�x

.

Example 5. A consecutive chemical reaction.



3956 B. Torsney, R. Martín-Martín / Journal of Statistical Planning and Inference 139 (2009) 3947 -- 3961

−2 −1 0 1 2 −2 −1 0 1 2

−2 −1 0 1 2 −2 −1 0 1 2

|M (ξ)| = 0.5, 0.0294 and 3.7113 |M (ξ)| =1, 0.1028 and 4.4669

|M (ξ)| = 1.5, 0.2048 and 4.5634 |M (ξ)| = 2, 0.3149 and 4.6070

Fig. 3. Support of D-optimal designs when the covariance parameter is considered to be of interest without nugget effect (�) with nugget effect � = 0.5 (◦), and
when only the parameters of the trend are of interest (�), respectively, and their determinants of the information matrices.
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Fig. 4. Support of D-optimal designs when both sets of parameters are considered to be of interest for n = 10, 15, 20.

Consider the chemical model proposed in Example 3. with the exponential correlation structure. In this case, the purpose
of the experiment is to obtain good estimates of the parameters �1, �2 and r. The algorithm was applied taking 10, 15 and
20 measurements. The nominal values chosen for the parameters of the trend were the same as in Example 3 and the values
considered for r where 1 (strong correlation) and 5 (medium correlation). The algorithm readily found the optimal designs
depicted in Fig. 4 using f (F,�) = �(�F), � = 0.1.

4. Simultaneous approach to optimal weight and support point determination

In this section we address the problem of determining both the support points and their design weights simultaneously.
Although we do not know the number of support points, due to Carathedory's theorem it is known that there must exist an
optimal design with at most L= k(k+1)/2 support points, where k is the number of parameters. So we initially assume L-support
points. Under this framework we again have an optimization problem with respect to more than one distribution, one defined
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Fig. 5. Support points (*) and variance function (dotted) for D-optimal design and support points (◦) and variance function (solid) for designs obtained by the
algorithm when max{Fh} and max{Fj} �10−n for n = 1, 2, 3 and 4.

by the design weights and one by the Wi. We explore use of the following simultaneous iterations:

p(r+1)
j =

p(r)j f (F(r)j ,�1)∑J
i=1 p

(r)
i f (F(r)i ,�1)

where fp(Fp,�1) = �(�1Fp), (4)

W(r+1)
h = W(r)

h f (F(r)h ,�2)∑L+1
t=1 W(r)

t f (F(r)t ,�2)
where fW (FW ,�2) = �(�2FW ). (5)

However when partial derivatives with respect to design weights are positive we also consider f (x,�1) = f (d,�1) = d�1 . The case
�1 = 1 leads to monotonic iterations when seeking D-optimal weights only.

Example 6. Wynn's quadratic/trigonometric example.

In order to study the performance of the simultaneous approach we study Wynn's linear model with linear, quadratic and
trigonometric regression functions as in Example 1, but nowwe are interested not only in determining support points but also in
determining design weights optimally. To determine the D-optimal design we start from an initial design of L = 4(4 + 1)/2 = 10
equidistant equallyweighted support points (excluding theendpoints).Weuse thevariationof iteration (4) and (5)which replaces
fp(Fp,�1) by fp(d,�1)= d�1

p ,�1 = 1. We run this algorithm until maxh {Fh}andmaxj {Fj} �10−n for n= 1, 2, 3 and 4, respectively. The
number of iterations needed to achieve this were 229, 640, 1853 and 5602, respectively.

Fig. 5 illustrates the support points for the optimal design and the design obtained after running the algorithm. Also we have
plotted the variance function, d(x, p)=�T (x)M−1(p)�(x) for both the optimal design equallyweighted on four points and the design
obtained with the algorithm. It is known that the variance function attains its maximum value (the number of the parameters)
at the optimal support points. Clearly, at early iterations, the support points fall into groups. There are four “clusters of points”
around the optimal design points which is consistent with the optimal design having four support points. Table 4 contains the
support points and their weights.

5. Discussion

We have described a new approach to determine optimal designs, a unified one which can determine both exact and
approximate optimal designs.

The approach involves transforming design point values to proportions of the design interval and choosing these proportions
optimally to determine exact designs or choosing both these proportions and designweights optimally to determine approximate
designs.
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Table 4
Number of iterations needed to achieve max{Fh , Ft} �10−n , support points, optimal weights and value of the criterion function.

n Iterations Design points 	D(�)
Optimal weights

1 229 0.0777 0.0989 0.3553 0.3756 0.3824 0.4000 0.7242 0.7334 0.7399 1.0000 7.0842e − 004
0.2260 0.0242 0.0024 0.1383 0.1087 0.0005 0.0098 0.2280 0.0122 0.2500

2 640 0.0809 0.0880 0.3733 0.3793 0.3810 0.3863 0.7312 0.7340 0.7362 1.0000 7.0879e − 004
0.2265 0.0235 0.0018 0.1388 0.1090 0.0004 0.0089 0.2296 0.0115 0.2500

3 1853 0.0820 0.0844 0.3786 0.3804 0.3809 0.3826 0.7334 0.7343 0.7350 1.0000 7.0883e − 004
0.2266 0.0234 0.0017 0.1389 0.1091 0.0004 0.0087 0.2301 0.0112 0.2500

4 5602 0.0824 0.0832 0.3802 0.3807 0.3809 0.3814 0.7341 0.7343 0.7346 1.0000 7.0883e − 004
0.2266 0.0234 0.0016 0.1389 0.1091 0.0004 0.0086 0.2303 0.0111 0.2500
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Fig. 6. Support points (*) and variance function (dotted) for D-optimal global design and support points (◦) and variance function (solid) for designs obtained by
the algorithm when max{Fh} �10−4 for N = 8, 12, 16 and 20 design points.

We see one advantage of this approach being that we can use calculus to determine first-order conditions of optimality for
exact designs; in effect, we are exploiting the general equivalence theorem of optimal designs (Whittle, 1973).

We see a second advantage being that we can recruit algorithms for determining optimal weights to determine optimal
“design interval proportions”. We have used multiplicative algorithms, which were originally developed to determine optimal
design weights.

Although we have described the implementation for the determinant criteria we have also explored its application to other
criteria.

We can say that we have found the optimum design in examples taken from the literature. In other cases we have found
designs with high efficiencies and presumably local optima. Certainly there are instances when we have not converged to the
global optimal design.We see this in Example 1 in whichwe have found the global D-optimal design when it hasminimal equally
weighted four-point support. When N is a multiple of the parameter dimension of the model the optimal exact design should
replicate the approximate design. We did not converge to this design in Example 1 when N = 8. We explore this issue further in
Fig. 6, which plots the support points and the variance function of the optimal design and of the design found by the algorithm
attaining the condition Fj �10−4 in the cases N = 8, 12, 16 and 20. In each case the design found by the algorithm consists of four
unequal sized clusters of support points in the neighborhood of each of the support points of the optimal approximate design
and in the neighborhood of each their maximal turning points, plus one extra rogue design point at x = 0.24 which is at or close
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to where all the variance functions have their first minimal turning point. This might suggest that the algorithm has converged
to a stationary point with respect to theWi, which is not a maximal one.

In both examples we can clearly draw conclusions from the turning points of these plots about the number of support points
of the optimal approximate design. The size of the clusters is less informative. We do even better if we seek to determine optimal
design points and weights simultaneously using iterations (4) and (5). We converge to the global optimal design in Example 6,
assuming the model of Example 1, starting from an initial design of 10 equally weighted equidistant design points, 10 being the
maximum number needed according to Carathéodory's Theorem.

This brings us to the issue of convergence. The rate of convergence can be fast to begin with but soon slows down, in terms of
number of iterations, as happenswith other algorithms such as the EM algorithm. Convergence depends, of course, on the choices
of f (x,�), x and �. We have generally opted to take x = F, � = 0.1 and 0.01 and f (F,�) = �(�F), our primary aim being to explore
the potential of our approach in a variety of problems. Run time lasts only seconds ranging from 0.01 to 1.09 s. As to proof of
convergence no results are available in any context although somemonotonicity results already cited may be relevant. Currently
others are exploring the simple but long established case of f (d,�) = d in the case of D-optimality; see Dette et al. (2007). The
merits of our approach are that it is a unifying one for determining both approximate and exact designs and an advantage over
other numerical approaches are that only first-order derivatives are needed.

Looking to the future we note the following extensions of our approach:

1. If we can identify some design points analytically e.g. endpoints as in the above example, the approach can be modified
in a natural way. In general an extension would be to divide intervals between analytically established design points into
“proportions” so that there would be several sets of proportions to determine optimally.

2. We have assumed the design space to be finite as is needed for standard linear models. However designs spaces need not be
bounded for weighted linear and for non-linear models such as generalized linear models. Ford et al. (1992) converted design
problems for generalized linear models to standardized weighted regression models. A particular class is binary regression
models under which a response y|x ∼ Bi(1, F(z)), z=�+�x. In this case one possible transformation isWi = F(zi)− F(zi−1). Note
that the values of the F(zi) are of particular interest in binary regression.

3. There is scope for more work in the case of two or more design variables. A general approach for finding a design with
no predetermined structure would be to take the design variables in some order and express a joint design as a product
of a marginal one for the first variable and a sequence of conditional designs, one for each variable in the sequence; i.e., a
conditional design for each variable given the values of the preceding variables in the sequence, one for each set of such values.
The objectivewould be to determine all of these designs, marginal and conditional, optimally. Using our approachwouldmean
finding several sets of “Wi's” optimally.
A simpler scenariowould be to restrict a design to a product one, so that the problemwould reduce to finding optimalmarginal
designs, one for each variable. This would be appropriate if a balanced design is to be expected.

4. Our approach would also be appropriate for design problems in which support points are matrices of rank two as in the binary
response design problem of Atkinson et al. (1995), in which there is only one design variable.

Appendix

Derivatives for D-optimal exact designs: Consider the criterion function 
[M] = log det(M),

�

�xr

=
∑
i

∑
j

M−1
ij

�Mij

�xr
= tr

{
M−1 �M

�xr

}
.

SinceM = VVT

�M
�xr

= �V
�xr

VT + V
�VT

�xr
.

Further V = (v1,v2, . . . ,vk), where vj = v(xj) i.e., only vj depends on xj. So

�V
�xr

= (0, 0, . . . , dr , 0, . . . , 0) = dre
T
r where dr = �vr

�xr

and �VT/�xr = erd
T
r . Finally

�M
�xr

= dre
T
r V

T + Verd
T
r

and

�

�xr

= tr[M−1(dre
T
r V

T + Verd
T
r )] = 2(eTr V

TM−1dr).
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Thus,

�

�x

= 2Diag(VTM−1D),

where D = (d1,d2, . . . ,dk).
Derivatives when parameters of the trend are of interest only:

�M
�xr

= �V
�xr

C−1VT + VC−1 �VT

�xr
− VC−1 �C

�xr
C−1VT ,

�V
�xr

= (0, 0, . . . ,dr , 0, . . . , 0) = dre
T
r where dr = �vr

�xr
,

�VT

�xr
= erd

T
r ,

�C
�xr

= g
r
eTr + erg

T
r

where C = (c1, c2, . . . , ck) and g
r
= �cr

�xr
.

Then we can write

�M
�xr

= dre
T
r C

−1VT + VC−1erd
T
r − VC−1(g

r
eTr + erg

T
r
)C−1VT

and

�

�xr

= tr[M−1(dre
T
r C

−1VT + VC−1erd
T
r − VC−1(g

r
eTr + erg

T
r
)C−1VT )]

= 2(eTr C
−1VTM−1dr − erC

−1VTM−1VC−1g
r
).

Derivatives when parameters of the covariance are of interest only:

�

�xr

= tr

⎧⎪⎪⎪⎨⎪⎪⎪⎩C
−1 �C

�r
C−1

��C
�r

�xr
− C−1 �C

�r
C−1 �C

�r
C−1 �C

�xr

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= tr

{
C−1 �C

�r
C−1(hreTr + erhTr ) − C−1 �C

�r
C−1 �C

�r
C−1(greTr + ergTr )

}

= 2eTr C
−1 �C

�r
C−1hr − 2eTr C

−1 �C
�r

C−1 �C
�r

C−1gr .
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