Two latin squares of the same size are said to be orthogonal if every possible ordered pair of symbols occurs exactly once when we overlay the two squares.

Example:

/1	2	$\boldsymbol{3}$	4 \		/ 1	2	3	4 \
2	1	4	3	I.	3	4	1	2
3	4	1	2	<u> </u>	4	$\boldsymbol{3}$	2	1
\4	3	2	1/		\2	1	4	3 /

Overlaying these two matrices gives:

/ 11	22	33	44 \
23	14	41	32
34	43	12	21
$\setminus 42$	31	24	13/

11111

1222

1333

1444

21*23* 22*14*

2341

24*32* 31*34* 3243

3312

34*21*

4142

4231

4324 4413 /

A pair of orthogonal latin squares					
of order <i>n</i> is equivalent to an					
$n^2 imes 4$ orthogonal array.					

$\begin{pmatrix} 11\\23\\34\\42 \end{pmatrix}$	22 14 43 31	33 41 12 24	$ \begin{array}{c} 44 \\ 32 \\ 21 \\ 13 \end{array} \right) $		
Each row of the array consists of (i) row (ii) column (iii) symbol in first square (iv) symbol in second square					

Suppose $L_1 \perp L_2$.

Consider the n cells of L_2 which contain the same symbol, s say. The entries in the corresponding cells of L_1 must all be different, by orthogonality.

Since s occurs once in each row and column of L_2 , the corresponding entries in L_1 form a transversal.

Thrm: A latin square of order n possesses an orthogonal mate iff it has n disjoint transversals.

A Cayley table of a group has an orthogonal mate iff it has a transversal.

For each extra column we add to the orthogonal array, we add another latin square.

A set of mutually orthogonal latin squares (MOLS) is a set of latin squares each pair of which is orthogonal.

A set of m MOLS of order n is equivalent to an $n^2 \times (m+2)$ orthogonal array.

Thrm: Not more than n-1 mutually orthogonal latin squares of order n exist.

Proof: Wlog the symbols in the first rows of all the squares are $1, 2, \ldots, n$ in natural order.

The symbols occurring in the first cell of the second rows of the squares must then all be different by orthogonality.

No square can have 1 as the symbol in the first cell of the second row.

Thus, there are at most n-1 squares. \Box

Complete sets of MOLS

Since no larger set is possible, a set of n - 1 MOLS of order n is said to be complete.

Example: A complete set of MOLS of order 4

/ 1	2	3	4 \		/ 1	2	3	4 \		/ 1	2	3	4 \
2	1	4	3	I	3	4	1	2	I.	4	3	2	1
3	4	1	2	<u> </u>	4	$\boldsymbol{3}$	2	1	<u> </u>	2	1	4	3
\4	3	2	1/		$\setminus 2$	1	4	3 /		$\setminus 3$	4	1	2 /

Projective Planes

A projective plane is a set of "points" and "lines" such that every pair of lines meet in exactly one point and every pair of points are joined by a unique line.

To avoid degeneracy we also insist that there is some set of 4 points, no 3 of which are collinear.

Thrm: Each line in a projective plane has the same number of points on it.

Proof: Consider two lines L and L' and a point x not on either line (Exercise: prove such a point exists, by using non-degeneracy).

There is a bijection from points on L to points on L'. Simply map $y \in L$ to the point on L' which is collinear with x and y. \Box

Suppose there are $n + 1$ points on every line	The order of a planeA finite projective plane, with $n + 1$ points on each line is said to be of order n . It will have $n^2 + n + 1$ lines, $n^2 + n + 1$ points and $n + 1$ lines through every point.Example:
Choose a line <i>L</i> and a point <i>x</i> not on <i>L</i> . Through each of the $n + 1$ points on <i>L</i> there is a line to <i>x</i> . These $n + 1$ lines intersect only at <i>x</i> , so they contain $(n + 1)(n + 1) - n = n^2 + n + 1$ points.	
There are no other points in the plane. If there was another point z then there would be a line through x and z and this line must meet L . This also shows that there are $n + 1$ lines through every point.	The Fano plane has order 2. It has 7 lines and 7 points; 3 points per line and 3 lines through each point.
$\underline{Duality}$ The definition of a projective plane <i>P</i> is symmetric between points and lines. So we can rename the points to be lines and vice versa! This gives a new projective plane, called the dual of <i>P</i> . Some planes (eg. the Fano plane) are isomorphic to their dual.	For each projective plane we can define a $(0, 1)$ incidence matrix. The rows correspond to the points and the columns correspond to the lines. We put a 1 if the point lies on the line and a 0 otherwise. This matrix, P , belongs to $\Lambda_{n^2+n+1}^{n+1}$. It satisfies the matrix equation $PP^T = P^T P = J + nI$.
Others are not.	To find the dual projective plane, we simply take the transpose. Alternatively, we can think of a bipartite incidence graph. The two types of vertices correspond to points and lines, and the edges
	indicate that a point lies on a line. The dual is found by interchanging the roles of the two parts of the graph.

Thrm: There exists a finite projective plane of order n iff there exists a complete set of MOLS of order n.

Proof: We show how to build an $n^2 \times (n + 1)$ orthogonal array O from a projective plane P of order n (and leave it as an exercise to show that the construction can be reversed). Choose one line L of P . For each of the $n + 1$ points $\{x_0, x_1, x_2, \ldots, x_n\}$ on L we will build one column of O . There are n^2 points not on L and for each we will build one row of O . Consider a particular x_i . Label the lines, other than L , which pass through x_i as $\ell_1, \ell_2, \ldots, \ell_n$. Then in column i , the entry corresponding to a point y not on L is the index of the line ℓ_1, ℓ_2, \ldots , or ℓ_n which contains y . Now, since each ℓ_j contains n points other than x_j we see that each column of O contains n different symbols n times each. Also, since two points lie on a unique line the columns of O are orthogonal.	Thrm: If <i>n</i> is a power of a prime then a plane exists. Let F be a finite field of order <i>n</i> and let <i>x</i> generate the (cyclic) multiplicative group of F. Define $\alpha_i = x^i$ for $i \in \{1, 2,, n - 1\}$ and $\alpha_n = 0$. For each $k \in \{1, 2,, n - 1\}$ we construct a latin square L_k in which $(L_k)_{ij} = \alpha_i + \alpha_k \alpha_j$ Exercise: Prove this construction works. If $n \in \{6, 10\}$ then a plane does NOT exist. The proof is by exhaustion.
Thrm: [Bruck-Ryser] If $n \equiv 1, 2 \mod 4$ and a projective plane of order n exists then there exist integers a and b such that $n = a^2 + b^2$. So, for example, there is no projective plane of order 14. The smallest unresolved order is 12. Exercise: For which orders below 50 does this theorem rule out the existence of a projective plane? For which orders below 50 are we still unsure about the existence of a projective plane?	The Euler conjectureThrm: The Cayley table of a cyclic group of order $n \equiv 2 \mod 4$ has no orthogonal mate.Proof: It has no transversals. \Box Euler famously conjectured that there are no orthogonal latin squares of order $n \equiv 2 \mod 4$.He knew this was true for $n = 2$ and $n = 6$.Around 1960 Bose, Shrikhande and Parker showed that in every other case Euler was wrong!In fact, Chowla, Erdös & Straus showed that the size of the largest set of MOLS of order n tends to ∞ as $n \to \infty$.

For what values of n does there exist a projective plane of order n?