Two latin squares of the same size are said to be orthogonal if every
possible ordered pair of symbols occurs exactly once when we overlay
the two squares.

Example:

Suppose L, L L.

Consider the n cells of L, which contain the same symbol, s say. The
entries in the corresponding cells of L; must all be different, by
orthogonality.

Since s occurs once in each row and column of Lo, the corresponding

1 2 3 4 1 2 3 4 entries in L, form a transversal.
2 1 4 38 3 4 1 2
1
3 4 1 2 4 3 2 1 Thrm: A latin square of order n possesses an orthogonal mate iff it
4 3 2 1 2 1 4 3 has n disjoint transversals.
Overlaying these two matrices gives:
11 22 33 44 A Cayley table of a group has an orthogonal mate iff it has a
23 14 41 32 transversal.
34 43 12 21
42 81 24 13
1111 For each extra column we add to the orthogonal array, we add another
. . 1222 latin re.
A pair of orthogonal latin squares 1333 atin square
of order n is equivalent to an 1444 A set of mutually orthogonal latin squares (MOLS) is a set of latin
n? X 4 orthogonal array. 2123 squares each pair of which is orthogonal.
11 22 33 44 2214 A set of m MOLS of order n is equivalent to an n? x (m + 2)
23 14 41 32 2341 orthogonal array.
34 48 12 21 2432
42 31 24 13 3134
_ 3243
Each row of the array consists of 3312
(i) row 3421
(i1) column 4142
(iif) symbol in first square 4231
(iv) symbol in second square 4324

4413




Thrm: Not more than n — 1 mutually orthogonal latin squares of
order n exist.

Proof: WIlog the symbols in the first rows of all the squares are
1,2,...,nin natural order.

The symbols occurring in the first cell of the second rows of the
squares must then all be different by orthogonality.

No square can have 1 as the symbol in the first cell of the second row.

Thus, there are at most n — 1 squares. |

Complete sets of MOLS

Since no larger set is possible, a set of n — 1 MOLS of order n is said
to be complete.

Example: A complete set of MOLS of order 4
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Projective Planes

A projective plane is a set of “points” and “lines” such that every pair of
lines meet in exactly one point and every pair of points are joined by a
unique line.

To avoid degeneracy we also insist that there is some set of 4 points,
no 3 of which are collinear.

Thrm: Each line in a projective plane has the same number of
points on it.

Proof: Consider two lines L and L’ and a point = not on either line
(Exercise: prove such a point exists, by using non-degeneracy).

There is a bijection from points on L to points on L’. Simply map
y € L to the point on L’ which is collinear with = and y. O




Suppose there are n + 1 points on every line

Choose a line L and a point « not on L.

Through each of the n 4+ 1 points on L there is a line to x.
These n 4+ 1 lines intersect only at x, so they contain
(n+1)(n+1) —n =n? 4+ n + 1 points.

There are no other points in the plane. If there was another point z

then there would be a line through « and z and this line must meet L.

This also shows that there are n + 1 lines through every point.

The order of a plane

A finite projective plane, with n 4 1 points on each line is said to be of
order n.

It will have n2? + n 4+ 1 lines, n? 4+ n + 1 points and n + 1 lines
through every point.

Example:

The Fano plane has order 2. It has 7 lines and 7 points; 3 points per
line and 3 lines through each point.

Duality

The definition of a projective plane P is symmetric between points
and lines. So we can rename the points to be lines and vice versal!
This gives a new projective plane, called the dual of P.

Some planes (eg. the Fano plane) are isomorphic to their dual.
Others are not.

For each projective plane we can define a (0, 1) incidence matrix.
The rows correspond to the points and the columns correspond to the
lines.

We put a 1 if the point lies on the line and a 0 otherwise.

This matrix, P, belongs to An 1 .

It satisfies the matrix equation PPT = PTP = J + nl.

To find the dual projective plane, we simply take the transpose.

Alternatively, we can think of a bipartite incidence graph. The two
types of vertices correspond to points and lines, and the edges
indicate that a point lies on a line. The dual is found by interchanging
the roles of the two parts of the graph.




Thrm: There exists a finite projective plane of order n iff there
exists a complete set of MOLS of order n.

Proof: We show how to build an n? x (n + 1) orthogonal array O
from a projective plane P of order n (and leave it as an exercise to
show that the construction can be reversed).

Choose one line L of P. For each of the n + 1 points
{xo,x1,T2,...,2,} 0on L we will build one column of O. There are
n? points not on L and for each we will build one row of O.

Consider a particular x;. Label the lines, other than L, which pass
through x; as ¢4, £5,...,%,. Thenin column z, the entry
corresponding to a point y not on L is the index of the line ¢4, €2, .. .,
or £,, which contains y.

Now, since each £; contains n points other than =; we see that each
column of O contains n different symbols n times each. Also, since
two points lie on a unique line the columns of O are orthogonal. O

For what values of n does there exist a projective plane of order n?

Thrm: If nis a power of a prime then a plane exists.

Let IF be a finite field of order n and let « generate the (cyclic)

multiplicative group of F. Define a; = z* fori € {1,2,...,n — 1}
and o,, = 0.

Foreach k € {1,2,...,n — 1} we construct a latin square L in
which

(Li)ij = o + ooy

Exercise: Prove this construction works.

If n € {6,10} then a plane does NOT exist.
The proof is by exhaustion.

Thrm: [Bruck-Ryser] If n = 1,2 mod 4 and a projective plane of
order n exists then there exist integers a and b such that n = a? + b2.

So, for example, there is no projective plane of order 14.

The smallest unresolved order is 12.

Exercise: For which orders below 50 does this theorem rule out the
existence of a projective plane? For which orders below 50 are we still
unsure about the existence of a projective plane?

The Euler conjecture

Thrm: The Cayley table of a cyclic group of order n = 2 mod 4
has no orthogonal mate.

Proof: It has no transversals. O

Euler famously conjectured that there are no orthogonal latin squares
of order n = 2 mod 4.
He knew this was true for n = 2 and n = 6.

Around 1960 Bose, Shrikhande and Parker showed that in every other
case Euler was wrong!

In fact, Chowla, Erdds & Straus showed that the size of the largest set
of MOLS of order n tends to oo as n — oo.




