Two latin squares of the same size are said to be orthogonal if every possible ordered pair of symbols occurs exactly once when we overlay the two squares.

Example:

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
3 & 4 & 1 & 2 \\
4 & 3 & 2 & 1
\end{array}\right) \quad \perp \quad\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2 \\
4 & 3 & 2 & 1 \\
2 & 1 & 4 & 3
\end{array}\right)
$$

Overlaying these two matrices gives:
$\left(\begin{array}{llll}11 & 22 & 33 & 44 \\ 23 & 14 & 41 & 32 \\ 34 & 43 & 12 & 21 \\ 42 & 31 & 24 & 13\end{array}\right)$

A pair of orthogonal latin squares of order n is equivalent to an $n^{2} \times 4$ orthogonal array.

$$
\left(\begin{array}{llll}
11 & 22 & 33 & 44 \\
23 & 14 & 41 & 32 \\
34 & 43 & 12 & 21 \\
42 & 31 & 24 & 13
\end{array}\right)
$$

Each row of the array consists of
(i) row
(ii) column
(iii) symbol in first square
(iv) symbol in second square

Suppose $L_{1} \perp L_{2}$.

Consider the n cells of L_{2} which contain the same symbol, s say. The entries in the corresponding cells of L_{1} must all be different, by orthogonality.
Since s occurs once in each row and column of L_{2}, the corresponding entries in $L_{\mathbf{1}}$ form a transversal.

Thrm: A latin square of order n possesses an orthogonal mate iff it has n disjoint transversals.

A Cayley table of a group has an orthogonal mate iff it has a transversal.

For each extra column we add to the orthogonal array, we add another latin square.

A set of mutually orthogonal latin squares (MOLS) is a set of latin squares each pair of which is orthogonal.

A set of m MOLS of order n is equivalent to an $n^{2} \times(m+2)$ orthogonal array.

Thrm: Not more than $n-1$ mutually orthogonal latin squares of order n exist.

Proof: Wlog the symbols in the first rows of all the squares are $1,2, \ldots, n$ in natural order.

The symbols occurring in the first cell of the second rows of the squares must then all be different by orthogonality.

No square can have 1 as the symbol in the first cell of the second row.
Thus, there are at most $n-1$ squares.

Complete sets of MOLS

Since no larger set is possible, a set of $\boldsymbol{n}-\mathbf{1}$ MOLS of order \boldsymbol{n} is said to be complete.

Example: A complete set of MOLS of order 4
$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 4 & 1 & 2 \\ 4 & 3 & 2 & 1\end{array}\right) \perp\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \\ 4 & 3 & 2 & 1 \\ 2 & 1 & 4 & 3\end{array}\right) \perp\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \\ 2 & 1 & 4 & 3 \\ 3 & 4 & 1 & 2\end{array}\right)$

Thrm: Each line in a projective plane has the same number of points on it.

Proof: Consider two lines L and L^{\prime} and a point x not on either line (Exercise: prove such a point exists, by using non-degeneracy).

There is a bijection from points on L to points on L^{\prime}. Simply map $\boldsymbol{y} \in \boldsymbol{L}$ to the point on \boldsymbol{L}^{\prime} which is collinear with \boldsymbol{x} and \boldsymbol{y}.

Suppose there are $n+1$ points on every line

Choose a line L and a point x not on L.
Through each of the $n+1$ points on L there is a line to x.
These $n+1$ lines intersect only at x, so they contain
$(n+1)(n+1)-n=n^{2}+n+1$ points.
There are no other points in the plane. If there was another point z then there would be a line through x and z and this line must meet \boldsymbol{L}.

This also shows that there are $n+1$ lines through every point.

Duality

The definition of a projective plane \boldsymbol{P} is symmetric between points and lines. So we can rename the points to be lines and vice versa! This gives a new projective plane, called the dual of \boldsymbol{P}.

Some planes (eg. the Fano plane) are isomorphic to their dual. Others are not.

The order of a plane

A finite projective plane, with $n+1$ points on each line is said to be of order n.
It will have $n^{2}+n+1$ lines, $n^{2}+n+1$ points and $n+1$ lines through every point.

Example:

The Fano plane has order 2. It has 7 lines and 7 points; 3 points per line and 3 lines through each point.

For each projective plane we can define a $(0,1)$ incidence matrix. The rows correspond to the points and the columns correspond to the lines.

We put a $\mathbf{1}$ if the point lies on the line and a 0 otherwise.
This matrix, P, belongs to $\Lambda_{n^{2}+n+1}^{n+1}$.
It satisfies the matrix equation $P P^{T}=P^{T} P=J+n I$.

To find the dual projective plane, we simply take the transpose.

Alternatively, we can think of a bipartite incidence graph. The two types of vertices correspond to points and lines, and the edges indicate that a point lies on a line. The dual is found by interchanging the roles of the two parts of the graph.

Thrm: There exists a finite projective plane of order \boldsymbol{n} iff there exists a complete set of MOLS of order n.

Proof: We show how to build an $n^{2} \times(n+1)$ orthogonal array O from a projective plane \boldsymbol{P} of order \boldsymbol{n} (and leave it as an exercise to show that the construction can be reversed).
Choose one line L of P. For each of the $n+1$ points
$\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ on L we will build one column of O. There are
\boldsymbol{n}^{2} points not on \boldsymbol{L} and for each we will build one row of \boldsymbol{O}.
Consider a particular x_{i}. Label the lines, other than L, which pass through x_{i} as $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$. Then in column i, the entry corresponding to a point y not on L is the index of the line $\ell_{1}, \ell_{2}, \ldots$, or ℓ_{n} which contains y.
Now, since each ℓ_{j} contains n points other than x_{j} we see that each column of O contains n different symbols n times each. Also, since two points lie on a unique line the columns of O are orthogonal.

Thrm: [Bruck-Ryser] If $n \equiv 1,2 \bmod 4$ and a projective plane of order n exists then there exist integers a and b such that $n=a^{2}+b^{2}$. So, for example, there is no projective plane of order 14.
The smallest unresolved order is 12 .

Exercise: For which orders below 50 does this theorem rule out the existence of a projective plane? For which orders below 50 are we still unsure about the existence of a projective plane?

For what values of \boldsymbol{n} does there exist a projective plane of order \boldsymbol{n} ?

Thrm: If n is a power of a prime then a plane exists.
Let \mathbb{F} be a finite field of order \boldsymbol{n} and let \boldsymbol{x} generate the (cyclic)
multiplicative group of \mathbb{F}. Define $\alpha_{i}=x^{i}$ for $i \in\{1,2, \ldots, n-1\}$ and $\alpha_{n}=0$.
For each $k \in\{1,2, \ldots, n-1\}$ we construct a latin square L_{k} in which

$$
\left(L_{k}\right)_{i j}=\alpha_{i}+\alpha_{k} \alpha_{j}
$$

Exercise: Prove this construction works.
If $n \in\{\mathbf{6}, \mathbf{1 0}\}$ then a plane does NOT exist.
The proof is by exhaustion.

The Euler conjecture

Thrm: The Cayley table of a cyclic group of order $n \equiv 2 \bmod 4$ has no orthogonal mate.

Proof: It has no transversals.

Euler famously conjectured that there are no orthogonal latin squares of order $n \equiv 2 \bmod 4$.
He knew this was true for $n=2$ and $n=6$.
Around 1960 Bose, Shrikhande and Parker showed that in every other case Euler was wrong!
In fact, Chowla, Erdös \& Straus showed that the size of the largest set of MOLS of order n tends to ∞ as $n \rightarrow \infty$.

