
Integrating Constraint and Integer Programming

for the Orthogonal Latin Squares Problem

Gautam Appa1, Ioannis Mourtos1, and Dimitris Magos2

1 London School of Economics
London WC2A 2AE, UK

{g.appa,j.mourtos}@lse.ac.uk
2 Technological Educational Institute of Athens

12210 Athens, Greece
dmagos@teiath.gr

Abstract. We consider the problem of Mutually Orthogonal Latin
Squares and propose two algorithms which integrate Integer Program-
ming (IP) and Constraint Programming (CP). Their behaviour is ex-
amined and compared to traditional CP and IP algorithms. The results
assess the quality of inference achieved by the CP and IP, mainly in
terms of early identification of infeasible subproblems. It is clearly illus-
trated that the integration of CP and IP is beneficial and that one hybrid
algorithm exhibits the best performance as the problem size grows. An
approach for reducing the search by excluding isomorphic cases is also
presented.

1 Introduction and Definitions

A Latin square of order n is a square matrix of order n, where each value
0, .., (n − 1) appears exactly once in each row and column. Latin squares are
multiplication tables of quasigroups ([5]). Two Latin squares of order n are called
orthogonal (OLS) if and only if each of the n2 ordered pairs (0, 0), ..., (n−1, n−1)
appears exactly once in the two squares. A pair of OLS of order 4 appears in
Table 1. This definition is extended to sets of k > 2 Latin squares, which are
called Mutually Orthogonal (MOLS) if they are pairwise orthogonal. There can
be at most n− 1 MOLS of order n ([10]).

A related concept is that of a transversal. A transversal of a Latin square
is defined as a set of n cells, each in a different row and column, which contain
pairwise different values. As an example, consider the bordered cells of the second
square in Table 1. It is easy to prove that a Latin square has an orthogonal mate
if and only if it can be decomposed into n disjoint transversals.

MOLS are closely related to finite algebra, in particular to theories of hy-
percubes, affine & projective planes and (t,m, s)-nets ([5]). Apart from their
theoretical properties, they also possess interesting applications, mainly in mul-
tivariate statistical design and optimal error-correcting codes. Recently, they
have been applied to problems related to tournament design and conflict-free
access to parallel memories (see [10]).

P. Van Hentenryck (Ed.): CP 2002, LNCS 2470, pp. 17–32, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

18 Gautam Appa et al.

Table 1. A pair of OLS of order 4

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

0 1 2 3

2 3 0 1

3 2 1 0

1 0 3 2

This work aims at identifying pairs of OLS for orders up to 12 and triples
of MOLS of orders up to 10. Infeasible and unsolved problem instances are in-
cluded. For example, it is well known that a pair of OLS of order 6 does not exist,
whereas it remains unknown whether a triple of MOLS of order 10 exists. Both
Integer Programming (IP) and Constraint Programming (CP) methods are ap-
plied. We report on the comparative performance of CP and IP on this feasibility
problem, along with two algorithms that integrate both methods. This defines
our broader aim, which is to investigate the potential of integrating CP and IP.
Propositional reasoning has been successfully applied to solve open quasigroup
problems ([17]), while recent work ([7]) has tested a CP/LP algorithm on the
problem of quasigroup completion, commenting on the comparative superiority
this scheme.

IP has, in the main, been developed within the discipline of Operational Re-
search, while CP is an “offspring” of the computer science community, mainly
articulated within the field of Artificial Intelligence. Having developed separately,
CP and IP often use analogous techniques under a different terminology. The
necessity to solve large scale optimisation problems ([6]), together with the rev-
elation of strong links between logic and optimisation ([3]), have stimulated a
strong interest in successfully integrating IP and CP.

The combinatorial optimisation problems (COP) targeted by both methods
are of the following generic form, hereafter called COP (x, f, C,D):

min{f(x) : x ∈ C, x ∈ D} (1)

In this formulation, x is the vector of variables, f the objective function, D the
external product of variable domains and C a set of constraints, restricting the
possible values that the variables can take simultaneously. The variable domains
can be integers, symbols or intervals of real numbers. A relaxation of (1), called
REL(x, f, C′, D′), is defined as:

min{f(x) : x ∈ C′, x ∈ D′} (2)

where C′ ⊆ C and D′ ⊇ D, i.e. (2) is derived by dropping at least one constraint
or by enlarging the domain of at least one variable. This implies that the set
of feasible solutions of (2) includes that of (1). Hence, a solution to (2) is not
necessarily a solution to (1). If, however, (2) has no solution, neither does (1).

Every algorithmic method for solving (1) adopts further assumptions about
the form of f, C and D. IP requires that both the objective function f and the set
of constraints C are linear. This fact highly restricts its declarative power, but

Integrating Constraint and Integer Programming 19

allows it to produce efficient problem relaxations. In CP, constraints can be of
arbitrary type, although there is a broadening menu of specific constraint types,
which are universally used in the CP literature. An example is the all different
predicate, which states that certain variables must be assigned pairwise different
values (see [13, 15]).

The rest of this paper is organised as follows. Section 2 exhibits the IP and
CP modes for the MOLS problem. Section 3 discusses a generic scheme for
integrating CP and IP. An outline of all the algorithms is presented in Section 4.
Computational results are discussed in Sections 5 and 6.

2 CP and IP Models for the MOLS Problem

Consider 4 n-sets I, J,K,L and let I be the row set, J the column set and K,L
the sets of values for the two squares. Let the binary variable xijkl be 1 if the
pair of values (k, l) appears in cell (i, j) and 0 otherwise. Since each pair must
occur exactly once, it follows that

∑{xijkl : i ∈ I, j ∈ J} = 1, for all (k, l). Five
more constraints of this type are formed by taking into account that the roles of
the 4 sets are interchangeable. The result is the following IP model (also in [4]):

∑
{xijkl : i ∈ I, j ∈ J} = 1, ∀k ∈ K, l ∈ L (3)

∑
{xijkl : i ∈ I, k ∈ K} = 1, ∀j ∈ J, l ∈ L (4)

∑
{xijkl : i ∈ I, l ∈ L} = 1, ∀j ∈ J, k ∈ K (5)

∑
{xijkl : j ∈ J, k ∈ K} = 1, ∀i ∈ I, l ∈ L (6)

∑
{xijkl : j ∈ J, l ∈ L} = 1, ∀i ∈ I, k ∈ K (7)

∑
{xijkl : k ∈ K, l ∈ L} = 1, ∀i ∈ I, j ∈ J (8)

xijkl ∈ {0, 1}∀i ∈ I, j ∈ J, k ∈ K, l ∈ L

This is a 0−1 IP model consisting of 6n2 constraints and n4 binary variables,
which also defines the planar 4-index assignment problem (4PAPn) (in [1]).

The CP formulation of the OLS problem is easier to devise. Let the two
squares be denoted as X , Y and Xij , Yij ∈ {0, ..., n − 1} be the variables de-
noting the value assigned to the cell (i, j) in the two squares. For each square,
an all different predicate on the n cells of every row and column ensures that
the squares are Latin. To express the orthogonality condition we define the vari-
ables Zij = Xij + n · Yij , for i, j = 0, 1, . . . , n− 1. There are n2 possible values
for Zij , i.e. Zij ∈ {0, . . . , n2− 1}, which have a 1− 1 correspondence with all n2

ordered pairs (i, j), for i, j = 0, 1, . . . , n− 1. The two squares are orthogonal iff
all Zijs are pairwise different. The CP model for the OLS problem is exhibited
below.

all different{Xij : i ∈ I}, ∀ j ∈ J (9)
all different{Xij : j ∈ J}, ∀ i ∈ I (10)

20 Gautam Appa et al.

all different{Yij : i ∈ I}, ∀ j ∈ J (11)
all different{Yij : j ∈ J}, ∀ i ∈ I (12)
all different{Zij : i ∈ I, j ∈ J} (13)
Zij = Xij + n · Yij , ∀ i ∈ I, j ∈ J (14)
Xij , Yij ∈ {0, ..., n− 1}, Zij ∈ {0, ..., n2 − 1}, ∀ i ∈ I, j ∈ J

It is not difficult to establish the equivalence between the constraint sets of the
two models. For example, (9) is the equivalent of constraint set (5). Clearly, the
CP model is more compact, requiring 3n2 variables and n2 +4n+1 constraints.
The extensions of these models to the problem of identifying sets of k MOLS (k ≤
n−1) results in an IP model of nk+2 variables and (k+2

2) ·n2 constraints, whereas
the CP model still requires only O(n2) variables and constraints. It follows that
IP alone is impractical to handle large instances of the MOLS problem.

3 Integrating CP and IP

CP and IP models are solved using analogous algorithmic schemes. Both meth-
ods apply the “Divide & Conquer” paradigm: the initial problem is recursively
divided into subproblems by partitioning the domain of at least one variable.
A search tree is formed, where each node corresponds to a subproblem, the top
node representing the initial problem. Both methods are exact, in the sense that
they guarantee a complete search.

IP can be efficiently used to solve logic structures, as discussed in [3], while it
is also possible to embed logic within a classical optimisation framework (see [9]).
However, the integration of the two approaches poses a different task, viz. that
of using the tools of both CP and IP for modelling and solving COP of general
form. The prospect of integration will be discussed with respect to the next
generic algorithm.

Algorithm 1 At each node/subproblem:
Preprocess COP (x, f, C,D); (I)
if (feasible)

repeat
{

Solve REL(x, f, C′, D′); (II)
Infer additional constraints; (III)

}
until (x ∈ D) or (infeasible) or (no inference)

if (no inference) and not((x ∈ D) or (infeasible))
Create subproblems; (IV)

return;

Concerning IP, step (I) involves preprocessing of variables ([14]). By using
logical relations among the variables and information from the variables already

Integrating Constraint and Integer Programming 21

fixed, additional variable fixing is attempted. Step (II) implies solving the LP-
relaxation of the problem, derived by dropping the integrality constraints. The
advantage of this relaxation is that it provides an assignment of values to all vari-
ables and, if infeasible, it implies infeasibility for the original (sub)problem. If an
LP-feasible but non-integer solution is produced, IP can proceed further by intro-
ducing additional inequalities, which cut-off this fractional solution and restrict
further the feasible region D′ of the relaxation. These additional constraints,
called cutting planes, are derived from the initial set of linear constraints C by
enforcing the fact that a subset of the variables must be integer. This process
of solving the relaxation and extracting further inference in the form of cutting
planes is repeated until the problem becomes infeasible or a feasible integer solu-
tion is found or no additional constraints can be generated. Identifying a cutting
plane, which cuts off a certain fractional point, constitutes the separation prob-
lem. Although this can generally be a task as difficult as the original problem,
i.e. they can both be NP-complete, it is possible to separate certain classes of
cutting planes in polynomial time (see [12]).

For CP, steps (I) & (III) are essentially parts of the same process: the do-
mains of uninstantiated variables are reduced in order to avoid examining values
that will lead to infeasible subproblems. The central notion in this approach is
that of k-consistency (see [15] for definitions). Although domain reduction can
be efficiently performed to achieve 1- & 2-consistency, higher consistency lev-
els require considerable computational effort. Exceptions occur in the case of
structured constraints, e.g. the all different predicate, for which full hyperarc-
consistency ([9]) can be accomplished in reasonable time (in [13]). Again, domain
reduction may have further repercussions, therefore the process is repeated until
no more domain values can be removed. CP lacks a proper relaxation for step
(II), although recent work (in [9]) explores the potential of discrete relaxations.
For both methods, Step (IV) is conducted by selecting an uninstantiated variable
and splitting its domain to create two or more subproblems.

The foregoing discussion suggests that CP & IP can be integrated, at least
in an algorithmic sense. For step (I), logical preprocessing conducted by IP is a
subset of the sophisticated tools available for CP. IP can contribute by providing
the powerful relaxation lacking from CP. The inference step (III) can still be
performed by both methods. The complementarity exists in the fact that CP
directly reduces the discrete solution space of the original problem in contrast
to IP, which reduces the continuous solution space of the relaxation (see also [2]
and [8]). Finally, one of the two, or both, methods can be applied at step (IV)
to determine the partition of the subproblem.

Note that the theoretical connections and equivalences between CP & IP do
not guarantee a beneficial integration; they primarily illustrate the feasibility
of the project. The virtue of integration can be justified only if the inference
generated by the two methods can be viewed as complementary. In other words,
it has to be concluded that one approach succeeds in cases where the other fails.
So far, evidence for this fact remains mostly empirical. In theory, CP is much
faster in searching the solution space, since it does not have to solve a relaxation.

22 Gautam Appa et al.

However, it is exactly the LP-relaxation, which gives IP its global perspective
and allows for a solution to be found without extensive branching.

4 Hybrid Algorithms

This section presents an outline of the algorithms implemented to solve the OLS
problem. In total, five algorithms were examined, namely BB, BC, FC, IPC and
CPI. The first three employ either IP or CP techniques. Algorithm BB is a
simple Branch & Bound scheme. Algorithm BC is a Branch & Cut scheme and
algorithm FC is a Forward Checking scheme, which implements various levels
of constraint propagation.

The last two algorithms, namely IPC and CPI, integrate both methods.
Note that, in accordance with Algorithm 1, the form of integration is basically
determined by which method implements step (IV). This choice determines the
form of the search tree. Hence, step (IV) can be implemented by:

(A) only CP, embedding IP within the CP search tree;
(B) only IP, embedding CP within the IP search tree;
(C) either IP or CP, switching between CP and IP search trees.

Algorithm CPI follows option (A), while algorithm IPC follows option (B).
We discuss the components of the CP and IP solver, i.e. the form of algo-

rithms BC and FC, in 4.1 and 4.2, respectively. Preliminary variable fixing, which
exploits problem symmetry, is illustrated in 4.3. In 4.4, we present the branching
rule, which is common to all schemes for assessment purposes. Finally, the exact
form of the algorithms is presented in 4.5.

4.1 CP Components

A node of the CP search tree is created whenever an uninstantiated variable is
assigned a value still existing in its domain. The algorithm selects a certain cell
(i0, j0) such that Xi0j0 is not instantiated. It then selects the smallest value x ∈
DXi0j0

not already examined, sets Xi0j0 = x and repeats this process for Yi0j0 if
it is still uninstantiated. Thus it fixes a pair of cells, creating up to 2 successive
nodes in the search tree. The orthogonality constraint is checked by maintaining
auxiliary 0− 1 variables Ckl, in addition to variables Zij . Each such variable is
initially 0 and is set to 1 whenever the pair (k, l) is assigned to a particular pair
of cells.

Concerning domain reduction, setting Xi0j0 = k0 requires the deletion of
value k0 from the domains of all variables {Xi1j1 : i1 = i0 or j1 = j0}. This
reflects the fact that each value must appear exactly once in every row and
column of each Latin square. The same procedure is applied when setting Yi0j0 =
l0. Value l0 is also removed from the domain of any Yi1j1 such that Xi1j1 = k0.
This enforces the orthogonality constraint.

In CP terms, this procedure achieves 2-consistency in O(n) steps. If the
cardinality of a domain becomes one, the variable is instantiated to this single

Integrating Constraint and Integer Programming 23

remaining value and the propagation routine is recursively called until no more
variables can be fixed. If a domain is annihilated the node is declared infeasible,
whereas if all variables are instantiated the algorithm terminates and returns
the solution.

An additional level of consistency can be achieved by utilising the following
lemma, presented here for the rows of square X .

Lemma 1. Let Si0 = {Xij : i = i0 and Xij uninstantiated} and Di0 = {⋃
Dij : Xij ∈ Si0}, i0 = 0, . . . , n− 1. A necessary condition for the existence of

a feasible solution, at any subproblem, is that |Si0 | ≤ |Di0 | for each i0 ∈ I.

This lemma is valid for the variable set of an arbitrary all different constraint.
Computing the union of domains at each step, could pose a significant amount
of work. For the problem in hand, the conditions of the above lemma are checked
by introducing the notion of “degrees of freedom”. For square X, the degrees of
freedom for a certain row i and value k, denoted by XRDFik, are the number of
cells in this row, which still have value k in their domains. The degrees of freedom
for columns ofX (XCDFjk) and for rows and columns of Y are defined similarly.
It is easy to see that XRDFi0k0 = 0 for some k0, if and only if |Si0 | > |Di0 |
or Xi0j = k0 for some j. Consider the example of DX11 = DX12 = DX13 =
{1, 2}, where X11, X12, X13 are the only uninstantiated variables of the row 1 of
square X . Although no domain is empty, the problem is clearly infeasible. Since
the remaining n−3 cells of row 1 have been instantiated to n−3 different values,
there must exist a value k0, not appearing in any cell, such that XRDF1k0 =
0. Degrees of freedom can be updated in O(n) time in each node. Again, if
XRDFi0k0 = 1, the single variable in row i0, which has value k0 in its domain,
is assigned this value, no matter which other values are still in its domain.

As noted in Section 3, the particular structure exhibited by the all different
predicate allows for additional consistency checks to be performed. For example,
let DX11 = DX12 = {1, 2} and DX13 = DX14 = {1, 2, 3, 4} be the only uninstan-
tiated variables/cells of row 1. It is easy to see that values 1, 2 must be deleted
from DX13 , DX14 . Such cases are captured by the filtering algorithm presented
in [13]. This algorithm runs in O(p2d2) steps for a constraint on p variables with
domains of cardinality at most d. Hence, we need O(n4) steps for each of the
constraints (9)-(12), i.e. O(n5) steps in total, and O(n8) steps for constraint (13).
Being significantly more expensive, this filtering scheme is applied periodically,
i.e. only after a certain number of variables have been fixed.

4.2 IP Components

The IP algorithm divides the initial problem recursively into subproblems by
incorporating the concept of Special Ordered Sets of type I (SOS-I). Observe
that the IP model consists entirely of equalities. Let S represent the set of
variables appearing on the left-hand side of a particular equality. Exactly one
variable in S will be 1 at any feasible 0 − 1 vector. Assume S1, S2 ⊂ S such
that S1 ∩ S2 = ∅ and S1 ∪ S2 = S. Then the single variable of S set to 1 will be

24 Gautam Appa et al.

either in S1 or in S2. Thus the problem can be partitioned into two subproblems,
each defined by setting the variables of either S1 or S2 to 0. The set S is called
an SOS-I. By recursively partitioning sets S1 and S2, eventually a subproblem
will be left with a single variable of S not set to 0, which is bound to be 1. If
|S1| = |S2| = n

2 , this occurs at most after �2log2n� partitions (levels of the tree),
since each constraint involves n2 variables. The search then proceeds by selecting
another equality, whose left-hand side has at least one variable still not set to 0.
It can be proved that, by branching on SOS-I instead of single 0− 1 variables,
the depth of the search tree is reduced by a logarithmic factor (see also [11]).

Integer preprocessing is performed at each node in order to fix the values
of additional variables before the LP is solved. Note that each variable appears
in exactly 6 constraints. If xi0j0k0l0 is set to 1, all variables appearing in the
same constraints as xi0j0k0l0 are set to 0, i.e. a total of 6(n − 1)2 variables.
Although this would also be enforced by the LP, implementing this “redundant”
variable fixing can detect an infeasible node prior to solving the corresponding
LP. It also accelerates the solution of the LP. Observe that the LP can also detect
infeasibility arising from an empty domain or from a degree of freedom becoming
0. For example, if DXi0j0

= ∅ , the constraint (i0, j0) of (8) is violated, while
XCDFj0k0 = 0 implies that the constraint (j0, k0) of (5) is violated. The only
types of infeasibility not detected by the LP are some cases captured exclusively
by the filtering algorithm for the all different constraints.

Polyhedral analysis has been successfully applied to the OLS problem and
has provided families of strong cutting planes. The convex hull of all 0−1 vectors
satisfying (3)-(8) is the OLS polytope PI =conv{x ∈ {0, 1}n4

: Ax = e}. The
LP-relaxation of PI is the polytope PL = {x ∈ R

n4
: Ax = e, 0 ≤ x ≤ 1}. An

inequality satisfied by all points in PI is called valid. A valid inequality, which
is not dominated by any other valid inequality, is called a facet. Thus, facets
are the strongest possible inequalities in a polyhedral sense. Valid inequalities
are not satisfied by all points of PL. Therefore, their addition to the initial
constraint set restricts further the feasible region of the LP-relaxation. Adding
all known facets is impractical because it increases dramatically the size of the
LP. In contrast, adding them “on demand”, i.e. only when violated by the current
(fractional) LP solution is more efficient. In [1], two non-trivial classes of facets
induced by cliques are identified. The term “clique” stands for a maximal set
of variables, at most one of which can be set to 1. Whether such an inequality
is violated by the current LP solution can be determined in O(n4) steps, i.e.
in time linear in the number of variables, which is the lowest possible. Two
more classes of valid inequalities are also linearly separable: lifted 5-hole and
lifted antiweb inequalities. An important thing to note is that a lifted antiweb
inequality essentially states that a pair of OLS does not exist for n = 2 or,
equivalently, any 2 × 2 subsquares of a set of OLS of order n must contain at
least 3 distinct values.

Violated cutting planes are added at the top node of the IP search tree and
then every �(n− 1)log2n� levels, i.e. every time at least (n−1)

2 variables have
been fixed to value 1. Violated cutting planes are repetitively added for up to

Integrating Constraint and Integer Programming 25

n
2 iterations. Within each iteration, clique inequalities are separated first and
lifted 5-hole and antiweb inequalities are examined only if no violated cliques
emerge. This happens because clique inequalities are, on average, cheaper to
generate. The process terminates if (i) an integer solution is found or (ii) infea-
sibility is detected or (iii) the maximum number of iterations is reached. In case
(iii), cutting planes, which are not satisfied as equalities by the last fractional
solution, are deleted in order to reduce the matrix size. The remaining ones are
retained at the descendant nodes.

4.3 Dealing with Symmetry

Algorithms searching for a feasible solution should reduce redundant search by
excluding symmetrical subproblems. The set theoretical definition of isomorphy
is applicable to Latin squares, viewed as multiplication tables of quasigroups.
Hence, two Latin squares are isomorphic if one can be obtained from the other
by permuting its rows, columns and elements. Extending this concept to OLS,
we call two pairs of OLS isomorphic if one can be derived from the other by
applying certain permutations to the rows, columns, elements of the first and
elements of the second square. According to our notation, this is equivalent to
permuting the sets I, J,K and L respectively. The following analysis reduces
the solution space of the original problem by proving that any subproblems not
examined are isomorphic to a subproblem included in the reduced solution space.

Consider a random pair of OLS of order n, represented by point u ∈ PI . The
simplest isomorphism is the interchange of the roles of any two elements of a
single set, e.g. the swapping of rows 0 and 1. The interchange operator (←→),
introduced in [1], facilitates this process. Writing u1 = u(0←→ 1)I implies that
point u1 represents a new pair of OLS derived from u by interchanging the roles
of members 0 & 1 of set I. In general, we can write u1 = u(m1 ←→ m2)M , where
M = I, J,K,L. Interchanges can be applied sequentially.

The first observation is that, by properly permuting the elements of sets K
and L, we can have the cells of the first row of both squares containing the
integers 0, ..., n− 1 in natural order. Given this arrangement of the first row, we
can permute the elements of set I\{0} in such a way that the first column of
squareX is also in natural order. A pair of OLS of this form is called standardised.
Fixing these 3n− 1 cells already reduces the problem size by a factor of (n!)2 ·
(n− 1)! ([10]).

Our approach allows for further reduction. Consider cell Y10 and observe
that DY10 = {2, ..., n − 1}, i.e. Y10 �= 0, 1, since Y00 = 0 and pair (1, 1) already
appears in position (0, 1). Assume a pair of OLS having Y10 = w, where w ∈
{3, .., n−1}, and let u ∈ PI be the corresponding integer vector. Construct point
u1 = u(2 ←→ w)L(2 ←→ w)K(2 ←→ w)J (2 ←→ w)I and observe that u1012 =
1, i.e. Y10 = 2, and u represents a standardised pair of OLS. It follows that if
a solution having Y10 = w, w ∈ {3, .., n − 1}, exists, a solution having Y10 = 2
must also exist. Therefore, we can fix pair (1, 2) in position (1, 0), which reduces
the solution space by an additional factor of (n− 2).

26 Gautam Appa et al.

Table 2. Variable fixing and domain reduction

0 1 · · · n-2 n-1

1

2

.

.

.

i

.

.

.

n-2

n-1

0 1 · · · n-2 n-1

2

{1,3}
.
.
.

{1,3,4,..,i-1,i+1}
.
.
.

n-1

{1,3,..,n-2}

Using the same approach, it can be proved that DY20 = {1, 3}, i.e. if there
exists a solution with Y20 = w, 4 ≤ w ≤ n− 1, there exists also a standardised
solution with Y20 = 3, having also Y10 = 2 . In general, DYi0 = {1, 3, 4, ..., i−
1, i+ 1} for i ∈ {3, ..., n− 1}. Given these reduced domains, observe that value
n− 1 appears only in DY(n−2)0 . Therefore, we can also set Y(n−2)0 = n− 1. The
final form of the pair of OLS after this preliminary variable fixing, is depicted
in Table 2.

4.4 Branching Rule

We present an efficient branching strategy used in both CP and IP. Recall first
that CP creates subproblems by fixing a cell of the square X and then fixing the
same cell in square Y. There are two systematic methods for selecting the next
cell to be examined. One is to examine all cells in a certain row (or column).
The alternative is to always select a cell in a different row and column. The
first method fixes rows (columns) of the squares, therefore selecting each time a
different value for a cell in the current row. The second method does not need
to select a different value each time, since, pairwise, all cells are in different rows
and columns. Therefore, it can set all cells of square X to the same value and,
according to the orthogonality constraint, set all cells of square Y to pairwise
different values. Hence, by definition, this method fixes transversals of square Y .

A common criterion for branching, is to select the next variable in the way
that maximises the domain reduction achieved. If the search proceeds by fixing
the remaining n − 1 cells of the second row in both squares, n − 1 different
values will appear in each square. Setting X1j0 = k0 implies the deletion of
value k0 from the domains of all variables Xi0j0 for 2 ≤ i0 ≤ n − 1, except
for i0 = k0 (having fixed Xk00 = k0 implies that k0 /∈ Dk0j0). Hence, (n − 3)
domain members are removed for each value k0 appearing in the second row,
the only exception being value k0 = 1 which results in removing n − 2 domain
members. In total, (n−2)·(n−3)+(n−2) domain values are removed. Similarly,
(n−2)2+(n−3) domain values are removed from square Y. The total number of
values removed from the domains of the uninstantiated variables/cells is α(n) =
2(n− 2)2 + (n− 3).

Integrating Constraint and Integer Programming 27

Using an analogous argument, it can be proved that by fixing a transversal
of square Y along with fixing the corresponding cells of square X with the same
value 0, (n− 1)(n− 2) domain values are removed from square X and 2n(n− 3)
domain values are removed from square Y. The total number of domain values
removed is β(n) = (n− 1)(n− 2) + 2n(n− 3). It turns out that α(n) ≤ β(n) for
n ≥ 2. Therefore, fixing transversals is computationally more beneficial, a fact
also supported by experimental results.

For IP to employ an equivalent branching scheme, it is sufficient to always
select the SOS-I among the equalities of constraint set (7). Fixing, for example,
value 0 in row 1 is implemented by recursively partitioning the variable set
of equality (1, 0) of (7). In the worst case, after branching on all n2 SOS-I
emanating from (7), a solution is bound to be constructed. Given this branching
rule, the maximum depth of the search trees created by CP and IP is O(n2) and
O(n2log2n), respectively.

4.5 The Algorithms

Algorithm BB involves no problem specific features and is considered in order
to compare our results with those of a commercial IP solver, namely XPRESS-
MP [16]. The IP solver uses its own cutting planes and all tuning parameters are
set to their default values. No general purpose CP software has been used. Algo-
rithm BC incorporates all the IP components and the branching rule described
in the previous sections. Algorithm FC maintains 2-consistency and updates all
“degrees of freedom” at each node. Each all different constraint is made full
hyperarc-consistent only whenever a transversal has been fixed. Again, this pro-
cedure is applied for up to n

2 iterations or until no more domain filtering is
achievable.

Algorithm IPC embeds CP within IP by propagating on all different con-
straints as an additional preprocessing step at each node. The technical details
are as follows: observe first that the constraint set (3) is equivalent to the con-
straint all different{W(i+n·j) : i ∈ I, j ∈ J}, where DWi+n·j = {0, ..., n2 − 1}.
This is valid since each ordered pair (k, l) is uniquely mapped to a number
(k + n · l) ∈ {0, ..., n2 − 1}. An analogous constraint arises from each of the five
constraint sets (4)-(8), i.e. in total, 6 all different predicates are formed. Let V
denote the set of the n4 0− 1 variables. At a certain node of the IP search tree,
let F ⊆ V be the set of fixed variables. Define W = {Wi+n·j : xijkl ∈ V \F for
some k ∈ K, l ∈ L} and DWi+n·j = {(k+n · l) : xijkl ∈ V \F}. The preprocessing
step for (3) is the application of the filtering algorithm of [13] to the predicate
all different(W). If value (k + n · l) is removed from DWi+n·j , xijkl is set to
0.This procedure is then applied to constraint sets (4)-(8) for up to n

2 iterations.
The objective of this preprocessing is to fix additional variables and to detect
infeasibility without having to solve the LP.

The second hybrid scheme, embedding IP within CP, is Algorithm CPI. It
is based on the FC algorithm, the additional step being to call the IP solver
whenever a transversal has been fixed. The current status of the variables’ do-
mains in CP is passed to IP in the form of variable fixing. Obviously, xijkl = 0

28 Gautam Appa et al.

iff k /∈ DXij or l /∈ DYij and xijkl = 1 iff Xij = k and Yij = l. Note that, before
calling the IP solver, all possible domain reduction by CP has been achieved.
The reason is not only to avoid solving an infeasible IP but also to detect cases
where IP can prove infeasibility although CP cannot. The IP solver deals with
a single node, adding cutting planes for up to n iterations. The initial LP is
solved by the Primal Simplex algorithm, whereas all other iterations use the
Dual Simplex algorithm. This is the standard approach because adding violated
inequalities makes the solution of the previous iteration infeasible for the primal
problem but feasible for the dual. Although an objective function is meaningless,
a random objective function is introduced, in order to avoid degeneracy in the
dual problem. No branching is performed by IP, the aim being to either extend
a partial solution to a complete one or to prune a branch as infeasible.

Note that both CP and IP models are active in both hybrid algorithms, i.e.
there has been no decomposition of the problem. The rationale is to achieve the
best possible inference by both methods and also to compare their performance.
The cost of maintaining both models is easily seen to be negligible.

5 Computational Experience

The callable libraries of XPRESS-MP have been used to codify the IP compo-
nents ([16]). The code for the CP components has been written in Microsoft
C++ environment and is mainly problem specific. All experiments were con-
ducted on a PC under WinNT, with a PentiumIII processor at 866MHz and
256Mb of main memory. The experiments presented in this section concern the
identification of a pair of OLS for orders n = 3, ..., 12. The number of variables
in the IP model range from 81 (n = 3) to 20736 (n = 12), while the number of
constraints ranges between 54 and 864. The CP model starts with 27 variables
for n = 3 and ends up with 432 variables for n = 12 (see Section 2). Each algo-
rithm returns a solution or proves that the problem is infeasible for the case of
n = 6, where a complete search is required. For this reason, this instance is also
particularly interesting for assessing the performance of the algorithms.

Table 3 illustrates two performance indicators: the number of nodes created
during the search and the time in seconds taken to solve each problem. The
number of nodes is illustrated in logarithmic scale. All schemes present the same
general behaviour, with complexity exploding after n = 9. FC creates signifi-
cantly more nodes than BB, which itself is much worse than BC. Algorithm IPC
constantly creates fewer nodes that IP, although the difference is not significant.
The striking difference appears between FC and CPI, with the hybrid algorithm
creating considerably fewer subproblems. This indicates that CPI prunes infea-
sible branches much earlier by complementing CP’s inference strength with that
of IP. Note that CPI’s performance is always between those of FC and BC.

In terms of time, the first comment is that BB is the slowest. Algorithm FC
is the fastest for orders up to 9, providing the fastest enumeration of the whole
solution space for n = 6. For larger values of n, however, it is outperformed by
BC. Again IPC is slightly better than BC. It appears that the extra overhead of

Integrating Constraint and Integer Programming 29

Table 3. Performance indicators

NODES (log)

n BB BC FC IPC CPI

3 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00

5 2.32 0.00 7.50 0.00 5.58

6 14.88 12.39 18.13 12.33 14.65

7 14.36 8.13 20.58 7.87 19.02

8 10.08 5.58 11.36 5.39 10.37

9 18.24 15.01 28.27 18.22 22.45

10 22.44 19.72 32.88 19.70 26.95

11 27.20 22.37 35.16 22.20 29.85

12 29.32 23.17 39.49 23.09 32.78

TIME (sec)

n BB BC FC IPC CPI

3 3.2 3.2 0.0 3.2 0.00

4 5.8 3.7 0.0 3.7 0.00

5 12.4 9.6 0.0 9.6 0.57

6 1,843 553 43 532 376

7 7,689 3,325 523 2,937 854

8 294 252 2.7 231 112

9 32,341 17,854 12,745 15,826 14,439

10 37,065 20,561 20,935 19,306 17,842

11 46,254 24,812 29,423 23,538 21,651

12 59,348 31,642 37,161 29,213 26,983

Table 4. Percentage of nodes pruned

n 3 4 5 6 7 8 9 10 11 12

INFI 0.0 0.0 0.532 0.657 0.416 0.227 0.321 0.315 0.264 0.250

INFC 0.0 0.0 0.0 0.046 0.052 0.059 0.032 0.032 0.048 0.024

preprocessing at each node is counteracted by the smaller number of subproblems
created. Once more, the more consistent and robust performance is exhibited by
algorithm CPI, which lies between BC and FC up to n = 9 and outperforms
both thereafter, i.e. as problem size grows.

Table 4 provides further insights on the performance of the hybrid algorithms.
It depicts the percentage of infeasible nodes pruned by IP in algorithm CPI
and the percentage of infeasible nodes pruned by CP in algorithm IPC. Hence,
indicator INFC is the percentage of infeasible nodes in the search tree of IPC
which were detected by CP during preprocessing, without having to solve them.
On the other hand, INFI denotes the percentage of infeasible nodes in the search
tree of CPI which were pruned only by solving the corresponding IP. These nodes
correspond to subproblems made already consistent by CP alone. Thus INFI
also indicates the percentage of cases where the inference generated by IP could
achieve what CP alone could not, except by further branching. In other words,
INFC and INFI are indicators of the usefulness of incorporating CP within the IP
search tree and IP within the CP search tree, respectively. Hence, only up to 6%
of the nodes in the IP search tree are pruned as infeasible during preprocessing.
On the contrary, at least 25% of nodes in the CP search tree are pruned by IP.
Note that for n = 6, INFI rises to 66%. This explains the significant improvement
accomplished by incorporating IP within CP (algorithm CPI) in terms of nodes.
CP is also useful within IP but to a smaller extent.

Another measurement of the inference strength is the early identification of
infeasible branches. A representative criterion, independent of the actual tree
form, is the number of transversals fixed before pruning a node. We report on

30 Gautam Appa et al.

algorithms BC, FC, IPC, CPI only for the infeasible case of n = 6. Algorithms
BC, IPC and CPI need to fix at most one transversal before proving that a spe-
cific branch is infeasible, i.e. all of them generate approximately the same quality
of inference. In contrast, algorithm FC is able to prune a node as infeasible, after
fixing a single transversal, only in around 10% of the cases; in the remaining ones
it has to fix up to 4 transversals before proving infeasibility. Analogous results
appear for larger values of n and explain the fact that algorithm FC creates the
largest number of nodes. Algorithm CPI is faster than algorithms BC and IPC
for n = 6, exactly because it solves a much smaller number of linear programs
and employs IP only after the problem has been restricted enough for cutting
planes to become capable of proving infeasibility. On the contrary, BC and IPC
keep on solving LPs and adding cutting planes in between without pruning any
further branches.

These observations have obvious implications for more general COP. Given
that a combinatorial problem is in NP , obtaining a complete polyhedral de-
scription is as hopeless as finding a polynomial algorithm. Partial polyhedral
description can be efficiently used to reduce the search, but usually cannot be-
come effective unless the problem has been sufficiently restricted. For example,
obtaining an integer solution or a certificate of infeasibility at the top node of a
Branch & Cut tree is possible only for very small problem instances. For larger
instances, CP can provide substantial improvement by enumerating all partial
assignments of a certain number of variables. IP can then be applied to the re-
stricted problem and attempt to extend the partial solution to a complete one
or prune the partial solution without any further enumeration. If IP fails to
do either, CP can again be used to extend the partial solution by instantiating
further variables before IP is called again. The point where the algorithm must
“switch” between CP and IP is, most probably, problem specific. In the case of
OLS, the notion of transversal offers such a convenient criterion.

6 Triples of MOLS

We conclude by briefly presenting the algorithm implemented for triples of
MOLS. Having already discussed the superiority of hybrid algorithms, we apply
this approach to triples of MOLS. Since the IP model would require n5 binary
variables, we have to decompose the problem. Assume Latin squares X,Y and U
of order n, where X,Y are as in Table 2 and the first row of U contains integers
0, ..., n− 1 in natural order.

CP fixes a certain number of t(< n−1) values in square U, each in n−1 cells
of different rows and columns, and performs the appropriate domain reduction.
The IP model for the pair X,Y of OLS is then used, after adding 2tn extra
equality constraints to ensure orthogonality with the partially completed square
U. The IP model is handled by algorithm IPC and returns an integer solution
or proves infeasibility. If no integer solution is found, the CP solver backtracks
and provides the next partial instantiation of square U before the IP solver is
called again. If an integer solution is returned, the CP solver instantiates the

Integrating Constraint and Integer Programming 31

Table 5. Time to identify triples of MOLS of order n

n 4 5 6 7 8 9 10

TIME (sec) 2.34 11.83 n/a 685 1457 13873 *

remaining cells of square U, under the additional constraints for orthogonality
with squares X,Y. If it succeeds, a solution for the overall problem is found and
the algorithm terminates. If not, the IP solver is called again and the search in the
IP tree is resumed. Hence, the algorithm interchanges between the two solvers
and retains both search trees active. Since both CP and IP control the creation
of subproblems in different stages, this hybrid scheme implements option (C)
(see Section 4). Table 5 illustrates preliminary results about the time (seconds)
taken to identify a triple of MOLS of order n, using t = 1. Note that no triple of
MOLS exists for n = 6, therefore this instance was not examined. For n = 10,
the algorithm was interrupted after 40, 000 seconds, having explored at least
0.00538% of the solution space.

References

[1] Appa G., Magos D., Mourtos I., Janssen J. C. M.: On the Orthogonal
Latin Squares polytope. Submitted to Discrete Mathematics (2001). (URL:
http://www.cdam.lse.ac.uk/Reports/reports2001.html) 19, 24, 25

[2] Bockmayr A., Casper T.: Branch and infer: a unifying framework for integer and
finite domain constraint programming. INFORMS Journal on Computing, 10
(1998) 187-200. 21

[3] Chandru V., Hooker J. N.: Optimization methods for logical inference. J.Wiley
(1999). 18, 20

[4] Dantzig G. B.: Linear Programming and extensions. Princeton Univ. Press (1963).
19

[5] Dénes J., Keedwell A. D.: Latin squares and their applications. Acad. Press (1974).
17

[6] Freuder E. C., Wallace R. J. (ed.): Constraint Programming and Large Scale
Discrete Optimization. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, 57, Amer. Math. Soc (1998). 18

[7] Gomes C., Shmoys D.: The Promise of LP to Boost CSP Techniques for Combi-
natorial Problems, CP-AI-OR’02, 291-305, Le Croisic, France (2002). 18

[8] Hooker J. N., Osorio M. A.: Mixed logical/linear programming. Discrete Applied
Mathematics, 96-97 (1994) 395-442. 21

[9] Hooker J. N.: Logic-Based Methods for Optimization: Combining Optimization
and Constraint Satisfaction. J.Wiley (2000). 20, 21

[10] Laywine C. F., Mullen G. L.: Discrete Mathematics using Latin squares. J.Wiley
(1998). 17, 25

[11] Magos D., Miliotis P.: An algorithm for the planar three-index assignment prob-
lem. European Journal of Operational Research 77 (1994) 141-153. 24

[12] Nemhauser G. L., Wolsey L. A.: Integer and Combinatorial Optimization. J.Wiley
(1988). 21

32 Gautam Appa et al.

[13] Regin J. C.: A filtering algorithm for constraints of difference in CSPs. Proceedings
of National Conference on Artificial Intelligence (1994), 362-367. 19, 21, 23, 27

[14] Savelsbergh M. W. P.: Preprocessing and Probing for Mixed Integer Programming
Problems. ORSA J. on Computing, 6 (1994) 445-454. 20

[15] Tsang E.: Foundations of Constraint Satisfaction, Acad. Press (1993). 19, 21
[16] Dash Associates: XPRESS-MP Version 12, Reference Manual (2001). 27, 28
[17] Zhang H., Hsiang J.: Solving open quasigroup problems by propositional reason-

ing, Proc. of International Computer Symposium, Hsinchu, Taiwan (1994). 18

	Integrating Constraint and Integer Programming for the Orthogonal Latin Squares Problem
	Introduction and Definitions
	CP and IP Models for the MOLS Problem
	Integrating CP and IP
	Hybrid Algorithms
	CP Components
	IP Components
	Dealing with Symmetry
	Branching Rule
	The Algorithms

	Computational Experience
	Triples of MOLS

