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Abstract. Let N(n) denote the maximum number of mutually orthogonal Latin squares of order 
n. It is shown that for large n, 

N(n) > n1/17-2. - 

In addition to a known number-theoretic result, the proof uses a new combinatorial construc- 
tion which also allows a quick derivation of the existence of a pair of orthogonal squares of all 
orders n > 14. In addition, it is proven that N(n) > 6 whenever n > 90. 

1. Introduction 

A Latin square of order n is a map L : R X C -+ S, where IR 1 = ICI = 

ISI = n (1x1 denotes the cardinality of the set X), such that for fixed 
i, E R and j. E C, and for any x E S, the equation 

L(io,j) =x 

has a unique solution j E C and the equation 

L(i, jo) =x 

has a unique solution i E R. Elements of R are called rows, elements of 
C are cohmns, and elements of S are symbols. A Latin square is usually 
written as a square array, the cell in the ith row and jth column contain- 
ing the symbol L(i, j). In this context, we are requiring that in every row 
and column of the array, each symbol appears exactly once. 

Two Latin squares L, :R X C-+ S, and L2: R X C-+ S, are said to 
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be orthogonal iff for any (x1, x2) E S, X S,, the equations 

have a unique simultaneous solution (i, j) E R X C. k Latin squares 
Li:R X C+ Si, i = 1, 2, . . . . k, having the same row and column sets, are 
said to be mutually orthogonal iff every two of them are orthogonal. 
N(n) will denote the largest integer k for which there exists a set of k 

mutually orthogonal Latin squares of order n. 
The following four theorems are well known and easy to prove (see 

]6,141). 

Theorem 1.1. Fern >_ 2, 1 <_ N(n) I n-l. 

Any two Latin squares of order 1 are orthogonal. There is only one 
Latin square of order 0 (the null square), but it is orthogonal to itself. 
Thus it is not unreasonable to adopt the conventions that N(0) = N( 1) 
ZOO 

Theorem 1.2. N(n) = n- 1 if n is a prime power. 

Theorem 1.3. N(nm) 2 min{N(n), N(m)). 

From Theorem 1.2 and 1.3 follows 

Theorem 1.4. If n = py1 p;i _.. p,"r is the factorization of n into powers 
of distinct primes pi, then N(n) 2 mini < i<r (pyi-1). -- 

Theorem 1.4 is due to MacNeish [9] and Mann [ 101. 
Euler conjectured that N(n) = 1 (i.e., no pair of orthogonal squares 

exists) for n - 2 (mod 4). MacNeish went so far as to conjecture that 
equality holds in Theorem 1.4. In 1901, Tarry [ 151 showed that in fact 
N(6) = 1 by a systematic enumeration. 

Nothing else was known about N(n) until the late 1950’s when Parker 
[ 111 discovered three orthogonal Latin squares of order 21, disproving 
MacNeish’s conjecture. Bose and Shrikhande [ l] found the first counter 
example to Euler’s conjecture, a pair of orthogonal squares of order 22, 
and Parker [ 121 exhibited the first pair of order 10. More techniques 
were put forth by Bose and Shrikhande [ 21. The work of the three au- 
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thors culminated in 1960 with a joint paper [ 31 where it was proved 
that N(n) 2 2 for all n > 6, demolishing Euler’s conjecture. Their proof 
uses Theorem 1.4, some general construction methods using pairwise 
balanced designs, and some more special constructions using the “meth- 
od of differences”. One of their most significant results is the following: 

Theorem 1.5. If m 5 N(t) + 1 and 1 < u < t, then 

N(mt + u) >_ min {N(m)- 1, N(m + 1) - 1, N(t), N(u) 1. 

Also in 1960, Chowla, Erdos and Straus [ 51 observed that Theorems 
1.4 and 1.5 imply N(n) -+ 00 as 72 -+ 00. Indeed, using a result of Brun’s 
sieve method due to Radamacher, they proved that N(n) > $n l/g1 for 
sufficiently large n. With a similar argument, but using a result of Buch- 
stab [4] in the sieve argument, Rogers [ 131, in 1964, showed that 
N(n) > n1/(42 +E) for n > n E’ We shall also use Buchstab’s result; it will 
be stated in Section 4. 

Recently, Hanani [7] has shown that N(n) >_ 3 for n > 5 1, N(n) 2 5 
for n > 62, and N(n) 2 29 for n > 34,115,553. His proof again uses 
Theorem 1.4 and 1.5, and some special constructions. 

2. A construction and some inequalities 

In [ 51, the authors remark that the numerical estimate on the lower 
bound for N(n) could be improved if, for example, the occurrences of 
both N(m) and N(m + 1) in the inequality of Theorem 1.5, or the hy- 
pothesis m L N(t) + 1, could be eliminated. We show below (Theorem 
2.3) that, indeed, the hypothesis m <_ N(t) + 1 can be eliminated. 

Let k 2 2, n 2 1 be given. By a transversal design with k groups of 
size n, in brief a TD(k, n), we mean a triple (X, 9, A), where X is a set 
of kn points, 9 = (G, , G,, -, G, } is a partition of X into k subsets Gi 
(called groups), each containing n points, and A is a class of subsets of 
X (called blocks or transversals) such that each block A E A contains 
precisely one point from each group and each pair x, y of points not 
contained in the same group occur together in precisely one block A. 

Evidently, each block of a TD(k, n) contains k points. It is not dif- 
ficult to see that each point occurs in precisely n blocks and the total 
number of blocks is n 2. Note that for any k, a (unique) TD(k, 1) ex- 
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ists. To be consistent with our convention N(0) ? 00, it is convenient to 
accept the existence of a degenerate TD(k, 0) with no points, k empty 
groups, and no blocks. 

Transversal designs provide a compact and concise language with 
which to manipulate sets of orthogonal Latin squares. The following 
well-known lemma is due to Bose and Shrikhande [2]. For comple- 
teness, we sketch a proof here. 

Lemma 2.1. The existence of a set of k-2 mutually orthogonal Latin 
squares of order n is equivalent to the existence of a TD(k, n). 

Proof. Given a TD(k, n) (X, Q , A), where 9 = {G,, G,, . . . , G, }, define 
the maps Li : G, X G, + Gi, i = 3,4, . . . , k, as follows: Li (x, y) is to be that 
element z E Gi for which A f~ Gi = {Z } , where A is the unique block 
of A containing {x, y } . From the properties of the transversal design, 
it readily follows that L,, L,, . . . . L, are Latin squares and are mutual- 
ly orthogonal. 

Conversely, let Li : R X C -+ Si, i = 3,4, . . . . k, be k-2 mutually ortho- 
gonal Latin squares of order n. We may assume that the sets R, C. S,, 
s,, -.., S, are pairwise disjoint. With this understanding, put 

X=RuCuS+...u&, 

$? = (R, C, S,, . . . . S, 1, 

A = {(i, j, L,(i, j), L,(i, j), . . . . L,&, j)) : i E R, j E C 

Then (X, 9, A) is a TD(k, n). 

Evidently, the existence of a TD(k, n) is equivalent to the statement 
N(n) 2 k-2. 

Through each point of a block A of a TD(k, n), n 2 2, there pass 
n-l other blocks. Thus k(n- 1) blocks meet A in one point; the other 
n2 -k(n- 1 )- 1 blocks are disjoint from A. If k > n + 1, we have a con- 
tradiction (proving Theorem 1 .l); if k = n + 1, every block must meet 
A J if k < n + 1, there exists a block disjoint from A. 

Theorem 2.2. Let (X, 9, A) be a TD(k + I, t), where 9 = {G,, G,, ._., G,, 
H1,H2 ,._,., Hl).LetSbeanysubsetofH1 u H, u... uH~. Letm>O 
be given and assume: 



R.M. Wilson, Number of mutually orthogonal Latin squares 185 

(i) for each i = 1, 2, . . . . 1, there exists a TD(k, hi), where hi = IS n H,I; 
(ii) for each block A E A, there exists a TD(k, m + uA ) in which there 

ma,v be found uA = IS n A ) disjoint blocks. 
Then there exists a TD(k, mt + s), where s = I S I _ 

Proof. Let X, = G, U G, U . . . U G, . For each block A E A, we write 
A,=AnX,,A’=AnS. 

We construct a TD(k, mt + s) on the set of k(mt + s) points 
X” = (X, X M) U (Ik X S), where M is a set of m elements and Ik = 
{ 1,x “‘) k} . As groups, we take 9 * = {GT, Gz, . . . , Gl } , where GT = 
(Gi X M) U ({i} X S), i = 1,2, . . . . k. The blocks are obtained as follows: 

For each block A E A, construct a TD(k, m + uA ) with point set 
(A0 X M) U (Ik X A’), groups (A0 n Gi) X M U ({i) X A’), i = 1,2, . . . . k, 
and blocks BA. Under our h.ypothesis that such a transversal design ex- 
ists with UA disjoint blocks, we may effect the construction so that 
Ik X {z}, z E A’, are blocks of BA . With this understanding, we denote 
by 8h the remaining (m + uA )2-~A blocks of 8, and put 8 = U, E AB> 
For each j = 1,2 , . . . . I, construct a TD(k, hi) on the set of points 
Ik X (S n Hi) with groups {i} X (S n Hi), i = 1,2, . . . . k, and blocks Ci. 
Put A* = ‘ls u Cl u c2 u . . . U Cl. We claim that (X*, S_*, A *) is a 
TD(k, mt + s). 

Most verifications are trivial. We check below the condition that two 
points of X”’ which belong to different groups of S* occur in precisely 
one block of A *. 

The points of X* are of the form (x, p), x E X0, p E M, or (i, z), 
iEIk, z ES. 

Two points ((x1, p1 ), (x2, p2)} lie in different groups of 9* iff x I ., 

x2 lie in different groups of 9. Two points {(iI, zl), (i2, z2)} lie in dif- 
ferent groups of 9 * iff i, # i,. Two points {(x, p), (i, z)} lie in different 
~IYOUPS of 9 * iff x $ Gi. 

The pairs of points of X” occurring in one (and only one) block of 
Ci are {(iI, q), (iz, z2)}, where i, # i,, {q, z2} C Hi. The pairs of 
points occurring in one (and only one) block of I& are {(x,, pl), 
(~2, ~2)), wherexl f ~2, (~1, ~21 &A; {(x, p), (i, .QI, wherex$ Gi, 
(x, 21 C A; and {(iI, q), (i2, z2)}, where i, f i,, z1 f z2, {q, z2) EA. 

With this enumeration, the properties of the original TD(k + 1, t) es- 
tablish our claim. 

We derive a number of corollaries of Theorem 2.2. We shall use only 
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Theorem 2.3 in Section 3 (two squares) and Section 4 (&17 squares). 
Theorems 2.4 and 2.5 will be applied in our discussion of, the existence of 
six squares in Section 5. 

Theorem 2.3. If 0 <_ u 5 t, then 

N(mt + u) 2 min{N(m), N(m + l), N(t)- 1, N(u)). 

Proof. Let k = 2 + min{N(m), N(m + l), N(t)- 1, N(u)}. Then by Lem- 
ma 2.1, transversal designs TD(k, m), TD( k, m + 1 ), TD(k + 1, t) and 
TD(k, u) exist. In the notation of Theorem 2.2, we take I = 1 and let S 
be any subset of H, containing u points. For each block A E A, uA = 0 
or 1. Theorem 2.2 then asserts the existence of a TD(k, mt + u); hence 
N(mt + u) 2 k-2. 

When 2 = 0, S = 8 in Theorem 2.2, we obtain Theorem 1.3. 

Theorem 2.4. If 0 5 u, u I t, then 

N(mt + u + v) 2 min{N(m), N(m + l), N(m + 2), N(t)-2, N(u), N(v)}. 

Proof. Set k-2 equal to the indicated minimum. A TD(k + 2, t) exists. 
In Theorem 2.2, let I = 2 and choose S such that IS n H, I = u, IS n H, 1 

= u. Transversal designs TD(k, u) and TD(k, u) exist by our choice of k_ 
For any block A of the TD(k + 2, t), uA = 0, 1 or 2. But transversal 
designs TD(k, m + i), i = 6,1,2, exist. Moreover, since k 5 N(m) + 2 
I m + 1, the TD(k, m + 2) contains two disjoint blocks by an earlier 
remark. Theorem 2.2 asserts the existence of a TD(k, mt +u + u). 

Theorem 2.5. If t > 3 (I- 1) (Z-2), then 

N(mt +Z)2 min(N(m), N(m + l), N(m + 2), N(t)-Z}. 

Proof. Let k-2 be the indicated minimum. A TD(k+Z, t) exists. 
In the notation of Theorem 2.2, we form the set S = (zl, z2, . . . . zz} 

by selecting one point Zi from each group Hi, 1 L i I I, in such a way 
that no block A contains three elements of S. Under our hypothesis 
t > $(1-l) (Z-2), this can always be done: Inductively, if zr, z2, . . . . z,, 
Y < I, have been chosen with no three in a common block, consider the 
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ir(r-- 1) blocks A,, 1 5 i < j F Y, such that (Zi, z/} C Aijs There must 
be at least one point z,+t E H,, , not contained in any of the blocks 
Afj; then no three of zt, z2 7 . . ..z~+~ lie in a common block. 

With this choice of S, zdA = 0. 1 or 2 for each block A4 of the 
TD(l< + I, t). Again, transversal designs TD(k, m + i), i = 0. 1. 2. exist 
and the TD(,h-, nz + 2) has two disjoint blocks. By Theorem 2.3, a 
TD( k, mt + I) exists. 

3. Two squares 

We pause here to give a proof of the theorem of Bose, Shrikhande 
and Parker [3]. 

Theorem 3.1. For n # 2,6, N(n) 2 2. 

Proof. Pairs of orthogonal Latin squares of orders 10 and 14 are con- 
structed in [ 31. (They are also exhibited in [ 61.) In view of this and 
Theorem 1.4, it remains to show N(n) 2 2 for n = 2 (mod 4). n > 18. 

Given n z 2 (mod 4), n 2 18, define t and u as in Table 1, depending 
on the residue of n modulo 18. 

Table 1 

n t L4 

18s 
18s+ 2 
18s+ 4 
18s+ 6 
18s+ 8 
18s+ 10 
18s+ 12 
18x+ 14 
18s+ 16 

6s - 1 
6s - 1 
6s+ 1 
6s+ 1 
6s+ 1 
6s+ 1 
6s+ 1 
6s+ 1 
6s+ 5 

3 
5 
1 
3 
5 
7 
9 

11 

By Theorem 1.4, N(t) >_ 4, N(u) > 2. With the exception of n = 30, 
we have 0 5 u 5 t, so taking m = 3 in Theorem 2.3, 

N(n) =N(mt+u)> min(N(m), N(m+l),N(t)- l,N(u)} 2 min{2,3,3,2) 
= 2 
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- 

‘Da fu Ob 
Oc Ob X 
X Oa oc 

la lb Ic 
lb lc lu 
Ic la lh 

2a 2b 2c 
2b 2c 2a 
2c 2a 2b 

3a Z 3h 
3c 3b Z 
z 3a 3c 

4a Y 4b 
4c 4b 1 
Y 4a 4c 

Ob Oc Oa 
4b 4c 4a 
3b 3c 3a 

t 

la Y lb 2a Z 2b 3a 3b 3c / 4a, 4b 4c 1 Oc lc 2c I 
lc lb Y 2c 2b Z 3b 3c 3a 4b 4c 4a ?oa la 2.u 
Y la lc z 2Q 2c 3c 3u 3b ! 4c 4a 4b/iOb lb 2b ’ 

1 1 I -- 

2a X 2b 3a Y 3b 4~ Z 4b / Oa Ob Oc / ’ 2c 3c 4c ~ 
2c 2b X 3c 3b I 4c 4b Z j Ob Oc Oa j i 2a 3a 4a I 
x 24 2c Y 3a 3c Z 4a 4c j Oc Oa Ob 1 2b 3b 4b i 

I 
3a 3b 3c 4a X 4b Oa Y Ob j la Z lbj ( 4c Oc Ic 
3b 3c 3a 4c 4b X Oc Ob Y 

; 
lc 1bZ ~:4a Oa la / 

3c 3.~7 3b X 4u 4c Y oaoc z la lc 4b Oh lb 
I 

4a 4b 4c Oa Ob Oc 1aX lb 2a Y 2b j j lc 2c 3c - 
4b 4c 4a Ob Oc Oa lc lb x 

/ ) : 
1 2~ 2b Y / i 1~ 2a 3a 

4c 4a 4b Oc Oa Ob X la lc Y 2a 2c i ! lb 2b 3b ~ 

! 
Oa Z Ob la lb lc ’ 2a 2b 2c ; 3a X 3b / i 3c 4~ Oc 
Oc Ob Z lb lc la 2b 2c 2a 1 3c 3b X / i 3a 4a Oa 

oa oc x la lc Y 2u 2c Z 3a 3b 3c 4a 4b 4c ~ j Ob lb 2b 
X Ob Oa Y lb la Z 2b 2a 3c 3a 3b 4c 4a 4bi 1 Oc lc 2c 
Ob X Oc lb Y lc 2b Z 2c 3b 3c 3a 4b 4c 4u 1 Oa la 2a 

1 

2~ 2b 2c 3a 3c X 4a 4c Y Oa oc z 3b 4b Ob I 
2c 2u 2b X 3b 3a Y 4b 4a Z Ob Oa 

la lb lc I 1 

2b 2c 2a 3bX 3c 4b Y 4c Ob Z Oc 
lc la lb / j 3c 4c Oc : 
lb lc la, / 3a 4a (kr 

/ / 

4a 4b 4c Oa Ob Oc la lc A 20 2c Y 3a 3c Z j 1 lb 26 3b 
4c 4a 4b OcOaOb X lbla Y 2b 2a Z 3b 3a / lc 2c 3c j 
4b 4c 4~ Ob Oc C~I lb X lc 2b Y 2c 3b Z 3c i la 2a 3a j 

-- 

la lc Z 2a 2b 2c 3a 3b 3c 4a 4c x Oa Oc Y ‘j4b Ob lb ’ 
Z lb la 2c 2a 2b 3c 3a 3b X 4b 4a Y ObOa//4c Oc lc 
lb Z lc 2b 2c 2u 3b 3c 3a 4b X 4c Ob Y oc I I 4u ck2 la 

i / 
3a 3c Y 4a 4c Z Oa Ob Oc lQ lb lc 2a 2c X 

Ii 

2b 3b 4b 
Y 3b 3a Z 4b4a Oc Oa Ob lc la lb X 2b 2a 2c 3c 4c I 
3b Y 3c 4bZ 4c Ob Oc Oa lb lc la 2b X 2c j I 20 3a 4a 

I S 
Oc Oa Ob 3c 3a 3b lc la lb 4c 4a 4b 2c2a2b; X Y Z ; 
3c 3a 3b lc la lb 4c 4a 4b 2c 2u 2b OeOaObi Z X Y 
lc la lb 4c 4a 4b 2c 2u 2b Oc Oa Ob 3c 3a 3b 

1 
YZXI 

Fig. 1. 
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Oa X Ob 
DC Oh X 
X Oa Oc 

la lb lc 
lb lc la 
lc la lb 

2a 26 2c 
2b 2c 2u 
2c 2a 2b 

3a 3b 3c 
3b 3c 3a 
3c 3a 3b 

4a 4b 4c 
4b 4c 4a 
4c 4a 4b 

5a 56 5c 
5b 5c 5a 
5c 5a 5b 

6a 66 6c 
6b 6c 6a 
6c 6a 6b 

;b Oc Ckz 

2a X 2b 3a 3b 3c 
2c 2b X 3b 3c 3a 
x 2u 2c 3c 3a 3b 

3a 3b 3c 4a X 4b 
3b 3c 3a 4c 4b X 
3c 3a 3b X 4a 4c 

4a 4b 4c 5a 5b 5c 
4b 4c 4a 5b 5c 5a 
4c 4a 4b 5c 5a 5b 

5a 5b SC 6a 6b 6c 
5b 5c 5a 6b 6c 6a 
5c 5a 5b 6c 6a 6b 

6a 6b 6c Oa Ob Oc 
6b 6c 6a Ob Oc Oa 
6c 6a 6b Oc Oa Ob 

Oa Ob Oc la lb lc 
Ob Oc Oa lb lc la 
Oc Oa Ob lc la lb 

2b 2c 2a 4b 4c 4a 

3a 3b 3c 4a 4b 4c 
3b 3c 3a 4b 4c 4a 
3c 3a 3b 4c 4a 4b 

4a 4b 4c 5a 5b 5c 
4b 4c 4a 5b 5c 5a 
4c 4a 4b 5c .5a 5b 

5a 5b 5c 6a 6b 6c 
5b 5c 5a 6b 6c 6a 
5c 5a 5b 6c 6a 6b 

6a X 6b Oa Ob 0: 
6c 6b X Ob Oc Oa 
X 6a 6c Oc Oa Ob 

Oa Ob Oc la X lb 
Ob Oc Oa lc lb X 
Oc Oa Ob X la lc 

la lb lc 2u 2b 2c 
lb lc la 2b 2c 2u 
lc la lb 2c 2a 2b 

2a.2b 2c 3a 3b 3c 
2b 2c 2a 3b 3c 3a 
2c 2a 2b 3c 3a 3b 

6b 6c 6a lb lc la 

Fig. 2. 

I 

I 
6a 6b 6c j Oa 06 Oc 2c 
6b 6c 6a I Oh Oc Oa 2a 

~:” %; 
Ob Oc Oa / lb lc la 4a’ 

lb lc la I 26 2c 2u 6a 
lc la lb 2c 2a 2b 6b 

3a 3b 3c lc 
3b 3c 3a la 
3c 3a 3b lb 

3a X 3b / 4a 4b 4c 3c 
3c 3b X 4b 4c 4a 3a 
X 3a 3c 4c 4a 4b 3b 
----+-- 
4a 4b 4c / 5a X 5b 5c 
4b 4c 4a 5c5bX 5a 
4c 4a 4b , X 5a 5c 5b 

I - 
3b 3c 3a 1 5b SC 5a X 

i__ 

for n # 30. Finally, with m = 3, t = 9, u = 3, Theorem 2.3 implies 
N(30) 2 2. 

The actual construction of Latin squares by Theorem 2.3, especially 
in the cases in Table 1, is very easy. We illustrate by explicitly construct- 
ing a pair of orthogonal squares of order n = 3t + u, when 0.5 u 5 t, 

N(t) 2 3, N(u) >_ 2. (Such pairs of orders 18 and 22 are shown in Figs. 
1 and 2; here t = 5, u = 3, and t = 7, u = 1, respectively.) We lapse into 
a more informal language. 

Start with three orthogonal squares L 1, L,, L_ 1 of order t. (When 
t = + 1 (mod 6), we may take the squares with row, column, and symbol 
set Z, (the integers modulo t) defined by L,(i, j) = ri + j, r = 1,2, -- 1.) 
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- 

la oc x la lb lc 
X Ob Oa lc la lb 
L)b X Oc lb lc la 

2a 2b 2c 3a 3c X 
2c 2a 2b X 3b 3a 
26 2~~ 2a 3b X 3c 

4~ 4b 4c .5a 5b 5c 
Ic 4a 4b 5c 5a 5b 
4b 4c 4a 56 5c 5a 

- 

6a 6b 6c Oa Ob Oc 
6~’ 6a 6b Oc Oa Ob 
6b 6c 6a Ob Oc Oa 

- 

la lb lc 2a 2b 2c 
lc la lb 2c 2u 2b 
lb lc la 2b 2c 2a 

- 

3a 3b 3c 4a 4b 4c 
3c 3a 3b 4c 4a 4b 
3b 3c 3a 46 4c 4a 

5a 5b 5c 6a 6b 6c 
5c 5a 5b 6c 6a 6b 
5b 5c 5a 6b 6c 6a 

Oc 00 Ob 3c 3a 3b 

2a 2b 2c 
2c 2~ 2b 
2b 2c 2a 

4a 4b 4c 
4c 4a 4b 
4b 4c 4a 

6a 6c X 
X 6b 6a 
6b X 6c 

la, lb lc 
lc la lb 
lb lc la 

3a 3b 3c 
3c 3a 3b 
3b 3c 3a 

5a 5b 5c 
5c 5a 5b 
5b 5c 5a 

Oa Ob Oc 
Oc Oa Ob 
Ob Oc Oa 

6c Q .6b 

3a 3b 3c 
3c 3a 3b 
3b 3c 3a 

- 

5a 5b 5c 
SC 5a 5b 
5b 5c 5a 

4a 4b 4c 
4r 4a 4b 
4b 4c 4a 

Q 6b 6c Oa Ob Oc 
6c 6a 66 Oc Oa Ob 
6b 6c 6a Ob Oc Oa 

Oh Ob Oc 
Oc Oa Ob 
06 Oc Oa 

- 

2dl 2c x 
X 2b 2u 
2b X 2c 

la lb lc 2a ‘b 2c 
lc la lb 2c 2a 2b 
lb lc la 2b 7c ?a 

3a 3b 3c 4a 4b 4c 
3c 3a 3b 4c 4a 4b 
3b 3c 3a 4b 4c 4a 

4a 4b 4c 5a 5c X 6a 6b 6c 
4c 4a 4b X 5b 5a 6c 6a 66 
4b 4c 4a 5bX 5c 6b 6c Q 

6a 6b 6c 
6c 6a 66 
6b 6c 6a 

- 

la lb lc 
lc la lb 
lb lc la 

Oa Ob Oc la lc X 
Oc Oa 06 X lb la 
Ob Oc Oa lb X lc 

2a 2b 2c 3a 3b 3c 
2c 2a 2b 3c 3a 3b 
2b 2c 2a 3b 3c 3a 

2s 2u 2b 5c 5a 5b lc la lb 

Fig, 2 (continued) 

For t = 5, 

i 

01234 ------I 23401 
4 0 1 2 3 ) L_, = 

123401 

! 

_^____ 

la I b lc / 36 
lc la lb I3c 
lb 1~ la : 3a 

----- 

3a 3b 3c / 6b 
3c 30 315 i 6c 
3b 3c 3a i 6a 

_--- 

5a 5b 5c 2b 
5c 5a 5b 2c 
5b 5c 5a 1 Za 

__-_ 

Oa Ob Oc 5b 
Oc Oa Oh 5c 
06 Oc Oa 5a 

___~ 

AZ 26 2c lb 
7c 2a 2b lc 
2b 2c 2a la 

I .-_- 

4a 4c X ‘4b 
X 4b 4a :4c 
46 _I’ 4c 4a 

-__I_ 
4c 4a 46 X 

- 

01234 
40123 
34012 
23401 
12340 
-_-_ 

We construct a pair Lr, Lr of orthogonal Latin squares of order n. The 
symbols are to be la, Ib, Ic, where I runs through the t symbols of L 1 
and L, , and u additional symbols A’,, X2, . . . , Xu . Form L L 1 by replac- 
ing u of the symbols of L_, with X,, . . . . X, and leaving the other cells 
blank. For t = 5, u = 3, 
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To effect the construction, we require the following “ingredients”: 
Let li, and U, be two orthogonal Latin squares of order u on the sym- 
bols X,, . . . . X, . Take two orthogonal squares of order 3 on the symbols 
a, b, c, say 

a bc 
Al=bca r-l and 

cab 

Further, we need two orthogonal squares of order 4 on the symbols a, b, 
c, X say 

It is important here that the symbol X occurs in the lower right-hand 
corner of both squares. 

Lr and ~5: are now obtained as follows: The n (= 3t + u) rows and 
columns are labelled by (i, k), i = 1,2, . . . . t, k = 1,2,3, and (1 ), (2) . ..) (u). 
Place Ui in the (u X u)-subsquare of LT consisting of rows (l), . . . . (u) 
and columns (l), . . . . (u), i = 1,2. (Cf. Fig. 1, where we have used symbols 
X, Y, 2 instead of X,, X2, X, .) To complete Lr, for each (i, j), i, j = 
1) 2, “.) f, find the symbol Z occurring in the (i, j)th cell of L 1 . If the 
(i, j)-cell of L’_ 1 is unoccupied, fill in the (3 X 3)-subsquare of L T consist- 
ing of rows (i, l), (i, 2), (i, 3) and columns (j, l), (j, 2), (i, 3) with symbols 
la, Zb, Zc using A r as a model, viz. 
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(i. 1) Ia Ib Ic 
(i, 2) Ib Ic Ia 
(i, 3) Ic Ia Ib 
-_ 

If, however, the (i, j)-cell of L’_ 1 contains a symbol X,, fill in the (4 X 4)- 
subsquare of Lr consisting of rows (i, I), (i, 2), (i, 3), (I) and columns 
0’7 l), 0’7 2), 0’7 3), (0 ( except for the cell in the (Z)th row and (2)th column, 
which is already filled) with symbols la, Ib, Ic, Xl using B, as a model, viz. 

(i. 1) Ia Xl Ib 
(i. 2) Ic Ib X, 
(i. 3) Xl Ia Ic 
- 

Ic 
Ia 
Ib 

(0 lb Ic Ia 

,$ is completed similarly, the only differences being that the symbol I 
is to be found by referring to L, and A 2, B, are to be used as the mod- 
els. 

It is easily checked directly that the resulting squares are orthogonal. 
The reader will be able to generalize to the construction analogous to 
the full statement of Theorem 2.3. 

Fig. 3 shows a pair of orthogonal Latin squares of order 22 obtained 
from the construction of Theorem 2.4 with m = 3, t = 5, u = 3, u = 4. 
Compare Figs. 2 and 3 with the original constructions of [ 1,2] using 
Kirkman designs, a general construction for orders congruent to 10 mod- 
ulo 12 (see [ 3]), and two pairs of order 22 obtained by Hedayat and 
Seiden [ 81. 

4. n l/l 7 squares 

We introduce the notation of Buchstab [4] . Let x, y be positive real 
numbers. Let p. = 2, pr = 3, p2 = 5, p3, . . . . pr be all the primes less than 
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Ckz Ob Oc la lc A 2u B 2b 
ObOcOa A 1bY 2c 2b B 
Dc Oa Ob Y la lc B 2a 2c 

2u 2c D 3a 3b 3c 
D 2b Y 3b 3c 3a 
Y2a2& 3c 3a 32, 

4aC4b OaOcD 
4c 4b C D ObZ 
C 4a 4c z OaOc 

4a 4c A 
A 4bZ 
Z 4a 4c 

la X lb 
lc lb X 
X la lc 

la lc B 2u 2c c 
B 1bZ C 2bX 
Z la lc x 2a 2c 

3a 3c A 4a B 4b 
A 3bX 4c 4b B 
X 3a 3c B 4u 4c 
- --- 

3c A 3b 2c C 2b 
2c D 2b lc A lb 
1cB lb Oc D Ob 
-- 

3bX 3u lb Y la 
1bZ la 4b 4c 4a 
4b 4c 4a 2bX 2u 
2b Y 2a ObZ Oe 
i 

3a D 3b 
3c 3b D 
D 3a 3c 

oa oc c 
C Ob Y 
Y QaOc 

lb lc la 
Oc C Ob 
4c A 4b 

4b Z 4a 
2b 2c 2a 
Ob Y Oa 
3b 3c 3a 

3c 4a Oc la 

4b 4c 4a 3c B 3b Y Z X 
3c C 3b 2b2c2a ZXY 

2b 2c 2a Ob Oc Oa 3c lc 4c ADBC 
Ob X Oa 3b Y 3a Oc 3c lc CBDA 
3bZ 3a lb lc la 2c Oc 3c DACB 
lb lc la 4b X 4a 4c 2c oc 

Fig. 3. 

y and let o denote the choice of integers ao, al, . . . . a,, b,, . . . . b,. Then 
I’, (x; y) is t0 denote the number of non-negative integers not exceed- 
ing x which do not lie in any of the arithmetic progressions a0 (mod po), 
ai (mod pi), bi (mod pi). Buchstab proves 

P, (X; X115) > X(5) cx/(log x)2+ O(x/(logx)3), 

independent of the choice of w. Here c is a constant 0.4 16 1 . . . and 
h(5) > 0.96. 

As an immediate consequence, P, (x; ~115) > 2 for sufficiently large 
x, or equivalently, 

Lemma 4.1. There is a constant no such that for n > no, we have 

P, (n5/17; n1/17) >_ 2. 
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oa Ob oc 
oc oa Ob 
Ob oc aa 

3a Y 3b 
Y 3bD 
3b D 3c 

la lc c 
C lb la 
lb C lc 

4a 2 4b 
Z 4bB 
4b B 4c 

2a X 2b 
X 2bA 
2bA 2c 
- 

A 2c 2u 
D 3c 3a 
B 4c 4a 

2c 2a x 
4c 4a Z 
lc la lb 
3c 3a Y 
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la Y lb 2U2cB 
Y 1bA B 2b 2u 
lb A lc 2b B 2c 

4a 4b 4c OaZ Ob 
4c 4a 4b Z ObA 
4b 4c 4a ObA Oc 

-- 

2u Z 2b. 3a 3c X 
Z 2bD X 3b 3a 
2bD 2c 3b X 3c 

Oa X Ob la lc, D 
X Ob C D lb la 
Ob C Oc lb D lc 

3a 3c B 4a Y 4b 
B 3b 3a Y 4b C 
3b B 3c 4b C 4c 

C Oc Oa 3c 3a 3b 
A lc la C 4c 4a 
D 2c 2a A Oc Oa 

- 

lc la Y Oc Oa Z 
3c 3a 3b 2c 2a 2b 
Oc Oa x 4c 4a Y 
2C2UZ lc la lb 

- 

3a Z 3b 
Z 3bC 
3b C 3c 

la X lb 
X 1bB 
lb B lc 

4a & A 
A 4b4a 
4b A 4c 

2a 2c Y 
Y 26 2u 
2b Y 2c 

oa oc D 
D Ob Oa 
Ob D Oc 

- 
B lc la 
2c 2a 2b 
c 3c 3a 

4c 4iz 4b 
lc la X 
3c 3a Z 
Oc Oa Ob 

4a X 4b 
X 4b D 
4b D 4c 

2a2CC 
C 2b 2a 
2b C 2c 

Oa Y Ob 
Y ObB 
Ob B Oc 

3a 3c A 
A 3b 3a 
3bA 3c 

-___ 

la lc Z 
Z lb la 
lb Z lc 

D 4c 4a 
B Oc Oa 
lc la lb 

3c 3a 3b 
oc Oa Y 
2c 2a 2b 
4c 4a x 

DAC 
4c lc 3c 
4a la 3a 

BDA 
lc 3c oc 
la 3u 012 

3bB D 
3c oc 2c 
3f7oa2a 

C 2bB 
oc 2c 4c 
Oa 2a 4u 

A C lb 
2c 4c lc 
247 4a la 

XYZ 
z x Y 
YZX 

2b lb Ob 
lb Ob 4b 
Ob 4b 3b 
4b 3b 2b 

I 
I- 

-1 
_ 
4 

I 

c 

-L 

lc 2b 3c 4c 
la 2c 3a 4a 
Y 2&z x 

Oc lc ‘b 3c 
Oa la 2c 3a 
ZX20Y 

4b Oc lb 2c 
4c Oa lc 2a 
4a Y la Z 

____ 

3b 4c Oc lb 
3c 4a 00 lc 
3aZ X la 
--~ 

2c 3b 4c Ob 
2a 3c 40 oc 
X 3QY &Z 
~-- 

2b lb Ob 4b 
lb Oh 46 3b 
Ob 4b 3b 2b 

____I- 

A C‘ D B 
DBAC 
B L) C A 
C A B D 

-- 

Fig. 3 (continued). 

Theorem 4.2. For n > no, N(n) 2 d/l7 - 2. 

Proof. Let n > no be given. Choose an integer 1 such that 2l< nlll 7 -1. 
< 2l+l. By Lemma 4.1, we may select an integer s satisfying - 

01sln5/17, 

s = 0 (mod 2) , 

s f 0 (mod pi> , lLihr, 

2lsf (-1)” (modpi), 1 I St-, 

where pl, ~2, .-., pr are all the odd primes less than n l/1 7. Define m by 
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2%1 if ?I is even, 
m = 

21 s if n is odd. 

No prime divisors of 2’ S- (- 1)” are less than n l/l 7 ; 2’ s is divisible by 
2’+ 1 and no odd primes less than n l/l’. Thus by Theorem 1.4. 

Note that 

(3) m + 1 <_ n6/17. 

Again by Lemma 4.1, select an integer t’, 0 < t’ 5 nsll ‘. such that, 
with t = [n/Cm + l)] + t’, we have 

t = 1 (mod 2), 

t f 0 (mod pi>, 1 lilr, 

mt f n (mod Pi), l<ilr. 

(No prime pi divides m, so this last incongruence is equivalent to an in- 
congruence of the form t f ~1’ (mod pi).) Note that m f n (mod 2), SO 

we also have mt $ n (mod 2). Put u = n-mt, so that n = mt + u. By The- 
orem 1.4, 

(4) N(t) 2 n1/17- 1, 

(5) N(u)>n1/17- 1. 

Byourchoiceoft’, t>n/(m+l)andt<t’+n/(m+l)~n~~l7+ 
n/(m + 1) = n/m + (n5/17 -n/m(m + 1)) < n/m because of the inequality 
(3). Equivalently, 

(6) O<u<t. 

In view of the inequalities (l), (2), (4), (5), (6), and Theorem 2.3, we 
have N(n) = N(mt +u) >_ n1/17 -2. 

Remark 4.3. Using more of the power of Buchstab’s result, the unsightly 
“ --2” can be eliminated in the statement of Theorem 4.2. 
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Table 2 

W Uw *w W Uw *w W uw *w 
7 7 0 31 
8 8 0 32 
9 9 0 33 

10 9 1 34 
11 11 0 35 
12 11 1 36 
13 13 0 37 
14 7 7 38 
15 8 7 39 
16 8 8 40 
17 9 8 41 
18 9 9 42 
19 11 8 43 
20 11 9 44 
21 13 8 45 
22 11 11 46 
23 16 7 47 
24 13 11 48 
25 16 9 49 
26 13 13 50 
27 16 11 51 
28 17 11 52 
29 16 13 53 
30 17 13 

23 8 54 27 27 
16 16 55 32 23 
17 16 56 29 27 
17 17 57 32 25 
19 16 58 29 29 
19 17 59 32 27 
29 8 60 31 29 
19 19 61 32 29 
23 16 62 31 31 
23 17 63 32 31 
25 16 64 32 32 
23 19 65 49 16 
27 16 66 37 29 
25 19 67 56 11 
29 16 68 37 31 
23 23 69 37 32 
31 16 70 41 29 
25 23 71 63 8 
32 17 72 41 31 
25 25 73 41 32 
32 19 74 37 37 
27 25 75 43 32 
37 16 76 47 29 

5. Six squares 

The three consecutive integers 7,8,9 are prime powers. We exploit 
this fact here by applying Theorems 2.4 and 2.5 with m = 7. 

Theorem 5.1. N(n) 2 6 whenever n > 90. 

We begin with two lemmas. 

Lemma 5.2. For any integer r, at least one of the numbers Y, Y + 1, 
r + 2, . . . . r+9isaunitmodulo 210=2- 3- 50 7. 

Proof. Let r’ be the odd element of(r, r + 1). Of the integers r’, r’ + 2, 
r’ + 4, r’ + 6, r’ + 8, at most two are divisible by 3, at most one by ,5, and 
at most one by 7; hence at least one is divisible by neither 3,5,7, nor, of 
course, 2. 
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Table 3 

455LnL516 
420(n1454 
378(n(419 
350(ni377 
308In(349 
266(n<307 
224 L n L 265 
196(nL223 
1681~15 195 
164(nL167 
140 In 6 163 
119<nL 139 
114<nL118 

98(nL113 
911nI 97 
84Ln< 89 

n = 83 
77lnL 81 

Lemma 5.3: t=64, 75~568. 
Lemma 5.3: r=59, 71w141. 
Lemma 5.3: t=53, 7iw<48. 
Lemma 5.3: t = 49, 7 I U’ L 34. 
Lemma 5.3: t=43, 75~548. 
Lemma 5.3: t=37, 7LwL48. 
Lemma 5.3: t= 31, 75~148. 
Lemma 5.3: t = 27. 7 L w 5 34. 
Lemma 5.3: t=23, 72~534. 
Theorem2.5: m= 7, t=23,32156. 
Lemma 5.3: t=19, 7(wL30. 
Lemma 5.3: t= 16, 75~527. 
Theorem2.5: m= 7, t=16,21116. 
Lemma 5.3: t= 13, 75~222. 
Lemma 5.3: t= 11, 14Lw<20. 
Lemma 5.3: t=ll, 75~512. 
Theorem 1.4. 
Theorem 2.5: t=ll,m=7,0~1~4. 

For integers w, 7 I w L 76, define u, and v, as in Table 2. Note 
that for each w, 7 I w 5 76, we have w = u, + v,, 0 5 u,, v, 2 63, 
and N(u, ), N(v, ) > 6 by Theorem 1.4. 

Lemma 5.3. If 7 5 w 2 76 and u,, V, < t, then 

N(7t + w) 2 min (6, N(t) - 2} . 

Proof. Apply Theorem 2.4 with w1= 7, u = u,, v = v, . 

Proof of Theorem 5.1. We first show that N(n) 2 6 for n 2 5 17. Given 
n 2 5 17, by Lemma 5.2, there may be found an integer t, relatively 
primeto210,suchthat[+n]-lO<_tL [+n]-l.Thenn-76<7t<n-7, 
so with w = n-7& we have 7 5 w I 76. Also, t 2 +(n-76) > 63. 
N(t) 2 10 by Theorem 1.4, so Lemma 5.3 gives N(n) = N(7t + w) 2 6. 

We complete the proof that N(n) > 6 for 90 < n < 5 17 with Table 3. 
The table extends far enough to prove N(n) _> 6 for n > 76, n # 82,90. 

Hanani [ 71 denotes by n, the smallest integer such that N(n) 2 ;+ for 
every n > n, . We have proven n6 I 90. 

Hanani shows that n5 I 62. In view of this, we can say n4 <_ 60 since 
N(62) 2 4 by Theorem 2.4, with t = 8, m = 7, u = 5, v = 1 and N(61) = 
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60. Hanani’s result that < 5 1 can be improved to 5 46 since n3 n3 
X(5 1) 2 3 (Theorem 2.3: m = 4, t = 11, u = 7). N(50) 2 5 (Theorem 
3.3: m = t = 7, II = l), N(49) = 48, Iv(48) 2 3 (Theorem 2.3: m = 4, 
t=11.~~~=4)andN(47)=46.Ofcourse,~~~ =6(see[3.15]). 
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