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Abstract. Let N(n) denote the maximum number of mutually orthogonal Latin squares of order
n. It is shown that for large n,

Ny >n¥17 3,
In addition to a known number-theoretic result, the proof uses a new combinatorial construc-

tion which also allows a quick derivation of the existence of a pair of orthogonal squares of all
orders n > 14. In addition, it is proven that N(n) > 6 whenever n > 90.

1. Introduction

A Latin square of ordernisamap L:R X C~ S, where |R| = [C| =
IS1 = n (|X| denotes the cardinality of the set X), such that for fixed
ip € R and j € C, and for any x € S, the equation

Ly, ))=x
has a unique solutionj € C and the equation
L(i,jg) = x

has a unique solution i € R. Elements of R are called rows, elements of
C are columns, and elements of S are symbols. A Latin square is usually
written as a square array, the cell in the ith row and jth column contain-
ing the symbol L(i, j). In this context, we are requiring that in every row
and column of the array, each symbol appears exactly once.

Two Latin squares L;:R X C> S; and L,: R X C—~ §, are said to
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be orthogonal iff for any (x, x,) € §; X §,, the equations

have a unique simultaneous solution (i, j) € R X C. k Latin squares
I - D mn_y C s =1 1 I lhawuina tha cama ravr and ~Aaliimn cate ara
LI AU 70, 1= 1, 4, .., , [1dVI[IZ LIC 54lliC TUW dlld CULUIIHI SCL5, alc
said to be mutually orthogonal iff every two of them are orthogonal.
N(n) will denote the largest integer k for which there exists a set of &k
mutually orthogonal Latin squares of order 7.

The following four theorems are well known and easy to prove (see

[6,14]).
Theorem 1.1. Forn > 2,1 < N(n) < n—1.

Any two Latin squares of order 1 are orthogonal. There is only one
Latin square of order O (the null square), but it is orthogonal to itself.
Thus it is not unreasonable to adopt the conventions that N(0) = N(1)

Theorem 1.2. N(n) = n—1 if n is a prime power.
Theorem 1.3. N(nm) > min{N(n), N(m)}.
From Theorem 1.2 and 1.3 follows

Theorem 1.4. If n = p{* p5t ... p,7 is the factorization of n into powers
of distinct primes p;, then N(n) 2 min, < ;<, (i-1).

Theorem 1.4 is due to MacNeish [9] and Mann [10].

Euler conjectured that N(n) = 1 (i.e., no pair of orthogonal squares
exists) for n = 2 (mod 4). MacNeish went so far as to conjecture that
equality holds in Theorem 1.4. In 1901, Tarry [15] showed that in fact
N(6) = 1 by a systematic enumeration.

Nothing else was known about N(n) until the late 1950’s when Parker
[11] discovered three orthogonal Latin squares of order 21, disproving
MacNeish’s conjecture. Bose and Shrikhande [1] found the first counter
example to Euler’s conjecture, a pair of orthogonal squares of order 22,
and Parker [12] exhibited the first pair of order 10. More techniques
were put forth by Bose and Shrikhande [2]. The work of the three au-
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thors culminated in 1960 with a joint paper [3] where it was proved
that N(n) > 2 for all n > 6, demolishing Euler’s conjecture. Their proof
uses Theorem 1.4, some general construction methods using pairwise
balanced designs, and some more special constructions using the “‘meth-
od of differences”. One of their most significant results is the following:

Theorem 1.5. [fm < N@)+ land 1 <u <t then
N(mt + u) > min{N(m)—1,Nim + 1)—1, N(t), N(u) }.

Also in 1960, Chowla, Erdos and Straus [ 5] observed that Theorems
1.4 and 1.5 imply N(n) —» o as n — . Indeed, using a result of Brun’s
sieve method due to Radamacher, they proved that N(n) > §n1/91 for
sufficiently large n. With a similar argument, but using a result of Buch-
stab [4] in the sieve argument, Rogers [13], in 1964, showed that
N(n) > nl/(42+¢€) for n > n_. We shall also use Buchstab’s result; it will
be stated in Section 4.

Recently, Hanani [7] has shown that N(n) > 3 forn > 51, N(n)> 5
for n > 62, and N(rn) > 29 forn > 34,115,553. His proof again uses
Theorem 1.4 and 1.5, and some special constructions.

2. A construction and some inequalities

In [5], the authors remark that the numerical estimate on the lower
bound for N(n) could be improved if, for example, the occurrences of
both N(m) and N(m + 1) in the inequality of Theorem 1.5, or the hy-
pothesis m < N(¢) + 1, could be eliminated. We show below (Theorem
2.3) that, indeed, the hypothesis m < N(¢) + 1 can be eliminated.

Let Kk > 2, n > 1 be given. By a transversal design with k groups of
size n, in brief a TD(k, n), we mean a triple (X, @, A), where X is a set
of kn points, @ = {G, G,, ..., G; } is a partitiorf of X into k subsets G;
(called groups), each containing n points, and A is a class of subsets of
X (called blocks or transversals) such that each block A € A contains
precisely one point from each group and each pair x, y of points not
contained in the same group occur together in precisely one block A.

Evidently, each block of a TD(k, n) contains k points. It is not dif-
ficult to see that each point occurs in precisely n blocks and the total
number of blocks is #2. Note that for any &, a (unique) TD(k, 1) ex-
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ists. To be consistent with our convention N(0) = e, it is convenient to
accept the existence of a degenerate TD(X, 0) with no points, k empty
groups, and no blocks.

Transversal designs provide a compact and concise language with
which to manipulate sets of orthogonal Latin squares. The following
well-known lemma is due to Bose and Shrikhande [2]. For comple-
teness, we sketch a proof here.

Lemma 2.1. The existence of a set of k—2 mutually orthogonal Latin
squares of order n is equivalent to the existence of a TD(k, n).

Proof. Given a TD(k, n) (X, @, A), where @ = {G,, G,, ..., G }, define
themaps L;: G; X G, > G;,i=3,4, ..., k, as follows: L;(x, y) is to be that
element z € G; for which 4 N G, = {z }, where A4 is the unique block
of A containing {x, y }. From the properties of the transversal design,
it readily follows that L5, L,, ..., L; are Latin squares and are mutual-
ly orthogonal.

Conversely, let L;: RX C~> S, i =34, ..., k, be k—2 mutually ortho-
gonal Latin squares of order n. We may assume that the sets R, C. S5,
Sy, ..., Sy are pairwise disjoint. With this understanding, put

X=RUCUS;U..US,
¢=1{R C §;3,....8 1},
A={{i,j, L3, 1), L4 ]), ... Ly G D} i€ER jECT.

Then (X, @, A) is a TD(k, n).

Evidently, the existence of a TD(%, n) is equivalent to the statement
N(n) > k-2.

Through each point of a block A of a TD(k, n), n > 2, there pass
n—1 other blocks. Thus k(n—1) blocks meet A in one point; the other
n?—k(n—1)—1 blocks are disjoint from A. If k> n + 1, we have a con-
tradiction (proving Theorem 1.1);if k =n + 1, every block must meet
A;if k< n+ 1, there exists a block disjoint from A.

Theorem 2.2. Let (X, @, A) be a TD(k + [, t), where @ = {G1,G,, ..., Gy,
H\ ,H,,.. H}.Let S beany subsetof H UH, U ... UH,. Let m=>0
be given and assume:
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(i) foreachi=1,2,..., [, there exists a TD(k, h;), where h; = |SN H,|;
(ii) for each block A € A, there exists a TD(k, m +u ) in which there
may be found u, =S N Al disjoint blocks.
Then there exists a TD(k, mt +5), where s =1 S1.

Proof. Let Xy, =G, U G, U ... UG,. For each block 4 € A, we write
Ay=AN Xy, A =ANnS.

We construct a TD(k, mt + 5) on the set of k(m¢ + s) points
X*=(Xy X M)u (I; X S), where M is a set of m elements and /; =
{1,2,...,k}. As groups, we take ¢* = {G{, G3,..., G{ }, where G =
(G; X Myv ({i} X §), i=1,2,..., k. The blocks are obtained as follows:

For each block A € A, construct a TD(k, m + u 4 ) with point set
Ay X M)U (I}, X A"), groups (Ay N GHX MU ({i} X A"),i=12,..k
and blocks B 4 . Under our hypothesis that such a transversal design ex-
ists with u 4 disjoint blocks, we may effect the construction so that
I, X {z}, z€ A', are blocks of B 4. With this understanding, we denote
by B/, the remaining (m + u )2 —u, blocks of B, and put B =U, . AB)
For eachj = 1,2, ...,1, construct a TD(k, h;) on the set of points
I X (SN H;) with groups {i} X (SN H;),i=1,2,..,k, and blocks C;.
Put A*=B U C; U C, U...U (;. We claim that (X*, @*, A®)isa
TD(k, mt +s).

Most verifications are trivial. We check below the condition that two
points of X* which belong to different groups of g* occur in precisely
one block of A*.

The points of X* are of the form (x, p), x € Xy, p € M, or (i, z),
i€l zeSs.

Two points {(x,, u;), (x5, #,)} lie in different groups of g* iff x,,
x, lie in different groups of @. Two points {(i;, z,), (i3, z,)} lie in dif-
ferent groups of @ * iff iy #i,. Two points {(x, u), (i, )} lie in different
groups of @ * iff x ¢ G;.

The pairs of points of X* occurring in one (and only one) block of
Cjare {(iy, zy), (iy, 25)}, where iy # i,, {2, z, } € H;. The pairs of
points occurring in one (and only one) block of B)y are {(x{, u;),

(x5, M)}, where x; # X5, {x, x,} € 4; {(x, w), (i, 2)}, where x & G,,
{x,z} C A; and {(y, z1), (i, z9)}, where i} #i,, 21 # 25, {21,272} C A
With this enumeration, the properties of the original TD(k + [, ¢) es-

tablish our claim.

We derive a number of corollaries of Theorem 2.2. We shall use only
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Theorem 2.3 in Section 3 (two squares) and Section 4 (n1/17 squares).
Theorems 2.4 and 2.5 will be applied in our discussion of the existence of
six squares in Section 5.

Theorem 2.3. If 0< u < t, then
Nmt +u) 2 min{N(m), Nim + 1), N(t)—1, N(u)}.

Proof. Let k = 2 + min{N(m), N(m + 1), N(¢)— 1, N(u)}. Then by Lem-
ma 2.1, transversal designs TD(k, m), TD(k, m+ 1), TD(k+ 1, ¢) and

TD(k, u) exist. In the notation of Theorem 2.2, we take / =1 and let S
be any subset of H; containing u points. For each block 4 € A, u 4 =0

or 1. Theorem 2.2 then asserts the existence of a TD(k, m¢ + u); hence
N(mt +u) > k2.

When/=0,S = 0 in Theorem 2.2, we obtain Theorem 1.3.
Theorem 2.4. If 0 < u, v< ¢, then
N(mt +u +v) 2 min{Nm), N(m+ 1), N(m +2), N(t)-2, N(u), N(v)}.

Proof. Set k—2 equal to the indicated minimum. A TD(k + 2, 1) exists.
In Theorem 2.2, let I = 2 and choose S such that SN H,|=u, ISN H,|
=v. Transversal designs TD(k, u) and TD(k, v) exist by our choice of k.
For any block A of the TD(k + 2, ¢),u, =0, 1 or 2. But transversal
designs TD(k, m +1i),i=0,1,2, exist. Moreover, since k < N(m) + 2

< m+1, the TD(k, m+ 2) contains two disjoint blocks by an earlier
remark. Theorem 2.2 asserts the existence of a TD(k, mt +u +v).

Theorem 2.5. If t > L (I-1) (I-2), then
N(mt+D 2> min{N(@m), N(m+1), Nim +2), N(t)—I}.

Proof. Let k—2 be the indicated minimum. A TD(k +/, 1) exists.

In the notation of Theorem 2.2, we form the set S = {z, z,, ... z;}
by selecting one point z; from each group H;, 1 <i <, in such a way
that no block A contains three elements of S. Under our hypothesis
t > 3 (—1) (I-2), this can always be done: Inductively, ifzy,2,,...,2,,
r < [, have been chosen with no three in a common block, consider the



R.M. Wilson, Number of mutually orthogonal Latin squares 187

§r(r--1) blocks A;;, 1 Si < < r, such that {z;, z;} € A;;. There must
be at least one point z,,, € H,,, not contained in any of the blocks
A;j; then no three of zy, z,,...,z,,; lie in a common block.

With this choice of S, u, = 0. 1 or 2 for each block 4 of the
TD(k+1, t). Again, transversal designs TD(k, m+1i),i = 0.1, 2. exist
and the TD(k, m +2) has two disjoint blocks. By Theorem 2.2, a

TD(k, mr+1) exists.

3. Two squares

We pause here to give a proof of the theorem of éose, Shrikhande
and Parker [3].

Theorem 3.1. Forn # 2,6, N(n) > 2.

Proof. Pairs of orthogonal Latin squares of orders 10 and 14 are con-
structed in [3]. (They are also exhibited in [6].) In view of this and
Theorem 1.4, it remains to show N(n) > 2 for n = 2 (mod 4). n > 18.

Given n = 2 (mod 4), n = 18, define ¢ and u as in Table 1, depending
on the residue of » modulo 18.

Table 1

n t u

18s 6s -1 3
185+ 2 6s—1 5
18s+ 4 6s+1 1
18+ 6 6s+1 3
18s+ 8 65+ 1 5
185+ 10 6s+1 7
18s+ 12 6s+ 1 9
18s+ 14 6s+1 11
185+ 16 6s+5 1

By Theorem 1.4, N(¢) > 4, N(u) > 2. With the exception of n = 30,
we have 0 < u < ¢, so taking m = 3 in Theorem 2.3,

N(n) = N(mt+u) > min{N(m), N(m+1), N(t)—1,N(u)} > min{2,3,3,2}
=2
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|
0a X Ob| laY 1b| 22 Z 2b | 3a 3b3c | 4adbdc!|0c lc 2
Oc 0b X lc 1bY 2¢c 2b Z 3b3c3a|4b4c4a ()ala?a‘
X 02 0c| Y lale| Z 22 2 | 3¢ 3a 3b | 4c 4a 4b|| 0b 15 2b
|

e 1blc| 22X 26| 3 Y 3b | 42 4b | 0a 0b Oc|'2¢ 3¢ dc
1ble la! 22 X | 3¢3bY |4 4bZ | 0bOc Oa||2 3¢ da
le la 1) X 22 2| Y 3a 3¢ | Z 4a 4c | Oc 0a Ob| 2b 3b 4b
% 2 2% | 3a 33| 42 X 4b | 0 Y Ob| la Z 1bl|4c Oc 1c§
262 2a| 3b3 3| 4cdb X |0 0bY | lc 1bZ ' 4a Oz la |
20 2 2b| 3¢ 3@ 3| X 4a 4 | Y O O | Z la lc 4b0blbé
3¢ Z 3b| 42 b dc | 06 Ob Oc | la X 1b| 2 Y 2b'  lc 2¢ 3¢
3 3bZ | 4bdc da | ObOc Oz | lc 16X | 2026 Y || la 22 3a
Z 3a 3| 4 42 4b| 0c G 0b | X la lc | Y 22 2|15 2b 3b
Y 4 00 Z Ob| 1z 16 lc | 22 26 2¢ | 3¢ X 3b| | 3¢ 4c Oc
4c 4bY | 0c 0bZ | 1b1c la | 26 2¢ 22 | 3¢ 3b X | | 32 4a (&
Y 4a 4ci Z 02 Oc | lc la 1b | 2¢ 22 2b | X 3a 3c||3b 4b 0b
0b Oc Oz | 2b 2c 22| 4b dc 4a | 1b dc la | 3b 3¢ 3all X v Z
4b 4c 4a | 1b 1c la | 3b3c 3¢ | ObOc Oz | 262 24| Y Z X
3b 3 3¢, ObOc Oa | 2b2c 22 | 4b 4c 4a { b lc lal i Z X Y
0 Oc X | ladc Y | 22 2¢ Z | 32 3b 3¢ | 4a 4b 4c| | 0b 16 2b
X 0pOa| Y 1612 | Z 2b 2 | 3¢ 3a 3b | 4c 4a 4b| | 0c 1c 2¢
0b X Oc| 1bY lc| 20 Z 2 | 3b3c 3a | 4b 4c 4a5‘ 0z la 2a
2 2b 2| 323 X | 4a4c Y | Oa Oc Z 1a1b1c§ 3b 4b 0b |
2 2 2| X 3b3a|Y 4bda | Z Ob Oz | lc la 1b|| 3c 4c Oc
2b2¢c 22| 3b X 3| 4bY 4 | Ob Z Oc | 1b 1lc la |32 4a Oa |
4 4b4c| G Ob Oc | la lc X |22 2¢ Y | 3a 3¢ Z | | 1b 2b 3b
4c 40 4b| Oc Oa Ob | X 1bla | Y 2b 22 | Z 3b 3a!|1c 2¢ 3¢
4b4c 40| ObOc Oz | 16X lc |26 Y 2¢ | 3bZ 3c¢||1la 2 3a
laleZ | 24202 | 3a3b3 |4a4c X | 0aOcY |4bOb 1b
Z 1bla| 2 22 2b| 3¢ 3a 36| X 4b4a | Y 0b Oa|| 4c Oc lc
1bZ lc| 2b2 22| 3b3c 30 |4b X 4c | 0bY Oc 42 0a la
33 Y | 4a4c Z | 0 Ob Oc | 1a 1b 1c | 22 2¢ X || 2b 3b 4b |
Y 30 3¢ Z 4b 4a | Oc Oa 0b | 1c la 1b X2b2al 2¢ 3¢ 4c |
3pY 3c| 4bZ 4c| 0b0Oc 0o | 1blc la | 26X 2 2 3a 4o

\
Oc Oz 0b| 3¢ 32 3b | lc la 1b | 4c 4a 4b | 2¢ 22 26, | X Y Z |
3¢ 3¢ 3b| 1c la 1b | 4c 42 4b | 2¢ 22 2b 0c0a0b\ZXY1
lc 1a 1b| 4c 4a 4b | 2¢ 22 2b | Oc Gz OB 3c3a3bJYZX}

Fig. 1.
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Oz X Ob | la 16 1c | 2a 2b 2¢ | 3a 3b 3¢ | 4a 4b 4c | 5a 5b 5¢ | 6a 6b 6¢
Oc 0b X 1 1c¢ la 2b 2¢ 2a 3b 3¢ 3a | 4b 4¢c 4a | 5b 5¢ 5a | 6b 6¢ 6a
X 0¢ Oc lc 1a 1b | 2¢ 2a 2b | 3¢ 3a 3b | 4c 4a 4b | 5¢ 5a 5b| 6¢ 6a 6b

gFR

le 1b1c | 220 X 2b | 3a 3b 3c | 4a 4b 4c | 5a 5b 5¢ | 6a 6b 6¢ | Oa 0b Ocl| 2c
1b ic la 2c 2b X 3b 3¢ 3a | 4b 4c 4a 5b 5¢ 5a¢ | 6b 6¢c 6a | 0b Oc 0Oall 2a
lc la 16| X 22 2¢ | 3¢ 3a 3b| 4c 4a 4b | 5¢c 5a 5b | 6¢ 6a 6b | Oc 0z Ob|| 2D

20 2b 2¢ | 3a 3b 3¢ | 4¢a X 4b | Sa 5b Sc | 6a 6b 6¢ | Oa Ob Oc | la 1b 1lc||4c,
2b 2¢ 2a 3b 3¢ 32 | 4¢c 4b X 5b 5¢ Sa 6b 6¢ 6a 0b Oc Qa 16 1c¢ lallda
2c 20 2b| 3¢ 3a 3b | X 4a 4c | 5¢ 5a 5b} 6¢ 6a 6b | Oc 0a 0b | lc la 1b||4b

43a 3b 3c | 4a 4b 4c | Sa 5b 5¢ | 6a X 6b | Oa 0b Oc | la 1b lc | 2a 2b 2c||6cC
3b 3¢ 3a | 4b 4c 4a | 5b 5¢ Sa | 6¢ 6b X Ob Oc Oz | 1b 1c la | 2b 2¢ 2ai|6a
3¢ 3a 3b| 4c 4a 4b | 5¢ 5a Sb | X 6a 6¢c | Oc Oa Ob | lc la 1b | 2¢ 2a 2bi|6b

4a 4b 4c | Sa S5b S5c | 6a 6b 6¢ | Oa 0b Oc | la X 1b | 2a 2b 2¢ | 3a 3b 3c||lc
4b 4c 4a | S5b 5¢ Sa | 6b 6¢c 6a | Ob Oc Oa | 1c 1b X | 2b 2¢ 22 | 3b 3¢ 3a||la
4c 4a 4b | 5¢ Sa Sb | 6¢c 6a 6b | Oc Oa Ob | X 1la lc | 2¢ 2a 2b | 3c 3a 3bj|1b

Sa 5b 5¢ | 6a 6b 6¢c | Oa Ob Oc | la 1b 1c | 22 2b 2¢ | 3a X 3b | 4a 4b 4ci| 3c
5b 5¢ Sa | 6b 6¢ 6a 06 Oc Oa 16 1c 1la 2b 2¢ 2a | 3¢ 3b X 4b 4c¢ 4a|| 3a
S¢c 5a Sb| 6¢c 6a 6b | Oc Oa Ob | lc la 1b | 2¢ 22 2b | X 3a 3c | 4c 4a 4b{| 3b

6a 6b 6¢ | Oz Ob Oc | la 1b lc | 2a.2b 2c | 3a 3b 3c | 4a 4b 4c | Sa X 5bl|5c
6b 6¢c 6a | Ob Oc Oa | 1b 1c la | 2b 2¢ 22 | 3b 3c 3a | 4b 4c 42 | 5c 5b X || 5a
6¢c 6a 6b | Oc Oa Ob | 1c 1a 1b | 2¢c 2a 2b | 3c 3a 3b | 4c 4a 4b | X 5a S5c||5h

0b O0c Oa 2b 2¢ 22 | 4b 4c¢ 4a 6b 6¢ 6a 1b 1c la 3b 3¢ 3a | 5b 5¢ S5a¢|| X

Fig. 2.

for n # 30. Finally, withm = 3,¢ =9, u = 3, Theorem 2.3 implies
N@30) = 2.

The actual construction of Latin squares by Theorem 2.3, especially
in the cases in Table 1, is very easy. We illustrate by explicitly construct-
ing a pair of orthogonal squares of order n = 3r + u, when 0.< u < ¢,
N(t) > 3, N(u) 2 2. (Such pairs of orders 18 and 22 are shown in Figs.

1 and 2;heret=5,u=3,and t =7, u = 1, respectively.) We lapse into
a more informal language.

Start with three orthogonal squares L, L,,L_, of order . (When
t =+ 1 (mod 6), we may take the squares with row, column, and symbol
set Z, (the integers modulo ¢) defined by L,(i,j)=ri+j,r=1,2,-1.)
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g
@)
o

Oc la 1b 1lc 2a 2b 2¢ 3a 3b 3¢ | 4a 4b 4c Sa 5b 5c¢ 6¢|| 0b
0b lc la 1b | 2¢ 22 2b | 3¢ 3a 3b | 42 4a 4b | 5¢ 5a 5b * 6¢ 6a 6b EOC
0b X Oc 1b 1c la | 2b 2¢ 2a | 3b 3¢ 3a | 4b 4c 4a | 5b 5¢ 5a [ 6b 6¢ 6a ‘Oa

~ g
g >~

20 2b 2¢| 3a 3¢ X | 4a 4b 4c | 52 S5b 5c ! 6a 6b 6¢ | Oa Ob Oc | la 1b 1lc||3b
20 20 2b | X 3b 3a | 4c 4a 4b | Sc Sa Sb | 6¢ 6a 6b | Oc Oa 0b = lc la 1b| 3c
2b 2¢ 22| 3b X 3c | 4b 4c 4a | 5b Sc Sa | 6b 6¢ 6a | Ob Oc Oa 1b Ic la| 3a

d4q 4b dc | 5a Sb 5S¢ | 6a 6¢ X | 0z Ob Oc | la 1b lc | 2a 2b 2¢ | 3a 3b 3c|l6b
4c 4a 4b | 5c¢ 5a Sh | X 6b 6a | Oc Oa 0b | lc la 1b | 2¢ 2a 2b | 3¢ 3a 3b||6c
4b 4c 4a | 5b S5¢ Sa | 6b X 6¢ | 0b Oc Oa | 1b lc la | 2b 2¢ 2a . 3b 3¢ 3a| 6a

6a 6b 6¢ | 0z 0b Oc | la 1b lc | 22 2¢ X | 3a 3b 3¢ | 4a 4b 4c | S5a 5b 5c| 2b
6¢c 6a 66| Oc Oa Ob | 1c la 1b | X 2b 2a | 3¢ 3a 3b | 4c 4a 4b 5S¢ Sa Sh{|2c
6b 6c 6a 0b Oc Oa 1b1c la | 2b X 2¢ | 3b 3¢ 3a | 4b 4c 4a | 5b 5¢ 5a|i2a

la 16 1c 2a 2b 2¢ 3¢ 3b 3¢ | 42 4b 4c¢ | S5a 5S¢ X 6a 6b 6¢C Oz Ob Oc||5b
le la 1b} 2¢ 2a 2b | 3¢ 3¢ 3b | 4c 4a 4b | X 5b 5Sa 6¢c 6a 6b | Oc 0Oa Ob||5c
16 1¢ la | 2b 2¢ 2a 3b 3¢ 3a | 4b 4c 4a 5b X 5c 6b 6¢c 6a 06 Oc Oall5a
).—

3¢ 3b 3¢ | 4a 4b 4¢c | Sa 5b 5¢c | 6a 6b 6¢ | Oa 0Ob Oc la 1lc X 2a 2b 2c|i1b
3c 3¢ 3b| 4¢c 4a 4b | 5¢ 52 5b | 6¢c 62 6b | Oc O Ob | X 1b la 20 2a 2bil1c
3b 3¢ 3a | 4b 4¢c 4a | 5b 5¢ 5a | 6b 6¢ 6a | 0b Oc Oa 1 X lc 2b 2¢ 2allla

Sa 5b 5¢ | 6a 6b 6¢ Oz 0b Oc | la 1b 1c | 2a 2b 2¢ | 3a 3b 3¢ | 4a 4¢ X ||4b
5¢ 5a 5b| 6¢c 6a 6b | Oc Oa Ob | 1lc la 1b | 2¢ 2a 2b | 3¢ 3a 3b | X 4b 4a | 4dc
5b 5¢ S5a | 6b 6¢ 6a | Ob Oc Oa 1b lc la 2b 2¢ 2 3b 3¢ 3a 4b X 4dcllda

Oc 02 Ob| 3c 3a 3b | 6¢c 62 6b | 2¢ 2a 2b | 5c Sa 5b | 1c la 1b | 4c¢ 4a 4b||X

-
Fig. 2 (continued).
Fort =35,

f n

01234 01234 01234

12340 23401 40123
L,=|23401,L,=/40123|,L,=34012
34012 12340 23401

40123 34012 12340

We construct a pair L], L5 of orthogonal Latin squares of order 7. The
symbols are to be /la, Ib, Ic, where I runs through the ¢ symbols of L,
and L,, and u additional symbols X, X,,..., X,. Form L' | by replac-

ing u of the symbols of L _; with X, ..., X, and leaving the other cells
blank. Fort =5, u =3,
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Xy Xy X

X, X, X,
L, = X, X, X3‘
X3 X, X,
X, X3 X,

To effect the construction, we require the following “ingredients’:
Let U, and U, be two orthogonal Latin squares of order # on the sym-

bols X, ..., X,,. Take two orthogonal squares of order 3 on the symbols
a, b, ¢, say

abec %abc
A =\bca and Ay=lcab
cab b ca

i

Further, we need two orthogonal squares of order 4 on the symbols g, b,
¢, X, say

a Xbc ac Xb
c b Xa Xbac
Bi=lxaco | ™ B2=lp yo g
bcalX cablX

It is important here that the symbol X occurs in the lower right-hand
corner of both squares.

L{ and L} are now obtained as follows: The n (= 3¢ + u) rows and
columns are labelled by (i, k),i=1,2,...,¢t, k=1,2,3,and (1), (2), ..., (u).
Place U; in the (4 X u)-subsquare of L,-* consisting of rows (1), ..., ()
and columns (1), ..., @), i = 1, 2. (Cf. Fig. 1, where we have used symbols
X, Y, Z instead of X, X,, X5.) To complete L}, for each (i, ), i,j =
1,2, ..., ¢, find the symbol I occurring in the (i, j)th cell of L. If the
(7, j)-cell of L'_; is unoccupied, fill in the (3 X 3)-subsquare of L] consist-
ing of rows (i, 1), (i, 2), (i, 3) and columns (j, 1), (j, 2), (j, 3) with symbols
Ia, Ib, Ic using A, as a model, viz.
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~_ col.

row G G2 3

in Ia Ib Ic
i 2) Ib Ic la
@i 3) Ic Ia Ib

If, however, the (i, j)-cell of L' | contains a symbol X, fill in the (4 X 4)-
subsquare of LT consisting of rows (i, 1), (i, 2), (i, 3), (/) and columns

U, D, G, 2), G, 3), (1) (except for the cell in the (/)th row and (/)th column,
which is already filled) with symbols /a, Ib, Ic, X; using B, as a model, viz.

~. col.

oW GD G2 (3 )
1) |la X, Ib Ie
(i. 2) Ic Ib X; Ia
i3 |X I I Ib
0 b Ic la

L% is completed similarly, the only differences being that the symbol I
is to be found by referring to L, and 4,, B, are to be used as the mod-
els.

It is easily checked directly that the resulting squares are orthogonal.
The reader will be able to generalize to the construction analogous to
the full statement of Theorem 2.3.

Fig. 3 shows a pair of orthogonal Latin squares of order 22 obtained
from the construction of Theorem 2.4 withm=3,r=5u=3,v=4.
Compare Figs. 2 and 3 with the original constructions of [1, 2] using
Kirkman designs, a general construction for orders congruent to 10 mod-
ulo 12 (see [3]), and two pairs of order 22 obtained by Hedayat and
Seiden [8].

4. nt/17 squares

We introduce the notation of Buchstab [4]. Let x, y be positive real
numbers. Let pg = 2,p; =3, p, =5, p3, ..., p, be all the primes less than
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Oz 0bOc | 1la 1c A4 20 B 2b | 3a 3¢ C 4a 4¢c D 4b 1b 3 | Y 2072 X
00 0c Oa | A 1D Y 2c 2b B C 3 Z D 4b X | 42 la 3¢ | 1lc 22 3¢ 4c
Oc 0¢d Ob | Y la lc | B 2¢a 2¢ | Z 3a 3¢ | X 4a 4c | D A C 1b 2b 3b 4b
2¢ 2¢ D 3a 3b 3¢ 4a 4c A 0z Oc B la C 1b|{ 0b 2b4b |Z X 1lc Y
D 2bY 3b 3¢ 3a | A b Z B 0b X le 16 C 0z 22 4a 4c Q¢ la 2c
Y 22 2¢ 1 3¢ 323 | Z 40 4c | X G Q¢ | C lalc i B D 4 4p 0b 1b 2B
4a C 4b | O0a Oc D la X 1b | 2¢a A 2b 3¢ 3¢ B lc 3 0b | 2¢ Y 4c¢ Z
4c 4b C D 0bZ 16 X 2c 2b A 3bY la 3¢ v | 22 3¢ 4a Oc
C 4a 4¢c | Z 0a Oc iga ic | A 2¢ 2¢ {Y 3a 3| b B D 2b 3b 4b Obd
la 1c B 2a 2¢ C 3a D 3|4 Y 4b [ 0a A O0b | 2b 4c 1b {Oc Z X 3¢
B 17 C 2b X 3¢ 3b D 4c 4b Y Oc 0b A 20 4a la | Oa 1c 2¢ 3a
Z la lc | X 2¢a 2¢ | D 3¢ 3¢ |Y 4a 4c | A Oa Oc | C 4b B 0b 16 2b 3b

-
3¢ 3¢ A 40 B 4b | Oa Oc C la D 1b {2a Z 2b | 3b 0b 2¢c | X 4c Y lc
A 3 X | 4c 4b B C 0bY lc 16 D 2¢c 2b Z 3¢ Oa 22 | 3¢ 4a Oc la
X 33 | B 434 |Y 0 O | D lalc |Z 20 2¢| A C 20 |3b 4b 0b 1b
3c 4 3h| 2 C 2b | 1b1lc la | Oc B Ob |4 D 4b}| X Y 2 32 0a 22 4a
2D 2b|1c A 1b| 0O C Ob|4bdc 4 | 3¢ B 3 Y Z X la 32 Oa 22
lcB 1b|0OcD Ob|4c A 4b | 3¢ C 3b |2 2c 20| Z X Y 4z la 3a Oa
3b X 3¢ 1Y la | 4b Z 4a | 2b 2c 22 | Ob Oc Oa | 3¢ lc 4¢c {A D B C
1bZ la | 4b 4c 4a | 2b 2¢ 2a | Ob X Oa | 3b Y 3a| Oc 3¢ 1¢c |C B D A
4b 4¢ 4a | 26 X 20 | Ob Y Oa | 3bZ 3a | 1b1lc la| 2¢ Oc 3¢ |D A C B
2bY 2¢ { ObZ QOa | 3b 3¢ 3¢ | 1b1lc 1la | 4b X 4a | 4c 2¢ Oc |{B C A D

Fig. 3.

y and let w denote the choice of integers ay, ay, ..., a,, by, ..., b,. Then
P_ (x;y) is to denote the number of non-negative integers not exceed-
ing x which do not lie in any of the arithmetic progressions a, (mod p),
a; (mod p;), b; (mod p;). Buchstab proves

P (x;x1/5) > N(5) cx/(log x)? + O(x/(log x)?),

independent of the choice of w. Here c is a constant 0.4161 ... and
A(5) > 0.96.

As an immediate consequence, P, (x; x1/5) > 2 for sufficiently large
x, or equivalently,

Lemma 4.1. There is a constant ny such that for n > n,, we have

pw (n5/17;n1/17) > 2.
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Oc Ob O | la Y 16 |2 2 B |3¢Z 3b |42 X 4| D A C |lc 2b 3¢ 4
Oc Oca Ob | Y b A B 2021 7Z 3bC X 40 D 4c lc 3¢ la 2¢ 3¢ 4a
0b Oc Oa | 1b A 1c | 2B 2¢ | 3bC 3¢ |4bD 4c | 4a la 3¢ |Y 2 72 X
3a00Y 3 | 4a 4b4c | 0a Z Ob | la X 16122 C | B D A |0 1lc 2b 3¢
Y 3bD | 4c4a 4b | Z ObA | X 1bB | C 202 | 1c 3¢ Oc |0z la 2 3a
3bD 3 | 4b4c 4a | Ob A Oc | 1bB 1lc |20C 20| 1a 3¢ Oa | Z X 24 Y
la lc C | 2aZ 26| 323 X |44 A |[O0cY Ob| 3B D |4b Oc 1b 2¢
C 1bla|Z 26D | X 3b 3| A 4bda |Y ObB | 3¢ Oc 2¢ | 4c Oz l¢c
1bC 1lc | 26D 2 | 3b X 3¢ | 4b A 4c |ObB Oc | 3¢ 0a 20 [4a Y la Z
4¢ Z 4b | 0c X Ob | lale D | 222 Y [3a3 A | C 26 B |3bdc Oc 1b
Z 4bB | X ObC | D 1bla | Y 202 | A 3b3a| Oc 2¢c 4c | 3¢ 4a Oa lec
4b B 4c | 0bC Oc | 1bD 1lc | 26Y 2 [ 3b A 3| Oad 204 4¢ | 3¢ Z X la
20X 26| 323 B |4Y 4| 00D |lalcZ | A C 1b |2 3b 4c 0b
X 2b A B 3b 3a Y 4b C D 0b 0z | Z 1b la 2¢ 4c¢ lc 2a 3¢ 4a Oc
200 A 2 | 3B 3 |4 C 4 | ObD Oc | 1bZ lc| 20 4a la | X 32 Y Oa
A 2c 22| C Oc Oa| 3¢ 3¢ 3| B lcla| D 4 42| X Y Z | 2b 1b 0b 4b
D 3 3| A lcla| C 4 4a| 22220 B 0c0a| Z X Y | 1b Ob 4b 3b
B 4c 4a| D 2c 22| A Oc Oa| C 3¢ 3a | 1clalb| Y Z X | Ob 4b 3b 2b
22 X | lclaY | O Oa Z | 4c 4a 4b | 3¢ 32 3b| 20160 | A C D B
4c 4a 7 | 3¢ 3a 3b| 2 2 20! lc la X {Oc Oz Y | IbOb4b | D B A C
lc la 1b| Oc Oa X | 4c 4a Y | 3¢ 3¢ Z | 2 22 2b| Ob4b3b | B D C A
3¢ 3 Y | 22227 | lclalb| Oc 0 Ob| 4c 4a X | 4b 30 20 | C 4 B D

Fig. 3 (continued).

Theorem 4.2. For n > ny, N(n) > nl/17-2.

Proof. Let n > n, be given. Choose an integer / such that 2/ <nl/17 -1
< 2/+1 By Lemma 4.1, we may select an integer s satisfying

0<s<ndNT |
s= 0 (mod 2),
s # 0 (mod p;), 1<i<r,
2s# (=1 (mod p;), 1<i<r,

where p;, p,, ..., p, are all the odd primes less than n1/17. Define m by
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20s—1 ifnis even,
\2’ s if n is odd.

No prime divisors of 2/ s—(—1)" are less than n!/17; 2/ 5 is divisible by
2/*1 and no odd primes less than #1/1'7 . Thus by Theor

vvvvvvvvvv primes less than n hus em 1.4,
(1) N(m)>nt/17-2
(2) N(im+1)> nt/17.22,
Note that
(3) m+1< po/7,

Again by Lemma 4.1, select an integer ¢/, 0 < ¢' < »n3/17  such that,
with t = [n/(m+ 1)] + ¢, we have
t=1(mod 2),
1 # 0 (mod p,), 1
mt # n (mod p;), 1<i<r
(No prime p; divides m, so this last incongruence is equivalent to an in-
congruence of the form ¢ # n' (mod p;).) Note that m # n (mod 2), so

we also have mt # n (mod 2). Put u = n—mt, so that n = mt + u. By The-
orem 1.4,

(4) N(t)y > nt7 -1,
(5) Nu)>nt/7-1.
By our choice of t', t > n/(m+1)and t < ' + n/(m+1) < nS17+

n/(m+1)=n/m+ 317 —n/m(m+ 1)) < n/m because of the inequality
(3). Equivalently,

(6) O<u<t.

In view of the inequalities (1), (2), (4), (5), (6), and Theorem 2.3, we
have N(n) = N(mt +u) > nl/17 -2,

Remark 4.3. Using more of the power of Buchstab’s result, the unsightly
“_2” can be eliminated in the statement of Theorem 4.2.
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Tabie 2

w Uy, Yy w U, Uy w Uy Yy

7 7 0 31 23 8 54 27 27

8 8 0 32 16 16 55 32 23

9 9 0 33 17 16 56 29 27
10 9 1 34 17 17 57 32 25
11 11 0 35 19 16 58 29 29
12 11 1 36 19 17 59 32 27
13 13 0 37 29 8 60 31 29
14 7 7 38 19 19 61 32 29
15 8 7 39 23 16 62 31 31
16 8 8 40 23 17 63 32 31
17 9 8 41 25 16 64 32 32
18 9 9 42 23 19 65 49 16
19 11 8 43 27 16 66 37 29
20 11 9 44 25 19 67 56 11
21 13 8 45 29 16 68 37 31
22 11 11 46 23 23 69 37 32
23 16 7 47 31 16 70 41 29
24 13 11 48 25 23 71 63 8
25 16 9 49 32 17 72 41 31
26 13 13 50 25 25 73 41 32
27 16 11 51 32 19 74 37 37
28 17 11 52 27 25 75 43 32
29 16 13 53 37 16 76 47 29
30 17 13

5. Six squares

The three consecutive integers 7, 8,9 are prime powers. We exploit
this fact here by applying Theorems 2.4 and 2.5 withm = 7.

Theorem 5.1. N(n) = 6 whenever n > 90.
We begin with two lemmas.

Lemma 5.2. For any integer r, at least one of the numbers r, r+ 1,
r+2,..,rt+9isa unit modulo 210=2-3-5-7.

Proof. Let ' be the odd element of {, r + 1}. Of the integers ¥, ' + 2,
r'+4,r+6,r +8, at most two are divisible by 3, at most one by 5, and
at most one by 7; hence at least one is divisible by neither 3,5, 7, nor, of
course, 2.



R.M. Wilson, Number of mutually orthogonal Latin squares 197
Table 3

455<n <516 Lemma 5.3: =64, 7<w<68.
420<n <454 Lemma 5.3: =159, 7<w<4].

378 <n <419 Lemma 5.3: =53, 7<w<48.
350<n <377 Lemma 5.3: =49, 7<w< 34,
308 <n <349 Lemma 5.3: =43, 7<w<48.
266 < n <307 Lemma5.3: =37, 7<w<48.
224 <n <265 Lemma 5.3: =31, 7<w<48.

196 <n <223 Lemma5.3: =27, 7<w<34.
168<rn <195 Lemma §.3: =23, 7<w< 34.

164 <n <167 Theorem2.5: m= 7, t=23,3<[]<6.
140<n <163 Lemma 5.3: =19, 7<w<30.
119<n<139 Lemma 5.3: =16, 7<w<27.
114<n<118 Theorem2.5: m= 7, t=16,2<]<6.

98 <n<113 Lemma 5.3: =13, 7<w<22.

91<n< 97 Lemma5.3: ¢r=11,14 <w <20.

834 <n< §9 Lemma 5.3: t=11, 7<w<12.

n= 83 Theorem 1 4.
77<n< 81 Theorem 2.5: =11, m=7,0<1<4,.

For integers w, 7 < w < 76, define u,, and v,, as in Table 2. Note
that for eachw, 7< w< 76, wehavew=u,, +v,,0<u, v, <63,
and N(u,, ), N(v,,) > 6 by Theorem 1 .4.

Lemma §.3.If 7T<w< 76and u,,v,, <t then
N(7t+w) > min {6, N(t) -2} .

Proof. Apply Theorem 2.4 withm =7, u=u,,v=v,,.
Proof of Theorem 5.1. We first show that N(n) > 6 forn > 517. Given
n > 517, by Lemma 5.2, there may be found an integer ¢, relatively
prime to 210, such that [$#n] —10<¢t< [4n]—1. Then n—-76 < 7t <n-7,
so with w = n—7¢, we have 7< w< 76. Also, t > L (n—76) > 63.
N(t) > 10 by Theorem 1.4, so Lemma 5.3 gives N(n) = N(7t + w) > 6.
We complete the proof that N(n) > 6 for 90 < n < 517 with Table 3.
The table extends far enough to prove N(n) > 6 forn > 76, n # 82, 90.

Hanani [7] denotes by n, the smallest integer such that N(n) > » for
every n > n,. We have proven ng < 90.

Hanani shows that ng < 62. In view of this, we can say n, < 60 since
N(62) > 4 by Theorem 2.4, witht =8, m=7,u=5,v=1and N(61) =
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60. Hanani’s result that 7n; < 51 can be improved to n; < 46 since
N(51)Y> 3 (Theorem 2.3:m=4,tr=11,u=7), N(50) > 5 (Theorem
23:m=t=T7,u=1),N(49) =48, N(48) > 3 (Theorem 2.3: m = 4,
r=11,u=4)and N(47)=46. Of course, 11, = 6 (see [3.15] ).
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