CONCERNING THE NUMBER OF MUTUALLY ORTHOGONAL LATIN SQUARES*

Richard M. WILSON
Department of Mathematics, Ohio State University, Columbus, Ohio 43210, USA

Received 13 March 1973

Abstract

Let $N(n)$ denote the maximum number of mutually orthogonal Latin squares of order n. It is shown that for large n,

$$
N(n) \geq n^{1 / 17}-2
$$

In addition to a known number-theoretic result, the proof uses a new combinatorial construction which also allows a quick derivation of the existence of a pair of orthogonal squares of all orders $n>14$. In addition, it is proven that $N(n) \geq 6$ whenever $n>90$.

1. Introduction

A Latin square of order n is a map $L: R \times C \rightarrow S$, where $|R|=|C|=$ $|S|=n(|X|$ denotes the cardinality of the set $X)$, such that for fixed $i_{0} \in R$ and $j_{0} \in C$, and for any $x \in S$, the equation

$$
L\left(i_{0}, j\right)=x
$$

has a unique solution $j \in C$ and the equation

$$
L\left(i, j_{0}\right)=x
$$

has a unique solution $i \in R$. Elements of R are called rows, elements of C are columns, and elements of S are symbols. A Latin square is usually written as a square array, the cell in the i th row and j th column containing the symbol $L(i, j)$. In this context, we are requiring that in every row and column of the array, each symbol appears exactly once.

Two Latin squares $L_{1}: R \times C \rightarrow S_{1}$ and $L_{2}: R \times C \rightarrow S_{2}$ are said to

[^0]be orthogonal iff for any $\left(x_{1}, x_{2}\right) \in S_{1} \times S_{2}$, the equations
$$
L_{1}(i, j)=x_{1}, \quad L_{2}(i, j)=x_{2}
$$
have a unique simultaneous solution $(i, j) \in R \times C . k$ Latin squares $L_{i}: R \times C \rightarrow S_{i}, i=1,2, \ldots, k$, having the same row and column sets, are said to be mutually orthogonal iff every two of them are orthogonal. $N(n)$ will denote the largest integer k for which there exists a set of k mutually orthogonal Latin squares of order n.

The following four theorems are well known and easy to prove (see $[6,14]$).

Theorem 1.1. For $n \geq 2,1 \leq N(n) \leq n-1$.
Any two Latin squares of order 1 are orthogonal. There is only one Latin square of order 0 (the null square), but it is orthogonal to itself. Thus it is not unreasonable to adopt the conventions that $N(0)=N(1)$ $=\infty$.

Theorem 1.2. $N(n)=n-1$ if n is a prime power.
Theorem 1.3. $N(n m) \geq \min \{N(n), N(m)\}$.
From Theorem 1.2 and 1.3 follows

Theorem 1.4. If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{\dot{2}}} \ldots p_{r}^{\alpha_{r}}$ is the factorization of n into powers of distinct primes p_{i}, then $N(n) \geq \min _{1 \leq i \leq r}\left(p_{i}^{\alpha_{i}}-1\right)$.

Theorem 1.4 is due to MacNeish [9] and Mann [10].
Euler conjectured that $N(n)=1$ (i.e., no pair of orthogonal squares exists) for $n \equiv 2(\bmod 4)$. MacNeish went so far as to conjecture that equality holds in Theorem 1.4. In 1901, Tarry [15] showed that in fact $N(6)=1$ by a systematic enumeration.

Nothing else was known about $N(n)$ until the late 1950's when Parker [11] discovered three orthogonal Latin squares of order 21, disproving MacNeish's conjecture. Bose and Shrikhande [1] found the first counter example to Euler's conjecture, a pair of orthogonal squares of order 22, and Parker [12] exhibited the first pair of order 10. More techniques were put forth by Bose and Shrikhande [2]. The work of the three au-
thors culminated in 1960 with a joint paper [3] where it was proved that $N(n) \geq 2$ for all $n>6$, demolishing Euler's conjecture. Their proof uses Theorem 1.4, some general construction methods using pairwise balanced designs, and some more special constructions using the "method of differences". One of their most significant results is the following:

Theorem 1.5. If $m \leq N(t)+1$ and $1<u<t$, then

$$
N(m t+u) \geq \min \{N(m)-1, N(m+1)-1, N(t), N(u)\} .
$$

Also in 1960, Chowla, Erdös and Straus [5] observed that Theorems 1.4 and 1.5 imply $N(n) \rightarrow \infty$ as $n \rightarrow \infty$. Indeed, using a result of Brun's sieve method due to Radamacher, they proved that $N(n)>\frac{1}{3} n^{1 / 91}$ for sufficiently large n. With a similar argument, but using a result of Buchstab [4] in the sieve argument, Rogers [13], in 1964, showed that $N(n)>n^{1 /(42+\epsilon)}$ for $n>n_{\epsilon}$. We shall also use Buchstab's result; it will be stated in Section 4.

Recently, Hanani [7] has shown that $N(n) \geq 3$ for $n>51, N(n) \geq 5$ for $n>62$, and $N(n) \geq 29$ for $n>34,115,553$. His proof again uses Theorem 1.4 and 1.5, and some special constructions.

2. A construction and some inequalities

In [5], the authors remark that the numerical estimate on the lower bound for $N(n)$ could be improved if, for example, the occurrences of both $N(m)$ and $N(m+1)$ in the inequality of Theorem 1.5, or the hypothesis $m \leq N(t)+1$, could be eliminated. We show below (Theorem 2.3) that, indeed, the hypothesis $m \leq N(t)+1$ can be eliminated.

Let $k \geq 2, n \geq 1$ be given. By a transversal design with k groups of size n, in brief a $\operatorname{TD}(k, n)$, we mean a triple $(X, \mathcal{G}, \mathrm{~A})$, where X is a set of kn points, $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$ is a partition of X into k subsets G_{i} (called groups), each containing n points, and A is a class of subsets of X (called blocks or transversals) such that each block $A \in A$ contains precisely one point from each group and each pair x, y of points not contained in the same group occur together in precisely one block A.

Evidently, each block of a $\operatorname{TD}(k, n)$ contains k points. It is not difficult to see that each point occurs in precisely n blocks and the total number of blocks is n^{2}. Note that for any k, a (unique) $\operatorname{TD}(k, 1)$ ex-
ists. To be consistent with our convention $N(0)=\infty$, it is convenient to accept the existence of a degenerate $\operatorname{TD}(k, 0)$ with no points, k empty groups, and no blocks.

Transversal designs provide a compact and concise language with which to manipulate sets of orthogonal Latin squares. The following well-known lemma is due to Bose and Shrikhande [2]. For completeness, we sketch a proof here.

Lemma 2.1. The existence of a set of $k-2$ mutually orthogonal Latin squares of order n is equivalent to the existence of a $\operatorname{TD}(k, n)$.

Proof. Given a $\operatorname{TD}(k, n)(X, \mathcal{G}, A)$, where $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$, define the maps $L_{i}: G_{1} \times G_{2} \rightarrow G_{i}, i=3,4, \ldots, k$, as follows: $L_{i}(x, y)$ is to be that element $z \in G_{i}$ for which $A \cap G_{i}=\{z\}$, where A is the unique block of A containing $\{x, y\}$. From the properties of the transversal design, it readily follows that $L_{3}, L_{4}, \ldots, L_{k}$ are Latin squares and are mutually orthogonal.

Conversely, let $L_{i}: R \times C \rightarrow S_{i}, i=3,4, \ldots, k$, be $k-2$ mutually orthogonal Latin squares of order n. We may assume that the sets R, C, S_{3}, S_{4}, \ldots, S_{k} are pairwise disjoint. With this understanding, put

$$
\begin{aligned}
& X=R \cup C \cup S_{3} \cup \ldots \cup S_{k}, \\
& \mathcal{G}=\left\{R, C, S_{3}, \ldots, S_{k}\right\}, \\
& A=\left\{\left\{i, j, L_{3}(i, j), L_{4}(i, j), \ldots, L_{k}(i, j)\right\}: i \in R, j \in C\right\} .
\end{aligned}
$$

Then $(X, \mathcal{G}, \mathrm{~A})$ is a $\operatorname{TD}(k, n)$.
Evidently, the existence of a $\operatorname{TD}(k, n)$ is equivalent to the statement $N(n) \geq k-2$.

Through each point of a block A of a $\operatorname{TD}(k, n), n \geq 2$, there pass $n 1$ other blocks. Thus $k(n-1)$ blocks meet A in one point; the other $n^{2}-k(n-1)-1$ blocks are disjoint from A. If $k>n+1$, we have a contradiction (proving Theorem 1.1); if $k=n+1$, every block must meet A; if $k<n+1$, there exists a block disjoint from A.

Theorem 2.2. Let $(X, \mathcal{G}, \mathrm{~A})$ be a $\operatorname{TD}(k+l, t)$, where $g=\left\{G_{1}, G_{2}, \ldots, G_{k}\right.$, $\left.H_{1}, H_{2}, \ldots, H_{l}\right\}$. Let S be any subset of $H_{1} \cup H_{2} \cup \ldots \cup H_{l}$. Let $m \geq 0$ be given and assume:
(i) for each $i=1,2, \ldots, l$, there exists a $\operatorname{TD}\left(k, h_{i}\right)$, where $h_{i}=\left|S \cap H_{i}\right|$;
(ii) for each block $A \in A$, there exists a $\operatorname{TD}\left(k, m+u_{A}\right)$ in which there may be found $u_{A}=|S \cap A|$ disjoint blocks.
Then there exists a $\mathrm{TD}(k, m t+s)$, where $s=|S|$.

Proof. Let $X_{0}=G_{1} \cup G_{2} \cup \ldots \cup G_{k}$. For cach block $A \in A$, we write $A_{0}=A \cap X_{0}, A^{\prime}=A \cap S$.

We construct a $\operatorname{TD}(k, m t+s)$ on the set of $k(m t+s)$ points $X^{*}=\left(X_{0} \times M\right) \cup\left(I_{k} \times S\right)$, where M is a set of m elements and $I_{k}=$ $\{1,2, \ldots, k\}$. As groups, we take $\mathcal{G}^{*}=\left\{G_{1}^{*}, G_{2}^{*}, \ldots, G_{k}^{*}\right\}$, where $G_{i}^{*}=$ $\left(G_{i} \times M\right) \cup(\{i\} \times S), i=1,2, \ldots, k$. The blocks are obtained as follows:

For each block $A \in A$, construct a $\operatorname{TD}\left(k, m+u_{A}\right)$ with point set $\left(A_{0} \times M\right) \cup\left(I_{k} \times A^{\prime}\right)$, groups $\left(A_{0} \cap G_{i}\right) \times M \cup\left(\{i\} \times A^{\prime}\right), i=1,2, \ldots, k$, and blocks B_{A}. Under our hypothesis that such a transversal design exists with u_{A} disjoint blocks, we may effect the construction so that $I_{k} \times\{z\}, z \in A^{\prime}$, are blocks of B_{A}. With this understanding, we denote by B_{A}^{\prime} the remaining $\left(m+u_{A}\right)^{2}-u_{A}$ blocks of B_{A} and put $B=U_{A \in A B_{A}^{\prime}}$ For each $j=1,2, \ldots, l$, construct a $\operatorname{TD}\left(k, h_{j}\right)$ on the set of points $I_{k} \times\left(S \cap H_{j}\right)$ with groups $\{i\} \times\left(S \cap H_{j}\right), i=1,2, \ldots, k$, and blocks \mathcal{C}_{j}. Put $A^{*}=B \cup C_{1} \cup C_{2} \cup \ldots \cup C_{l}$. We claim that $\left(X^{*}, \mathcal{E}^{*}, A^{*}\right)$ is a $\mathrm{TD}(k, m t+s)$.

Most verifications are trivial. We check below the condition that two points of X^{*} which belong to different groups of ϱ^{*} occur in precisely one block of A^{*}.

The points of X^{*} are of the form $(x, \mu), x \in X_{0}, \mu \in M$, or (i, z), $i \in I_{k}, z \in S$.

Two points $\left\{\left(x_{1}, \mu_{1}\right),\left(x_{2}, \mu_{2}\right)\right\}$ lie in different groups of \mathcal{G}^{*} iff x_{1}, x_{2} lie in different groups of g. Two points $\left\{\left(i_{1}, z_{1}\right),\left(i_{2}, z_{2}\right)\right\}$ lie in different groups of \mathcal{G}^{*} iff $i_{1} \neq i_{2}$. Two points $\{(x, \mu),(i, z)\}$ lie in different groups of \mathcal{G}^{*} iff $x \notin G_{i}$.

The pairs of points of X^{*} occurring in one (and only one) block of C_{j} are $\left\{\left(i_{1}, z_{1}\right),\left(i_{2}, z_{2}\right)\right\}$, where $i_{1} \neq i_{2},\left\{z_{1}, z_{2}\right\} \subseteq H_{j}$. The pairs of points occurring in one (and only one) block of B_{A}^{\prime} are $\left\{\left(x_{1}, \mu_{1}\right)\right.$, $\left.\left(x_{2}, \mu_{2}\right)\right\}$, where $x_{1} \neq x_{2},\left\{x_{1}, x_{2}\right\} \subseteq A ;\{(x, \mu),(i, z)\}$, where $x \notin G_{i}$, $\{x, z\} \subseteq A$; and $\left\{\left(i_{1}, z_{1}\right),\left(i_{2}, z_{2}\right)\right\}$, where $i_{1} \neq i_{2}, z_{1} \neq z_{2},\left\{z_{1}, z_{2}\right\} \subseteq A$.

With this enumeration, the properties of the original $\operatorname{TD}(k+l, t)$ establish our claim.

We derive a number of corollaries of Theorem 2.2. We shall use only

Theorem 2.3 in Section 3 (two squares) and Section 4 ($n^{1 / 17}$ squares). Theorems 2.4 and 2.5 will be applied in our discussion of the existence of six squares in Section 5.

Theorem 2.3. If $0 \leq u \leq t$, then

$$
N(m t+u) \geq \min \{N(m), N(m+1), N(t)-1, N(u)\} .
$$

Proof. Let $k=2+\min \{N(m), N(m+1), N(t)-1, N(u)\}$. Then by Lemma 2.1, transversal designs $\operatorname{TD}(k, m), \operatorname{TD}(k, m+1), \operatorname{TD}(k+1, t)$ and $\operatorname{TD}(k, u)$ exist. In the notation of Theorem 2.2 , we take $l=1$ and let S be any subset of H_{1} containing u points. For each block $A \in \mathrm{~A}, u_{A}=0$ or 1 . Theorem 2.2 then asserts the existence of a $\operatorname{TD}(k, m t+u)$; hence $N(m t+u) \geq k-2$.

When $l=0, S=\emptyset$ in Theorem 2.2, we obtain Theorem 1.3.

Theorem 2.4. If $0 \leq u, v \leq t$, then

$$
N(m t+u+v) \geq \min \{N(m), N(m+1), N(m+2), N(t)-2, N(u), N(v)\} .
$$

Proof. Set $k-2$ equal to the indicated minimum. A $\mathrm{TD}(k+2, t)$ exists. In Theorem 2.2, let $l=2$ and choose S such that $\left|S \cap H_{1}\right|=u,\left|S \cap H_{2}\right|$ $=v$. Transversal designs $\operatorname{TD}(k, u)$ and $\operatorname{TD}(k, v)$ exist by our choice of k. For any block A of the $\operatorname{TD}(k+2, t), u_{A}=0,1$ or 2 . But transversal designs $\mathrm{TD}(k, m+i), i=0,1,2$, exist. Moreover, since $k \leq N(m)+2$ $\leq m+1$, the $\operatorname{TD}(k, m+2)$ contains two disjoint blocks by an earlier remark. Theorem 2.2 asserts the existence of a $\operatorname{TD}(k, m t+u+v)$.

Theorem 2.5. If $t>\frac{1}{2}(l-1)(l-2)$, then

$$
N(m t+l) \geq \min \{N(m), N(m+1), N(m+2), N(t)-l\} .
$$

Proof. Let $k-2$ be the indicated minimum. A $\operatorname{TD}(k+l, t)$ exists.
In the notation of Theorem 2.2, we form the set $S=\left\{z_{1}, z_{2}, \ldots, z_{l}\right\}$ by selecting one point z_{i} from each group $H_{i}, 1 \leq i \leq l$, in such a way that no block A contains three elements of S. Under our hypothesis $t>\frac{1}{2}(l-1)(l-2)$, this can always be done: Inductively, if $z_{1}, z_{2}, \ldots, z_{r}$, $r<l$, have been chosen with no three in a common block, consider the
$\frac{1}{2} r(r-1)$ blocks $A_{i j}, 1 \leq i<j \leq r$, such that $\left\{z_{i}, z_{j}\right\} \subseteq A_{i j}$. There must be at least one point $z_{r+1} \in H_{r+1}$ not contained in any of the blocks $A_{i j}$; then no three of $z_{1}, z_{2}, \ldots, z_{r+1}$ lie in a common block.

With this choice of $S, u_{A}=0,1$ or 2 for each block A of the $\operatorname{TD}(k+l, t)$. Again, transversal designs $\operatorname{TD}(k, m+i), i=0,1,2$, exist and the $\mathrm{TD}(k, m+2)$ has two disjoint blocks. By Theorem 2.2, a $\mathrm{TD}(k, m t+l)$ exists.

3. Two squares

We pause here to give a proof of the theorem of Bose, Shrikhande and Parker [3].

Theorem 3.1. For $n \neq 2,6, N(n) \geq 2$.

Proof. Pairs of orthogonal Latin squares of orders 10 and 14 are constructed in [3]. (They are also exhibited in [6].) In view of this and Theorem 1.4 , it remains to show $N(n) \geq 2$ for $n \equiv 2(\bmod 4), n \geq 18$.

Given $n \equiv 2(\bmod 4), n \geq 18$, define t and u as in Table 1, depending on the residue of n modulo 18 .

Table 1

n	t	u
$18 s$	$6 s-1$	3
$18 s+2$	$6 s-1$	5
$18 s+4$	$6 s+1$	1
$18 s+6$	$6 s+1$	3
$18 s+8$	$6 s+1$	5
$18 s+10$	$6 s+1$	7
$18 s+12$	$6 s+1$	9
$18 s+14$	$6 s+1$	11
$18 s+16$	$6 s+5$	1

By Theorem 1.4, N(t) $\geq 4, N(u) \geq 2$. With the exception of $n=30$, we have $0 \leq u \leq t$, so taking $m=3$ in Theorem 2.3,

$$
\begin{aligned}
N(n) & =N(m t+u) \geq \min \{N(m), N(m+1), N(t)-1, N(u)\} \geq \min \{2,3,3,2\} \\
& =2
\end{aligned}
$$

| $0 a$ | X | $0 b$ | $1 a$ | Y | $1 b$ | $2 a$ | Z | $2 b$ | $3 a$ | $3 b$ | $3 c$ | $4 a$ | $4 b$ | $4 c$ | $0 c$ | $1 c$ | $2 c$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $0 c$ | $0 b$ | X | $1 c$ | $1 b$ | Y | $2 c$ | $2 b$ | Z | $3 b$ | $3 c$ | $3 a$ | $4 b$ | $4 c$ | $4 a$ | $0 a$ | $1 a$ | $2 a$ |
| X | $0 a$ | $0 c$ | Y | $1 a$ | $1 c$ | Z | $2 a$ | $2 c$ | $3 c$ | $3 a$ | $3 b$ | $4 c$ | $4 a$ | $4 b$ | $0 b$ | $1 b$ | $2 b$ |
| $1 a$ | $1 b$ | $1 c$ | $2 a$ | X | $2 b$ | $3 a$ | Y | $3 b$ | $4 a$ | Z | $4 b$ | $0 a$ | $0 b$ | $0 c$ | $2 c$ | $3 c$ | $4 c$ |
| $1 b$ | $1 c$ | $1 a$ | $2 c$ | $2 b$ | X | $3 c$ | $3 b$ | Y | $4 c$ | $4 b$ | Z | $0 b$ | $0 c$ | $0 a$ | $2 a$ | $3 a$ | $4 a$ |
| $1 c$ | $1 a$ | $1 b$ | X | $2 a$ | $2 c$ | Y | $3 a$ | $3 c$ | Z | $4 a$ | $4 c$ | $0 c$ | $0 a$ | $0 b$ | $2 b$ | $3 b$ | $4 b$ |
| $2 a$ | $2 b$ | $2 c$ | $3 a$ | $3 b$ | $3 c$ | $4 a$ | X | $4 b$ | $0 a$ | Y | $0 b$ | $1 a$ | Z | $1 b$ | $4 c$ | $0 c$ | $1 c$ |
| $2 b$ | $2 c$ | $2 a$ | $3 b$ | $3 c$ | $3 a$ | $4 c$ | $4 b$ | X | $0 c$ | $0 b$ | Y | $1 c$ | $1 b$ | Z | $4 a$ | $0 a$ | $1 a$ |
| $2 c$ | $2 a$ | $2 b$ | $3 c$ | $3 a$ | $3 b$ | X | $4 a$ | $4 c$ | Y | $0 a$ | $0 c$ | Z | $1 a$ | $1 c$ | $4 b$ | $0 b$ | $1 b$ |
| $3 a$ | Z | $3 b$ | $4 a$ | $4 b$ | $4 c$ | $0 a$ | $0 b$ | $0 c$ | $1 a$ | X | $1 b$ | $2 a$ | Y | $2 b$ | $1 c$ | $2 c$ | $3 c$ |
| $3 c$ | $3 b$ | Z | $4 b$ | $4 c$ | $4 a$ | $0 b$ | $0 c$ | $0 a$ | $1 c$ | $1 b$ | X | $2 c$ | $2 b$ | Y | $1 a$ | $2 a$ | $3 a$ |
| Z | $3 a$ | $3 c$ | $4 c$ | $4 a$ | $4 b$ | $0 c$ | $0 a$ | $0 b$ | X | $1 a$ | $1 c$ | Y | $2 a$ | $2 c$ | $1 b$ | $2 b$ | $3 b$ |
| $4 a$ | Y | $4 b$ | $0 a$ | Z | $0 b$ | $1 a$ | $1 b$ | $1 c$ | $2 a$ | $2 b$ | $2 c$ | $3 a$ | X | $3 b$ | $3 c$ | $4 c$ | $0 c$ |
| $4 c$ | $4 b$ | Y | $0 c$ | $0 b$ | Z | $1 b$ | $1 c$ | $1 a$ | $2 b$ | $2 c$ | $2 a$ | $3 c$ | $3 b$ | X | $3 a$ | $4 a$ | $0 a$ |
| Y | $4 a$ | $4 c$ | Z | $0 a$ | $0 c$ | $1 c$ | $1 a$ | $1 b$ | $2 c$ | $2 a$ | $2 b$ | X | $3 a$ | $3 c$ | $3 b$ | $4 b$ | $0 b$ |
| $0 b$ | $0 c$ | $0 a$ | $2 b$ | $2 c$ | $2 a$ | $4 b$ | $4 c$ | $4 a$ | $1 b$ | $1 c$ | $1 a$ | $3 b$ | $3 c$ | $3 a$ | X | Y | Z |
| $4 b$ | $4 c$ | $4 a$ | $1 b$ | $1 c$ | $1 a$ | $3 b$ | $3 c$ | $3 a$ | $0 b$ | $0 c$ | $0 a$ | $2 b$ | $2 c$ | $2 a$ | Y | Z | X |
| $3 b$ | $3 c$ | $3 a$ | $0 b$ | $0 c$ | $0 a$ | $2 b$ | $2 c$ | $2 a$ | $4 b$ | $4 c$ | $4 a$ | $1 b$ | $1 c$ | $1 a$ | Z | X | Y |

| $0 a$ | $0 c$ | X | $1 a$ | $1 c$ | Y | $2 a$ | $2 c$ | Z | $3 a$ | $3 b$ | $3 c$ | $4 a$ | $4 b$ | $4 c$ | $0 b$ | $1 b$ | $2 b$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| X | $0 b$ | $0 a$ | Y | $1 b$ | $1 a$ | Z | $2 b$ | $2 a$ | $3 c$ | $3 a$ | $3 b$ | $4 c$ | $4 a$ | $4 b$ | $0 c$ | $1 c$ | $2 c$ |
| $0 b$ | X | $0 c$ | $1 b$ | Y | $1 c$ | $2 b$ | Z | $2 c$ | $3 b$ | $3 c$ | $3 a$ | $4 b$ | $4 c$ | $4 a$ | $0 a$ | $1 a$ | $2 a$ |
| $2 a$ | $2 b$ | $2 c$ | $3 a$ | $3 c$ | X | $4 a$ | $4 c$ | Y | $0 a$ | $0 c$ | Z | $1 a$ | $1 b$ | $1 c$ | $3 b$ | $4 b$ | $0 b$ |
| $2 c$ | $2 a$ | $2 b$ | X | $3 b$ | $3 a$ | Y | $4 b$ | $4 a$ | Z | $0 b$ | $0 a$ | $1 c$ | $1 a$ | $1 b$ | $3 c$ | $4 c$ | $0 c$ |
| $2 b$ | $2 c$ | $2 a$ | $3 b$ | X | $3 c$ | $4 b$ | Y | $4 c$ | $0 b$ | Z | $0 c$ | $1 b$ | $1 c$ | $1 a$ | $3 a$ | $4 a$ | $0 a$ |
| $4 a$ | $4 b$ | $4 c$ | $0 a$ | $0 b$ | $0 c$ | $1 a$ | $1 c$ | X | $2 a$ | $2 c$ | Y | $3 a$ | $3 c$ | Z | $1 b$ | $2 b$ | $3 b$ |
| $4 c$ | $4 a$ | $4 b$ | $0 c$ | $0 a$ | $0 b$ | X | $1 b$ | $1 a$ | Y | $2 b$ | $2 a$ | Z | $3 b$ | $3 a$ | $1 c$ | $2 c$ | $3 c$ |
| $4 b$ | $4 c$ | $4 a$ | $0 b$ | $0 c$ | $0 a$ | $1 b$ | X | $1 c$ | $2 b$ | Y | $2 c$ | $3 b$ | Z | $3 c$ | $1 a$ | $2 a$ | $3 a$ |
| $1 a$ | $1 c$ | Z | $2 a$ | $2 b$ | $2 c$ | $3 a$ | $3 b$ | $3 c$ | $4 a$ | $4 c$ | X | $0 a$ | $0 c$ | Y | $4 b$ | $0 b$ | $1 b$ |
| Z | $1 b$ | $1 a$ | $2 c$ | $2 a$ | $2 b$ | $3 c$ | $3 a$ | $3 b$ | X | $4 b$ | $4 a$ | Y | $0 b$ | $0 a$ | $4 c$ | $0 c$ | $1 c$ |
| $1 b$ | Z | $1 c$ | $2 b$ | $2 c$ | $2 a$ | $3 b$ | $3 c$ | $3 a$ | $4 b$ | X | $4 c$ | $0 b$ | Y | $0 c$ | $4 a$ | $0 a$ | $1 a$ |
| $3 a$ | $3 c$ | Y | $4 a$ | $4 c$ | Z | $0 a$ | $0 b$ | $0 c$ | $1 a$ | $1 b$ | $1 c$ | $2 a$ | $2 c$ | X | $2 b$ | $3 b$ | $4 b$ |
| Y | $3 b$ | $3 a$ | Z | $4 b$ | $4 a$ | $0 c$ | $0 a$ | $0 b$ | $1 c$ | $1 a$ | $1 b$ | X | $2 b$ | $2 a$ | $2 c$ | $3 c$ | $4 c$ |
| $3 b$ | Y | $3 c$ | $4 b$ | Z | $4 c$ | $0 b$ | $0 c$ | $0 a$ | $1 b$ | $1 c$ | $1 a$ | $2 b$ | X | $2 c$ | $2 a$ | $3 a$ | $4 a$ |
| $0 c$ | $0 a$ | $0 b$ | $3 c$ | $3 a$ | $3 b$ | $1 c$ | $1 a$ | $1 b$ | $4 c$ | $4 a$ | $4 b$ | $2 c$ | $2 a$ | $2 b$ | X | Y | Z |
| $3 c$ | $3 a$ | $3 b$ | $1 c$ | $1 a$ | $1 b$ | $4 c$ | $4 a$ | $4 b$ | $2 c$ | $2 a$ | $2 b$ | $0 c$ | $0 a$ | $0 b$ | Z | X | Y |
| $1 c$ | $1 a$ | $1 b$ | $4 c$ | $4 a$ | $4 b$ | $2 c$ | $2 a$ | $2 b$ | $0 c$ | $0 a$ | $0 b$ | $3 c$ | $3 a$ | $3 b$ | Y | Z | X |

Fig. 1.

$\begin{array}{lll} 0 a & X & 0 b \\ 0 c & 0 b & X \\ X & 0 a & 0 c \end{array}$	$1 a 1 b 1 c$ $1 b 1 c 1 a$ $1 c \quad 1 a \quad 1 b$	$\begin{array}{lll} 2 a & 2 b & 2 c \\ 2 b & 2 c & 2 a \\ 2 c & 2 a & 2 b \end{array}$	$\begin{array}{lll} 3 a & 3 b & 3 c \\ 3 b & 3 c & 3 a \\ 3 c & 3 a & 3 b \end{array}$	$4 a 4 b 4 c$ $4 b \quad 4 c \quad 4 a$ $4 c \quad 4 a \quad 4 b$	$\begin{array}{lll} 5 a & 5 b & 5 c \\ 5 b & 5 c & 5 a \\ 5 c & 5 a & 5 b \end{array}$	$6 a 6 b 6 c$ $6 b \quad 6 c \quad 6 a$ $6 c \quad 6 a \quad 6 b$	$\begin{array}{\|l} 0 c \\ 0 a \\ 0 b \end{array}$
$\begin{array}{lll} 1 a & 1 b & 1 c \\ 1 b & 1 c & 1 a \\ 1 c & 1 a & 1 b \end{array}$	$\begin{array}{lll} 2 a & X & 2 b \\ 2 c & 2 b & X \\ X & 2 a & 2 c \end{array}$	$\begin{array}{lll} 3 a & 3 b & 3 c \\ 3 b & 3 c & 3 a \\ 3 c & 3 a & 3 b \end{array}$	$4 a \quad 4 b \quad 4 c$ $4 b \quad 4 c \quad 4 a$ $4 c \quad 4 a \quad 4 b$	$\begin{array}{lll}5 a & 5 b & 5 c\end{array}$ $5 b 5 c 5 a$ $5 c \quad 5 a \quad 5 b$	$6 a \quad 6 b \quad 6 c$ $6 b 6 c \quad 6 a$ $6 c \quad 6 a \quad 6 b$	$\begin{array}{lll} 0 a & 0 b & 0 c \\ 0 b & 0 c & 0 a \\ 0 c & 0 a & 0 b \end{array}$	$\begin{aligned} & 2 c \\ & 2 a \\ & 2 b \end{aligned}$
$\begin{array}{lll} 2 a & 2 b & 2 c \\ 2 b & 2 c & 2 a \\ 2 c & 2 a & 2 b \end{array}$	$\begin{array}{lll} 3 a & 3 b & 3 c \\ 3 b & 3 c & 3 a \\ 3 c & 3 a & 3 b \end{array}$	$\begin{array}{lll} 4 a & X & 4 b \\ 4 c & 4 b & X \\ X & 4 a & 4 c \end{array}$	$5 a \quad 5 b \quad 5 c$ $5 b 5 c 5 a$ $5 c \quad 5 a \quad 5 b$	$6 a 6 b 6 c$ $6 b 6 c 6 a$ $6 c \quad 6 a \quad 6 b$	$0 a \quad 0 b \quad 0 c$ $0 b \quad 0 c \quad 0 a$ $0 c \quad 0 a \quad 0 b$	$\begin{array}{ccc} 1 a & 1 b & 1 c \\ 1 b & 1 c & 1 a \\ 1 c & 1 a & 1 b \end{array}$	$4 c$, $4 a$ $4 b$
$\begin{array}{lll}3 a & 3 b & 3 c \\ 3 b & 3 c & 3 a \\ 3 c & 3 a & 3 b\end{array}$	$\begin{array}{lll}4 a & 4 b & 4 c \\ 4 b & 4 c & 4 a \\ 4 c & 4 a & 4 b\end{array}$	$\begin{array}{lll}5 a & 5 b & 5 c \\ 5 b & 5 c & 5 a \\ 5 c & 5 a & 5 b\end{array}$	$\begin{array}{lll}6 a & X & 6 b \\ 6 c & 6 b & X \\ X & 6 a & 6 c\end{array}$	$\begin{array}{lll}0 a & 0 b & 0 c \\ 0 b & 0 c & 0 a \\ 0 c & 0 a & 0 b\end{array}$	$\begin{array}{ccc}1 a & 1 b & 1 c \\ 1 b & 1 c & 1 a \\ 1 c & 1 a & 1 b\end{array}$	$\begin{array}{llll}2 a & 2 b & 2 c \\ 2 b & 2 c & 2 a \\ 2 c & 2 a & 2 b\end{array}$	$\begin{aligned} & 6 c \\ & 6 a \\ & 6 b \end{aligned}$
$\begin{array}{lll} 4 a & 4 b & 4 c \\ 4 b & 4 c & 4 a \\ 4 c & 4 a & 4 b \end{array}$	$\begin{array}{lll} 5 a & 5 b & 5 c \\ 5 b & 5 c & 5 a \\ 5 c & 5 a & 5 b \end{array}$	$6 a 6 b 6 c$ $6 b \quad 6 c \quad 6 a$ $6 c \quad 6 a \quad 6 b$	$0 a \quad 0 b \quad 0 c$ $0 b \quad 0 c \quad 0 a$ $0 c \quad 0 a \quad 0 b$	$\begin{array}{lll} 1 a & X & 1 b \\ 1 c & 1 b & X \\ X & 1 a & 1 c \end{array}$	$\begin{array}{lll} 2 a & 2 b & 2 c \\ 2 b & 2 c & 2 a \\ 2 c & 2 a & 2 b \end{array}$	$\begin{array}{lll} 3 a & 3 b & 3 c \\ 3 b & 3 c & 3 a \\ 3 c & 3 a & 3 b \end{array}$	$\begin{aligned} & 1 c \\ & 1 a \\ & 1 b \end{aligned}$
$5 a \quad 5 b \quad 5 c$ $5 b \quad 5 c \quad 5 a$ $5 c \quad 5 a \quad 5 b$	$6 a 6 b 6 c$ $6 b 6 c \quad 6 a$ $6 c \quad 6 a \quad 6 b$	$0 a \quad 0 b \quad 0 c$ $0 b \quad 0 c \quad 0 a$ Oc $0 a \quad 0 b$	$\begin{array}{lll} 1 a & 1 b & 1 c \\ 1 b & 1 c & 1 a \\ 1 c & 1 a & 1 b \end{array}$	$\begin{array}{lll} 2 a & 2 b & 2 c \\ 2 b & 2 c & 2 a \\ 2 c & 2 a & 2 b \end{array}$	$\begin{array}{lll} 3 a & X & 3 b \\ 3 c & 3 b & X \\ X & 3 a & 3 c \end{array}$	$\begin{array}{lll} 4 a & 4 b & 4 c \\ 4 b & 4 c & 4 a \\ 4 c & 4 a & 4 b \end{array}$	$\begin{aligned} & 3 c \\ & 3 a \\ & 3 b \end{aligned}$
$6 a 6 b 6 c$ $6 b \quad 6 c \quad 6 a$ $6 c \quad 6 a \quad 6 b$	$0 a \quad 0 b \quad 0 c$ $\begin{array}{ccc}0 b & 0 c & 0 a\end{array}$ $0 c \quad 0 a \quad 0 b$	$\begin{array}{lll} 1 a & 1 b & 1 c \\ 1 b & 1 c & 1 a \\ 1 c & 1 a & 1 b \end{array}$	$\begin{array}{lll} 2 a & 2 b & 2 c \\ 2 b & 2 c & 2 a \\ 2 c & 2 a & 2 b \end{array}$	$\begin{array}{lll} 3 a & 3 b & 3 c \\ 3 b & 3 c & 3 a \\ 3 c & 3 a & 3 b \end{array}$	$\begin{array}{lll} 4 a & 4 b & 4 c \\ 4 b & 4 c & 4 a \\ 4 c & 4 a & 4 b \end{array}$	$\begin{array}{lll}5 a & X & 5 b \\ 5 c & 5 b & X \\ X & 5 a & 5 c\end{array}$	$\begin{aligned} & 5 c \\ & 5 a \\ & 5 b \end{aligned}$
$0 b \quad 0 c \quad 0 a$	$2 b \quad 2 c \quad 2 a$	$4 b \quad 4 c \quad 4 a$	$6 b 6 c 6 a$	$1 b 1 c 1 a$	$3 b \quad 3 c \quad 3 a$	$5 b \leq 5 c 5 a$	X

Fig. 2.
for $n \neq 30$. Finally, with $m=3, t=9, u=3$, Theorem 2.3 implies $N(30) \geq 2$.

The actual construction of Latin squares by Theorem 2.3, especially in the cases in Table 1 , is very easy. We illustrate by explicitly constructing a pair of orthogonal squares of order $n=3 t+u$, when $0 \leq u \leq t$, $N(t) \geq 3, N(u) \geq 2$. (Such pairs of orders 18 and 22 are shown in Figs. 1 and 2 ; here $t=5, u=3$, and $t=7, u=1$, respectively.) We lapse into a more informal language.

Start with three orthogonal squares L_{1}, L_{2}, L_{-1} of order t. (When $t= \pm 1(\bmod 6)$, we may take the squares with row, column, and symbol set \mathbf{Z}_{t} (the integers modulo t) defined by $L_{r}(i, j)=r i+j, r=1,2,-1$.)

Oa $0 c \times$	$\begin{array}{llll}1 a & 1 b & 1\end{array} c$	$\begin{array}{ccc}2 a & 2 b & 2 c\end{array}$	$\begin{array}{llll}3 a & 3 b & 3 c\end{array}$	$4 a \quad 4 b 4 c$	$5 a \quad 5 b 5 c$	$6 a \quad 6 b 6 c$	$0 b$
$X \quad 0 b 0 a$	1c la 1 b	$2 c \quad 2 a \quad 2 b$	3c $3 a 3 b$	$4-4 a 4 b$	$5 c \quad 5 a \quad 5 b$	$6 c \quad 6 a \quad 6 b$	Oc
$0 b X 0 c$	$1 b 1 c \quad 1 a$	$2 b \quad 2 c \quad 2 a$	$3 b 3 c \quad 3 a$	$4 b \quad 4 c \quad 4 a$	$5 b \quad 5 c \quad 5 a$	$6 b \quad 6 c \quad 6 a$	$0 a$
$2 a \quad 2 b \quad 2$	$\begin{array}{llll}3 a & 3 c & X\end{array}$	$\begin{array}{llll}4 a & 4 b & 4 c\end{array}$	$5 a \quad 5 b$	$6 b$	Ob Oc	$1 b \mathrm{lc}$	$3 b$
$2 c \quad 2 a \quad 2 b$	$X 3 b 3 a$	$4 c \quad 4 a \quad 4 b$	$5 c \quad 5 a \quad 5 b$	$6 c \quad 6 a \quad 6 b$	c $0 a \quad 0 b$	lc la 1 b	$3 c$
$2 b \quad 2 c \quad 2 a$	$3 b \times 3 c$	$4 b \quad 4 c \quad 4 a$	$5 b$ 5c 5a	$6 b 6 c \quad 6 a$	$0 b$ Oc Oa	$1 b$ le la	$3 a$
$4 a 4 b 4 c$	$5 a 5 b$	$\begin{array}{llll}6 a & 6 c & X\end{array}$	Oa $0 b$	$\begin{array}{lll}1 a & 1 b & 1 c\end{array}$	$2 b 2 c$	$3 b 3 c$	
$4 c \quad 4 a \quad 4 b$	$5 c \quad 5 a \quad 5 b$	$X 6 b$	Oc 0000	1c $1 a \quad 1 b$	$2 c \quad 2 a \quad 2 b$	c $3 a \quad 3 b$	$6 c$
$\begin{array}{llll}4 b & 4 c & 4 a\end{array}$	$5 b 5 c 5 a$	$6 b \times 6 c$	Ob Oc Oa	$1 b$ lc la	$2 b \quad 2 c \quad 2 a$	$3 b \quad 3 c \quad 3 a$	$6 a$
$6 a \quad 6 b$	$0 a \quad 0 b \quad 0 c$	$1 a, 1 b$	$2 a \quad 2 c \quad X$	$3 a \quad 3 b 3 c$	$4 a 4 b 4 c$	$\begin{array}{llll}5 a & 5 b & 5 c\end{array}$	
$6 c \quad 6 a \quad 6 b$	Oc $0 a b$	$1 c \quad 1 a \quad 1 b$	$\begin{array}{llll}X & 2 b & 2 a\end{array}$		$4 c \quad 4 a \quad 4 b$	$5 c \quad 5 a \quad 5 b$	$2 c$
$6 b 6 c \quad 6 a$	$0 b \quad 0 c \quad 0 a$	$1 b 1 c \quad 1 a$	$2 b \times 2 c$	$3 b \quad 3 c \quad 3 a$	$4 b \quad 4 c \quad 4 a$	$5 b$ 5c $5 a$	$2 a$
$1 a \quad 1 b$	$2 a \quad 2 b \quad 2 c$	$3 a \quad 3 b \quad 3 c$	$4 a 4 b$	$5 a$	$6 a$	$\begin{array}{llll}O a & 0 b & 0 c\end{array}$	
1c $1 a 1 b$	2c $2 a \quad 2 b$		$4 c \quad 4 a \quad 4 b$	$X \quad 5 b 5 a$	$6 c \quad 6 a \quad 6 b$	Oc 0 Oa 0 O	$5 c$
$1 b$ lc 1a	$2 b \quad 2 c \quad 2 a$	$3 b \quad 3 c \quad 3 a$	$4 b \quad 4 c \quad 4 a$	$5 b \quad X \quad 5 c$	$6 b \quad 6 c \quad 6 a$	$0 b$ Oc 0 Oz	$5 a$
$3 a 3 b a c$	$4 a 4 b$	$5 a \quad 5 b \quad 5 c$	$6 a 6 b$	Oa $0 b 0 c$	la lc $10 \times$	$\begin{array}{llll}2 a & 2 b & 2 c\end{array}$	
$3 c \quad 3 a \quad 3 b$	$4 c \quad 4 a 4 b$	$5 c \quad 5 a 5 b$	$6 c \quad 6 a \quad 6 b$	Oc Oa $0 b$	$\begin{array}{llll}X & 1 b & 1 a\end{array}$	$2 c \cdot 2 a r c$	
$3 b \quad 3 c \quad 3 a$	$4 b 4 c \quad 4 a$	$5 b \quad 5 c \quad 5 a$	$6 b \quad 6 c \quad 6 a$	$0 b$ Oc $0 a$	$1 b \times 1 c$	$2 b \quad 2 c \quad 2 a$	$1 a$
$5 a \quad 5 b 5 c$	$6 a 6 b$	$0 a \quad 0 b$	$1 a 1 b$	$2 a \quad 2 b$	$3 a \quad 3 b 3 c$	$4 a \quad 4 c \quad X$	
$5 c$	$6 c \quad 6 a \quad 6 b$	Oc 0 a 0 Ob	$1 c \quad 1 a \quad 1 b$	$2 c \quad 2 a \quad 2 b$	$3 c \quad 3 a \quad 3 b$	$X \quad 4 b 4 a$	4 c
$5 b 5 c \quad 5 a$	$6 b \quad 6 c \quad 6 a$	$0 b \quad 0 c \quad 0 a$	$1 b l c \quad 1 a$	$2 b \quad 2 c \quad 2 a$	$3 b \quad 3 c \quad 3 a$	$4 b \times 4 c$	$4 a$
Oc $0 a 0 b$	$3 c 3 a 3 b$	$6 c \quad 6 a .6 b$	$2 c \quad 2 a \quad 2 b$	$5 c \quad 5 a \quad 5 b$	$1 c \quad l a l b$	4c $4 a 4 b$	X

Fig. 2 (continued).
For $t=5$,

$$
\left.L_{1}=\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 & 0 \\
2 & 3 & 4 & 0 & 1 \\
3 & 4 & 0 & 1 & 2 \\
4 & 0 & 1 & 2 & 3
\end{array}\left|, L_{2}=\right| \begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
2 & 3 & 4 & 0 & 1 \\
4 & 0 & 1 & 2 & 3 \\
1 & 2 & 3 & 4 & 0 \\
3 & 4 & 0 & 1 & 2 \\
\hline
\end{array}, L_{-1}=\begin{array}{|lllll}
0 & 1 & 2 & 3 & 4 \\
4 & 0 & 1 & 2 & 3 \\
3 & 4 & 0 & 1 & 2 \\
2 & 3 & 4 & 0 & 1 \\
1 & 2 & 3 & 4 & 0
\end{array}\right]
$$

We construct a pair L_{1}^{*}, L_{2}^{*} of orthogonal Latin squares of order n. The symbols are to be $I a, I b, I c$, where I runs through the t symbols of L_{1} and L_{2}, and u additional symbols $X_{1}, X_{2}, \ldots, X_{u}$. Form L_{-1}^{\prime} by replacing u of the symbols of L_{-1} with X_{1}, \ldots, X_{u} and leaving the other cells blank. For $t=5, u=3$,

$$
L_{-1}^{\prime}=\left[\begin{array}{llllll}
X_{1} & X_{2} & X_{3} & & \\
& X_{1} & X_{2} & X_{3} & \\
& & X_{1} & X_{2} & X_{3} \\
X_{3} & & & X_{1} & X_{2} \\
X_{2} & X_{3} & & & & X_{1}
\end{array}\right]
$$

To effect the construction, we require the following "ingredients": Let U_{1} and U_{2} be two orthogonal Latin squares of order u on the symbols X_{1}, \ldots, X_{u}. Take two orthogonal squares of order 3 on the symbols a, b, c, say

$$
\left.A_{1}=\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array} \quad \text { and } \quad A_{2}=\begin{array}{lll}
a & b & c \\
c & a & b \\
b & c & a
\end{array}\right]
$$

Further, we need two orthogonal squares of order 4 on the symbols a, b, c, X, say

$$
\left.\left.B_{1}=\left\lvert\, \begin{array}{llll}
a & X & b & c \\
c & b & X & a \\
X & a & c & b \\
b & c & a & X
\end{array}\right.\right] \text { and } B_{2}=\left\lvert\, \begin{array}{llll}
a & c & X & b \\
X & b & a & c \\
b & X & c & a \\
c & a & b & X
\end{array}\right.\right]
$$

It is important here that the symbol X occurs in the lower right-hand corner of both squares.
L_{1}^{*} and L_{2}^{*} are now obtained as follows: The $n(=3 t+u)$ rows and columns are labelled by (i, k), $i=1,2, \ldots, t, k=1,2,3$, and (1), (2), $\ldots,(u)$. Place U_{i} in the $(u \times u)$-subsquare of L_{i}^{*} consisting of rows (1), $\ldots,(u)$ and columns (1), $\ldots,(u), i=1,2$. (Cf. Fig. 1, where we have used symbols X, Y, Z instead of X_{1}, X_{2}, X_{3}.) To complete L_{1}^{*}, for each (i, j), $i, j=$ $1,2, \ldots, t$, find the symbol I occurring in the (i, j) th cell of L_{1}. If the (i, j)-cell of L_{-1}^{\prime} is unoccupied, fill in the (3×3)-subsquare of L_{1}^{*} consisting of rows $(i, 1),(i, 2),(i, 3)$ and columns $(j, 1),(j, 2),(j, 3)$ with symbols $I a, I b, I c$ using A_{1} as a model, viz.

row	$(j, 1)$	$(j, 2)$	$(j, 3)$
$(i, 1)$	$I a$	$I b$	$I c$
$(i, 2)$	$I b$	$I c$	$I a$
$(i, 3)$	$I c$	$I a$	$I b$

If, however, the (i, j)-cell of L_{-1}^{\prime} contains a symbol X_{l}, fill in the (4×4) subsquare of L_{1}^{*} consisting of rows $(i, 1),(i, 2),(i, 3),(l)$ and columns $(j, 1),(j, 2),(j, 3),(l)$ (except for the cell in the (l) th row and (l) th column, which is already filled) with symbols $I a, I b, I c, X_{l}$ using B_{1} as a model, viz.

				(l)	
row	$(j, 1)$	$(j, 2)$	$(j, 3)$		$I c$
$(i, 1)$	$I a$	X_{l}	$I b$		$I a$
$(i, 2)$	$I c$	$I b$	X_{l}		$I b$
$(i, 3)$	X_{l}	$I a$	$I c$		
(l)	$I b$	$I c$	$I a$		

L_{2}^{*} is completed similarly, the only differences being that the symbol I is to be found by referring to L_{2} and A_{2}, B_{2} are to be used as the models.

It is easily checked directly that the resulting squares are orthogonal. The reader will be able to generalize to the construction analogous to the full statement of Theorem 2.3.

Fig. 3 shows a pair of orthogonal Latin squares of order 22 obtained from the construction of Theorem 2.4 with $m=3, t=5, u=3, v=4$. Compare Figs. 2 and 3 with the original constructions of [1,2] using Kirkman designs, a general construction for orders congruent to 10 modulo 12 (see [3]), and two pairs of order 22 obtained by Hedayat and Seiden [8].
4. $n^{1 / 17}$ squares

We introduce the notation of Buchstab [4]. Let x, y be positive real numbers. Let $p_{0}=2, p_{1}=3, p_{2}=5, p_{3}, \ldots, p_{r}$ be all the primes less than

$0 a$	$0 b$	$0 c$	$1 a$	$1 c$	A	$2 a$	B	$2 b$	$3 a$	$3 c$	C	$4 a$	$4 c$	D	$4 b$	$1 b$	$3 b$	Y	$2 c$	Z	X
$0 b$	$0 c$	$0 a$	A	$1 b$	Y	$2 c$	$2 b$	B	C	$3 b$	Z	D	$4 b$	X	$4 a$	$1 a$	$3 a$	$1 c$	$2 a$	$3 c$	$4 c$
$0 c$	$0 a$	$0 b$	Y	$1 a$	$1 c$	B	$2 a$	$2 c$	Z	$3 a$	$3 c$	X	$4 a$	$4 c$	D	A	C	$1 b$	$2 b$	$3 b$	$4 b$
$2 a$	$2 c$	D	$3 a$	$3 b$	$3 c$	$4 a$	$4 c$	A	$0 a$	$0 c$	B	$1 a$	C	$1 b$	$0 b$	$2 b$	$4 b$	Z	X	$1 c$	Y
D	$2 b$	Y	$3 b$	$3 c$	$3 a$	A	$4 b$	Z	B	$0 b$	X	$1 c$	$1 b$	C	$0 a$	$2 a$	$4 a$	$4 c$	$0 c$	$1 a$	$2 c$
Y	$2 a$	$2 c$	$3 c$	$3 a$	$3 b$	Z	$4 a$	$4 c$	X	$0 a$	$0 c$	C	$1 a$	$1 c$	B	D	A	$4 b$	$0 b$	$1 b$	$2 b$
$4 a$	C	$4 b$	$0 a$	$0 c$	D	$1 a$	X	$1 b$	$2 a$	A	$2 b$	$3 a$	$3 c$	B	$1 c$	$3 b$	$0 b$	$2 c$	Y	$4 c$	Z
$4 c$	$4 b$	C	D	$0 b$	Z	$1 c$	$1 b$	X	$2 c$	$2 b$	A	B	$3 b$	Y	$1 a$	$3 a$	$0 a$	$2 a$	$3 c$	$4 a$	$0 c$
C	$4 a$	$4 c$	Z	$0 a$	$0 c$	X	$1 a$	$1 c$	A	$2 a$	$2 c$	Y	$3 a$	$3 c$	$1 b$	B	D	$2 b$	$3 b$	$4 b$	$0 b$
$1 a$	$1 c$	B	$2 a$	$2 c$	C	$3 a$	D	$3 b$	$4 a$	Y	$4 b$	$0 a$	A	$0 b$	$2 b$	$4 c$	$1 b$	$0 c$	Z	X	$3 c$
B	$1 b$	Z	C	$2 b$	X	$3 c$	$3 b$	D	$4 c$	$4 b$	Y	$0 c$	$0 b$	A	$2 a$	$4 a$	$1 a$	$0 a$	$1 c$	$2 c$	$3 a$
Z	$1 a$	$1 c$	X	$2 a$	$2 c$	D	$3 a$	$3 c$	Y	$4 a$	$4 c$	A	$0 a$	$0 c$	C	$4 b$	B	$0 b$	$1 b$	$2 b$	$3 b$
$3 a$	$3 c$	A	$4 a$	B	$4 b$	$0 a$	$0 c$	C	$1 a$	D	$1 b$	$2 a$	Z	$2 b$	$3 b$	$0 b$	$2 c$	X	$4 c$	Y	$1 c$
A	$3 b$	X	$4 c$	$4 b$	B	C	$0 b$	Y	$1 c$	$1 b$	D	$2 c$	$2 b$	Z	$3 a$	$0 a$	$2 a$	$3 c$	$4 a$	$0 c$	$1 a$
X	$3 a$	$3 c$	B	$4 a$	$4 c$	Y	$0 a$	$0 c$	D	$1 a$	$1 c$	Z	$2 a$	$2 c$	A	C	$2 b$	$3 b$	$4 b$	$0 b$	$1 b$
$3 c$	A	$3 b$	$2 c$	C	$2 b$	$1 b$	$1 c$	$1 a$	$0 c$	B	$0 b$	$4 c$	D	$4 b$	X	Y	Z	$3 a$	$0 a$	$2 a$	$4 a$
$2 c$	D	$2 b$	$1 c$	A	$1 b$	$0 c$	C	$0 b$	$4 b$	$4 c$	$4 a$	$3 c$	B	$3 b$	Y	Z	X	$1 a$	$3 a$	$0 a$	$2 a$
$1 c$	B	$1 b$	$0 c$	D	$0 b$	$4 c$	A	$4 b$	$3 c$	C	$3 b$	$2 b$	$2 c$	$2 a$	Z	X	Y	$4 a$	$1 a$	$3 a$	$0 a$
$3 b$	X	$3 a$	$1 b$	Y	$1 a$	$4 b$	Z	$4 a$	$2 b$	$2 c$	$2 a$	$0 b$	$0 c$	$0 a$	$3 c$	$1 c$	$4 c$	A	D	B	C
$1 b$	Z	$1 a$	$4 b$	$4 c$	$4 a$	$2 b$	$2 c$	$2 a$	$0 b$	X	$0 a$	$3 b$	Y	$3 a$	$0 c$	$3 c$	$1 c$	C	B	D	A
$4 b$	$4 c$	$4 a$	$2 b$	X	$2 a$	$0 b$	Y	$0 a$	$3 b$	Z	$3 a$	$1 b$	$1 c$	$1 a$	$2 c$	$0 c$	$3 c$	D	A	C	B
$2 b$	Y	$2 a$	$0 b$	Z	$0 a$	$3 b$	$3 c$	$3 a$	$1 b$	$1 c$	$1 a$	$4 b$	X	$4 a$	$4 c$	$2 c$	$0 c$	B	C	A	D

Fig. 3.
y and let ω denote the choice of integers $a_{0}, a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{r}$. Then $P_{\omega}(x ; y)$ is to denote the number of non-negative integers not exceeding x which do not lie in any of the arithmetic progressions $a_{0}\left(\bmod p_{0}\right)$, $a_{i}\left(\bmod p_{i}\right), b_{i}\left(\bmod p_{i}\right)$. Buchstab proves

$$
P_{\omega}\left(x ; x^{1 / 5}\right)>\lambda(5) c x /(\log x)^{2}+\mathrm{O}\left(x /(\log x)^{3}\right),
$$

independent of the choice of ω. Here c is a constant $0.4161 \ldots$ and $\lambda(5)>0.96$.

As an immediate consequence, $P_{\omega}\left(x ; x^{1 / 5}\right) \geq 2$ for sufficiently large x, or equivalently,

Lemma 4.1. There is a constant n_{0} such that for $n>n_{0}$, we have

$$
P_{\omega}\left(n^{5 / 17} ; n^{1 / 17}\right) \geq 2
$$

| $0 a$ | $0 b$ | $0 c$ | $1 a$ | Y | $1 b$ | $2 a$ | $2 c$ | B | $3 a$ | Z | $3 b$ | $4 a$ | X | $4 b$ | D | A | C | $1 c$ | $2 b$ | $3 c$ | $4 c$ |
| :--- |
| $0 c$ | $0 a$ | $0 b$ | Y | $1 b$ | A | B | $2 b$ | $2 a$ | Z | $3 b$ | C | X | $4 b$ | D | $4 c$ | $1 c$ | $3 c$ | $1 a$ | $2 c$ | $3 a$ | $4 a$ |
| $0 b$ | $0 c$ | $0 a$ | $1 b$ | A | $1 c$ | $2 b$ | B | $2 c$ | $3 b$ | C | $3 c$ | $4 b$ | D | $4 c$ | $4 a$ | $1 a$ | $3 a$ | Y | $2 a$ | Z | X |
| $3 a$ | Y | $3 b$ | $4 a$ | $4 b$ | $4 c$ | $0 a$ | Z | $0 b$ | $1 a$ | X | $1 b$ | $2 a$ | $2 c$ | C | B | D | A | $0 c$ | $1 c$ | $2 b$ | $3 c$ |
| Y | $3 b$ | D | $4 c$ | $4 a$ | $4 b$ | Z | $0 b$ | A | X | $1 b$ | B | C | $2 b$ | $2 a$ | $1 c$ | $3 c$ | $0 c$ | $0 a$ | $1 a$ | $2 c$ | $3 a$ |
| $3 b$ | D | $3 c$ | $4 b$ | $4 c$ | $4 a$ | $0 b$ | A | $0 c$ | $1 b$ | B | $1 c$ | $2 b$ | C | $2 c$ | $1 a$ | $3 a$ | $0 a$ | Z | X | $2 a$ | Y |
| $1 a$ | $1 c$ | C | $2 a$ | Z | $2 b$ | $3 a$ | $3 c$ | X | $4 a$ | $4 c$ | A | $0 a$ | Y | $0 b$ | $3 b$ | B | D | $4 b$ | $0 c$ | $1 b$ | $2 c$ |
| C | $1 b$ | $1 a$ | Z | $2 b$ | D | X | $3 b$ | $3 a$ | A | $4 b$ | $4 a$ | Y | $0 b$ | B | $3 c$ | $0 c$ | $2 c$ | $4 c$ | $0 a$ | $1 c$ | $2 a$ |
| $1 b$ | C | $1 c$ | $2 b$ | D | $2 c$ | $3 b$ | X | $3 c$ | $4 b$ | A | $4 c$ | $0 b$ | B | $0 c$ | $3 a$ | $0 a$ | $2 a$ | $4 a$ | Y | $1 a$ | Z |
| $4 a$ | Z | $4 b$ | $0 a$ | X | $0 b$ | $1 a$ | $1 c$ | D | $2 a$ | $2 c$ | Y | $3 a$ | $3 c$ | A | C | $2 b$ | B | $3 b$ | $4 c$ | $0 c$ | $1 b$ |
| Z | $4 b$ | B | X | $0 b$ | C | D | $1 b$ | $1 a$ | Y | $2 b$ | $2 a$ | A | $3 b$ | $3 a$ | $0 c$ | $2 c$ | $4 c$ | $3 c$ | $4 a$ | $0 a$ | $1 c$ |
| $4 b$ | B | $4 c$ | $0 b$ | C | $0 c$ | $1 b$ | D | $1 c$ | $2 b$ | Y | $2 c$ | $3 b$ | A | $3 c$ | $0 a$ | $2 a$ | $4 a$ | $3 a$ | Z | X | $1 a$ |
| $2 a$ | X | $2 b$ | $3 a$ | $3 c$ | B | $4 a$ | Y | $4 b$ | $0 a$ | $0 c$ | D | $1 a$ | $1 c$ | Z | A | C | $1 b$ | $2 c$ | $3 b$ | $4 c$ | $0 b$ |
| X | $2 b$ | A | B | $3 b$ | $3 a$ | Y | $4 b$ | C | D | $0 b$ | $0 a$ | Z | $1 b$ | $1 a$ | $2 c$ | $4 c$ | $1 c$ | $2 a$ | $3 c$ | $4 a$ | $0 c$ |
| $2 b$ | A | $2 c$ | $3 b$ | B | $3 c$ | $4 b$ | C | $4 c$ | $0 b$ | D | $0 c$ | $1 b$ | Z | $1 c$ | $2 a$ | $4 a$ | $1 a$ | X | $3 a$ | Y | $0 a$ |
| A | $2 c$ | $2 a$ | C | $0 c$ | $0 a$ | $3 c$ | $3 a$ | $3 b$ | B | $1 c$ | $1 a$ | D | $4 c$ | $4 a$ | X | Y | Z | $2 b$ | $1 b$ | $0 b$ | $4 b$ |
| D | $3 c$ | $3 a$ | A | $1 c$ | $1 a$ | C | $4 c$ | $4 a$ | $2 c$ | $2 a$ | $2 b$ | B | $0 c$ | $0 a$ | Z | X | Y | $1 b$ | $0 b$ | $4 b$ | $3 b$ |
| B | $4 c$ | $4 a$ | D | $2 c$ | $2 a$ | A | $0 c$ | $0 a$ | C | $3 c$ | $3 a$ | $1 c$ | $1 a$ | $1 b$ | Y | Z | X | $0 b$ | $4 b$ | $3 b$ | $2 b$ |
| $2 c$ | $2 a$ | X | $1 c$ | $1 a$ | Y | $0 c$ | $0 a$ | Z | $4 c$ | $4 a$ | $4 b$ | $3 c$ | $3 a$ | $3 b$ | $2 b$ | $1 b$ | $0 b$ | A | C | D | B |
| $4 c$ | $4 a$ | Z | $3 c$ | $3 a$ | $3 b$ | $2 c$ | $2 a$ | $2 b$ | $1 c$ | $1 a$ | X | $0 c$ | $0 a$ | Y | $1 b$ | $0 b$ | $4 b$ | D | B | A | C |
| $1 c$ | $1 a$ | $1 b$ | $0 c$ | $0 a$ | X | $4 c$ | $4 a$ | Y | $3 c$ | $3 a$ | Z | $2 c$ | $2 a$ | $2 b$ | $0 b$ | $4 b$ | $3 b$ | B | D | C | A |
| $3 c$ | $3 a$ | Y | $2 c$ | $2 a$ | Z | $1 c$ | $1 a$ | $1 b$ | $0 c$ | $0 a$ | $0 b$ | $4 c$ | $4 a$ | X | $4 b$ | $3 b$ | $2 b$ | C | A | B | D |

Fig. 3 (continued).

Theorem 4.2. For $n>n_{0}, N(n) \geq n^{1 / 17}-2$.
Proof. Let $n>n_{0}$ be given. Choose an integer l such that $2^{l}<n^{1 / 17}-1$ $\leq 2^{l+1}$. By Lemma 4.1, we may select an integer s satisfying

$$
\begin{array}{ll}
0 \leq s \leq n^{5 / 17}, & \\
s \equiv 0(\bmod 2), & \\
s \neq 0\left(\bmod p_{i}\right), & 1 \leq i \leq r, \\
2^{l} s \neq(-1)^{n}\left(\bmod p_{i}\right), & 1 \leq i \leq r,
\end{array}
$$

where $p_{1}, p_{2}, \ldots, p_{r}$ are all the odd primes less than $n^{1 / 17}$. Define m by

$$
m= \begin{cases}2^{l} s-1 & \text { if } n \text { is even } \\ 2^{l} s & \text { if } n \text { is odd }\end{cases}
$$

No prime divisors of $2^{l} s-(-1)^{n}$ are less than $n^{1 / 17} ; 2^{l} s$ is divisible by 2^{1+1} and no odd primes less than $n^{1 / 17}$. Thus by Theorem 1.4,

$$
\begin{equation*}
N(m) \geq n^{1 / 17}-2 \tag{1}
\end{equation*}
$$

(2) $\quad N(m+1) \geq n^{1 / 17}-2$.

Note that

$$
\begin{equation*}
m+1 \leq n^{6 / 17} \tag{3}
\end{equation*}
$$

Again by Lemma 4.1, select an integer $t^{\prime}, 0<t^{\prime} \leq n^{5 / 17}$, such that, with $t=[n /(m+1)]+t^{\prime}$, we have

$$
\begin{aligned}
t & \equiv 1(\bmod 2), & & \\
t & \not \equiv 0\left(\bmod p_{i}\right), & & 1 \leq i \leq r, \\
m t & \not \equiv n\left(\bmod p_{i}\right), & & 1 \leq i \leq r .
\end{aligned}
$$

(No prime p_{i} divides m, so this last incongruence is equivalent to an incongruence of the form $t \not \equiv n^{\prime}\left(\bmod p_{i}\right)$.) Note that $m \neq n(\bmod 2)$, so we also have $m t \not \equiv n(\bmod 2)$. Put $u=n-m t$, so that $n=m t+u$. By Theorem 1.4,

$$
\begin{equation*}
N(t) \geq n^{1 / 17}-1 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
N(u) \geq n^{1 / 17}-1 \tag{5}
\end{equation*}
$$

By our choice of $t^{\prime}, t>n /(m+1)$ and $t \leq t^{\prime}+n /(m+1) \leq n^{5 / 17}+$ $n /(m+1)=n / m+\left(n^{5 / 17}-n / m(m+1)\right)<n / m$ because of the inequality (3). Equivalently,

$$
\begin{equation*}
0<u<t . \tag{6}
\end{equation*}
$$

In view of the inequalities (1), (2), (4), (5), (6), and Theorem 2.3, we have $N(n)=N(m t+u) \geq n^{1 / 17}-2$.

Remark 4.3. Using more of the power of Buchstab's result, the unsightly " -2 " can be eliminated in the statement of Theorem 4.2.

Table 2

w	u_{w}	v_{w}	w	u_{w}	v_{w}	w	u_{w}	v_{w}
7	7	0	31	23	8	54	27	27
8	8	0	32	16	16	55	32	23
9	9	0	33	17	16	56	29	27
10	9	1	34	17	17	57	32	25
11	11	0	35	19	16	58	29	29
12	11	1	36	19	17	59	32	27
13	13	0	37	29	8	60	31	29
14	7	7	38	19	19	61	32	29
15	8	7	39	23	16	62	31	31
16	8	8	40	23	17	63	32	31
17	9	8	41	25	16	64	32	32
18	9	9	42	23	19	65	49	16
19	11	8	43	27	16	66	37	29
20	11	9	44	25	19	67	56	11
21	13	8	45	29	16	68	37	31
22	11	11	46	23	23	69	37	32
23	16	7	47	31	16	70	41	29
24	13	11	48	25	23	71	63	8
25	16	9	49	32	17	72	41	31
26	13	13	50	25	25	73	41	32
27	16	11	51	32	19	74	37	37
28	17	11	52	27	25	75	43	32
29	16	13	53	37	16	76	47	29
30	17	13						

5. Six squares

The three consecutive integers $7,8,9$ are prime powers. We exploit this fact here by applying Theorems 2.4 and 2.5 with $m=7$.

Theorem 5.1. $N(n) \geq 6$ whenever $n>90$.

We begin with two lemmas.
Lemma 5.2. For any integer r, at least one of the numbers $r, r+1$, $r+2, \ldots, r+9$ is a unit modulo $210=2 \cdot 3 \cdot 5 \cdot 7$.

Proof. Let r^{\prime} be the odd element of $\{r, r+1\}$. Of the integers $r^{\prime}, r^{\prime}+2$, $r^{\prime}+4, r^{\prime}+6, r^{\prime}+8$, at most two are divisible by 3 , at most one by 5 , and at most one by 7 ; hence at least one is divisible by neither $3,5,7$, nor, of course, 2.

Table 3

$455 \leq n \leq 516$	Lemma 5.3:	$t=64,7 \leq w \leq 68$.
$420 \leq n \leq 454$	Lemma 5.3:	$t=59,7 \leq w \leq 41$.
$378 \leq n \leq 419$	Lemma 5.3:	$t=53,7 \leq w \leq 48$.
$350 \leq n \leq 377$	Lemma 5.3:	$t=49,7 \leq w \leq 34$.
$308 \leq n \leq 349$	Lemma 5.3:	$t=43,7 \leq w \leq 48$.
$266 \leq n \leq 307$	Lemma 5.3:	$t=37,7 \leq w \leq 48$.
$224 \leq n \leq 265$	Lemma 5.3:	$t=31,7 \leq w \leq 48$.
$196 \leq n \leq 223$	Lemma 5.3:	$t=27,7 \leq w \leq 34$.
$168 \leq n \leq 195$	Lemma 5.3:	$t=23,7 \leq w \leq 34$.
$164 \leq n \leq 167$	Theorem 2.5:	$m=7, t=23,3 \leq l \leq 6$.
$140 \leq n \leq 163$	Lemma 5.3:	$t=19, \quad 7 \leq w \leq 30$.
$119 \leq n \leq 139$	Lemma 5.3:	$t=16,7 \leq w \leq 27$.
$114 \leq n \leq 118$	Theorem 2.5:	$m=7, t=16,2 \leq l \leq 6$.
$98 \leq n \leq 113$	Lemma 5.3:	$t=13,7 \leq w \leq 22$
$91 \leq n \leq 97$	Lemma 5.3:	$t=11,14 \leq w \leq 20$.
$84 \leq n \leq 89$	Lemma 5.3:	$t=11,7 \leq w \leq 12$.
$n=83$	Theorem 1.4.	
$77 \leq n \leq 81$	Theorem 2.5:	$t=11, m=7,0 \leq l \leq 4$.

For integers $w, 7 \leq w \leq 76$, define u_{w} and v_{w} as in Table 2. Note that for each $w, 7 \leq w \leq 76$, we have $w=u_{w}+v_{w}, 0 \leq u_{w}, v_{w} \leq 63$, and $N\left(u_{w}\right), N\left(v_{w}\right) \geq 6$ by Theorem 1.4.

Lemma 5.3. If $7 \leq w \leq 76$ and $u_{w}, v_{w} \leq t$, then

$$
N(7 t+w) \geq \min \{6, N(t)-2\} .
$$

Proof. Apply Theorem 2.4 with $m=7, u=u_{w}, v=v_{w}$.
Proof of Theorem 5.1. We first show that $N(n) \geq 6$ for $n \geq 517$. Given $n \geq 517$, by Lemma 5.2 , there may be found an integer t, relatively prime to 210 , such that $\left[\frac{1}{7} n\right]-10 \leq t \leq\left[\frac{1}{7} n\right]-1$. Then $n-76 \leq 7 t \leq n-7$, so with $w=n-7 t$, we have $7 \leq w \leq 76$. Also, $t \geq \frac{1}{7}(n-76) \geq 63$.
$N(t) \geq 10$ by Theorem 1.4, so Lemma 5.3 gives $N(n)=N(7 t+w) \geq 6$.
We complete the proof that $N(n) \geq 6$ for $90<n<517$ with Table 3 .
The table extends far enough to prove $N(n) \geq 6$ for $n>76, n \neq 82,90$.
Hanani [7] denotes by n_{r} the smallest integer such that $N(n) \geq r$ for every $n>n_{r}$. We have proven $n_{6} \leq 90$.

Hanani shows that $n_{5} \leq 62$. In view of this, we can say $n_{4} \leq 60$ since $N(62) \geq 4$ by Theorem 2.4 , with $t=8, m=7, u=5, v=1$ and $N(61)=$
60. Hanani's result that $n_{3} \leq 51$ can be improved to $n_{3} \leq 46$ since $N(51) \geq 3$ (Theorem 2.3: $m=4, t=11, u=7$), $N(50) \geq 5$ (Theorem 2.3: $m=t=7, u=1$), $N(49)=48, N(48) \geq 3$ (Theorem 2.3: $m=4$. $t=11, u=4$) and $N(47)=46$. Of course, $n_{2}=6$ (see [3.15]).

Acknowledgment

The author wishes to thank D.K. Ray-Chaudhuri for reading this article and making some suggestions.

References

[1] R.C. Bose and S.S. Shrikhande, On the falsity of Euler's conjecture about the non-existence of two orthogonal Latin squares of order $4 t+2$, Proc. Natl. Acad. Sci. U.S.A. 45 (1959) 734-737.
[2] R.C. Bose and S.S. Shrikhande, On the construction of sets of mutually orthogonal Latin squares and the falsity of a conjecture of Euler, Trans. Am. Math. Soc. 95 (1960) 191 209.
[3] R.C. Bose, S.S. Shrikhande and E.T. Parker, Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler's conjecture, Can. J. Math. 12 (1960) 189-203.
[4] A.A. Buchstab, Sur la decomposition des nombres paires ..., C. R. (Doklady) Acad. Sci. URSS 29 (8/9) (1940) 544-548.
[5] S. Chowla, P. Erdös and E.G. Straus, On the maximal number of pairwise orthogonal Latin squares of a given order, Can. J. Math. 12 (1960) 204-208.
[6] M. Hall, Jr., Combinatorial Theory (Blaisdell, Waltham, Mass., 1967).
[7] H. Hanani, On the number of orthogonal Latin squares, J. Combin. Theory 8 (1970) 247271.
[8] A. Hedayat and E. Seiden, On a method of sum composition of orthogonal Latin squares, Dept. of Statistics and Probability, Michigen State Univ. RM-238, AH-2, ES-12 (1969).
$19]$ H.F. MacNeish, Euler squares, Ann. Math. 23 (1922) 221-227.
[10] H.B. Mann, The construction of orthogonal Latin squares, Ann. Math. Statist. 13 (1942) 418-423.
[11] E.T. Parker Construction of some sets of mutually orthogonal Latin squares, Proc. Am. Math. Soc. 10 (-1959) 946-949.
[12] E.T. Parker, Orthogonal Latin squares, Proc. Natl. Acad. Sci. U.S.A. 45 (1959) 859-862.
[13] K. Rogers, A note on orthogonal Latin squares, Pacific J. Math. 14 (1964) 1395-1397.
[14] H.J. Ryser, Combinatorial Mathematics, Carus Math. Monograph 14 (Math. Assoc. Am.. Washington, D.C., 1963).
[15] G. Tarry, Le problème des 36 officiers, C. R. Assoc. Franc. Av. Sci. 1 (1900) 122 123; 2 (1901) 170-203.

[^0]: * This research was supported in part by NSF Research Grants GP-9375 and GP-28943.

