Some Results on Construction of Orthogonal Latin Squares by the Method of Sum Composition

Felipe Ruiz
Public Health Department, State of Michigan, Michigan 48914

AND
Esther Seiden
Michigan State University, East Lansing, Michigan 48823
Communicated by Marshall Hall, Jr.

Received July 3, 1972

A method of sum composition for construction of orthogona Latin squares was introduced by A. Hedayat and E. Seiden [1]. In this paper we exhibit procedures for constructing a pair of orthogonal Latin squares of size $p^{\alpha}+4$ for primes of the form $4 m+1$ or $p \equiv 1,2,4 \bmod 7$. We also show that for any $p>2 n$ and n even one can construct an orthogonal pair of Latin squares of size $p^{\alpha}+n$ using the method of sum composition. We observe that the restriction $x y=1$ used by Hedayat and Seiden is sometimes necessary.

1. Introduction

Definition. A transversal of a Latin square of order n is a collection of n cells whose entries exhaust the set of distinct elements of the Latin square and such that no two cells belong to the same row or the same column.

Two transversals are called parallel if they have no elements in common.
Hedayat and Seiden [1] introduced the method of sum composition of Latin squares which can be described as follows: Let L_{1}, L_{2} be two Latin squares of order n_{1} and n_{2} on disjoint sets of elements $\left\{a_{1}, a_{2}, \ldots, a_{n_{1}}\right\}$ and $\left\{b_{1}, b_{2}, \ldots, b_{n_{2}}\right\}, n_{1} \geqslant n_{2}$, and let L_{1} have at least n_{2} parallel transversals. Select arbitrarily n_{2} parallel transversals from L_{1} and name them $1,2, \ldots, n_{2} ;$ in a $n_{1}+n_{2}$ size square fill the $n_{1} \times n_{1}$ upper left corner with L_{1} and the $n_{2} \times n_{2}$ lower right corner with L_{2}. Fill the cells ($i, n_{1}+k$), $k=1,2, \ldots, n_{2}$, with that element of transversal k which appears in
row $i, i=1,2, \ldots, n_{1}$; similarly fill the cells $\left(n_{1}+k, j\right), k=1,2, \ldots, n_{2}$, with that element of transversal k which appears in column $j, j=1,2, \ldots, n_{1}$. Finally substitute b_{k} for the n_{1} elements of transversal $k, k=1,2, \ldots, n_{2}$.
The resulting $n_{1}+n_{2}$ square matrix L is easily seen to be a Latin square.
The procedure just described of filling the first n_{1} entries of column (row) $n_{1}+k$ is called horizontal (vertical) projection of transversal k on column (row) $n_{1}+k$.

Henceforth we shall use the symbol $O(n, 2)$ for a set of two orthogonal Latin squares of order n.
Under certain conditions it is possible to use the method of sum composition to obtain $O(n, 2)$ sets from known $O\left(n_{1}, 2\right)$ and $O\left(n_{2}, 2\right)$ sets, $n=n_{1}+n_{2}$.

Let $\left\{A_{1}, A_{2}\right\}$ be a $O\left(n_{1}, 2\right)$ set on the set of elements of $A=\left\{a_{1}, a_{2}, \ldots, a_{n_{1}}\right\}$ with at least $2 n_{2}$ common parallel transversals, and $\left\{B_{1}, B_{2}\right\}$ a $O\left(n_{2}, 2\right)$ set on the set of elements of $B=\left\{b_{1}, b_{2}, \ldots, b_{n_{2}}\right\}, A \cap B=\varnothing$.
Select $2 n_{2}$ common parallel transversals from the first set and use half of them to compose A_{1} and B_{1} to obtain a Latin square I_{1} of order $n_{1}+n_{2}=n$; use the remainder n_{2} transversals to compose A_{2} and B_{2} to obtain a Latin square L_{2} of order n.
It is obvious from the construction that upon superimposition of L_{1} on L_{2} the elements of $A \times B$ and $B \times A$ will appear along the $2 n_{2}$ transversals in the $n_{1} \times n_{1}$ upper left corner; the elements of $B \times B$ will appear in the $n_{2} \times n_{2}$ lower right corner, since B_{1} and B_{2} are orthogonal. However some of the elements of $A \times A$ will be missing, but by properly choosing the $2 n_{2}$ transversals and the order of projection we may achieve that the pairs $\left(a_{i}, a_{k}\right)$ lost by substituting elements of B in transversals of A_{1} and A_{2} be recovered on projection.
In conclusion we wish to remark that introducing the symbol μ for $(x-1) /(y-1)$ reduced the expression for K_{h} and K_{v} to a form analogous to that obtained by Hedayat and Seiden due to the assumption $x y=1$. This helped to realize that this assumption is in fact necessary in case $\sum s_{i} \neq \sum t_{i}$. It also helped to find procedures for construction of a pair of orthogonal Latin squares of size $p^{\alpha}+4$ for primes of the form $4 m+1$ or congruent to $1,2,4 \bmod 7$ and of size $p^{\alpha}+n$ for any $p>2 n, n$ even in case the assumption $x y=1$ does not hold.

2. Construction of Some $O(n, 2)$ Sets by the Method of Sum Composition

Let $n_{1}=p^{\alpha}$ be a power of a prime p and denote by $A(x)$ a Latin square of order n_{1} whose entry in the (i, j) cell is $i x+j \in \operatorname{GF}\left(n_{1}\right), x \neq 0$. Consider
two orthogonal Latin squares $A_{1}=A(x), A_{2}=A(y), x, y \in \operatorname{GF}\left(n_{1}\right)$, $x \neq y,\{x, y\} \cap\{0,1\}=\varnothing$. We can exhibit n_{1} common transversals of A_{1} and A_{2} using the square $A(1)$ whose entries in the cell (i, j) are $i+j$. Let us name the transversal for which $i+j=k$ for any $k \in \operatorname{GF}\left(n_{1}\right)$ the transversal k. Since $n_{1} \geqslant 2 n_{2}$ we can choose $2 n_{2}$ parallel transversals and partition them into two sets each of size n_{2}. Let $S=\left\{s_{1}, s_{2}, \ldots, s_{n_{2}}\right\}$ and $T=\left\{t_{1}, t_{2}, \ldots, t_{n_{2}}\right\}$ be two sets of transversals used in the projection process to obtain L_{1} and L_{2}, respectively, as described previously. The problem is to choose these transversals in such a way that the $2 n_{1} n_{2}$ pairs lost by replacing the entries of the corresponding cells by the elements of the Latin squares of order n_{2} are recovered by the projection process. The missing pairs are of the form ($i x+j, i y+j$), $i+j \in S \cup T$, which correspond to the entries in the $2 n_{2}$ transversals used in the compositions.

If transversal s of $A(x)$ is projected horizontally on the same column as transversal t of $A(y)$, on superimposition we will obtain along that column the n_{1} pairs

$$
(a x+b, a y+c), \quad a+b=s, \quad a+c=t
$$

If those pairs are to be some of the lost ones we must have:

$$
\begin{aligned}
& i x+j=a x+b, \quad a+b=s \in S, \quad a+c=t \in T \\
& i y+j=a y+c, \quad i+j=k \in S \cup T
\end{aligned}
$$

or

$$
\begin{aligned}
& i(x-1)+k=a(x-1)+s \\
& i(y-1)+k=a(y-1)+t
\end{aligned}
$$

Eliminating i we obtain

$$
k(y-x)=s(y-1)-t(x-1)
$$

or

$$
k(y-x)=s(y-x)+(s-t)(x-1)
$$

Making $(x-1) /(y-x)=\mu$ we finally get

$$
k=(1+\mu) s-\mu t
$$

that is, by projecting horizontally transversal s of $A(x)$ on the same column as transversal t of $A(y)$ we obtain on superimposition the n_{1} pairs

$$
(i x+j, i y+j), \quad i+j=(1+\mu) s-\mu t .
$$

Similarly, if transversals s and t of $A(x), A(y)$ are projected vertically on the same row, we will obtain along that row the n_{1} pairs

$$
(a x+b, c y+b), \quad a+b=s, \quad c+b=t .
$$

If those pairs are to be some of the lost ones we must have

$$
\begin{aligned}
& i x+j=a x+b, \quad a+b=s \in S, \quad c+b=t \in T \\
& i y+j=c x+b, \quad i+j=k \in S \cup T
\end{aligned}
$$

or

$$
\begin{aligned}
& i(x-1)+k=a(x-1)+s \\
& i(y-1)+k=c(y-1)+t
\end{aligned}
$$

Eliminating i we obtain

$$
k(y-x)=(x-1)(y-1)(a-c)+s(y-1)-t(x-1) .
$$

Since $a-c=s-t$, we get

$$
k(y-x)=s(y-x)+(s-t)(x-1) y
$$

and finally

$$
k=(1+y \mu) s-y \mu t
$$

that is, by projecting vertically transversal s of $A(x)$ on the same row as transversal t of $A(y)$ we obtain on superimposition the n_{1} pairs

$$
(i x+j, i y+j), \quad i+j=(1+y \mu) s-y \mu t
$$

From now on we will use the following functions on $S \times T$:

$$
\begin{aligned}
& K_{h}(s, t)=(1+\mu) s-\mu t \\
& K_{v}(s, t)=(1+y \mu) s-y \mu t .
\end{aligned}
$$

Theorem 1. If p is a prime of the form $p=4 m+1, m>1$, then it is possible to compose $O\left(p^{\alpha}, 2\right)$ based on $\operatorname{GF}\left(p^{\alpha}\right)$ with $O(4,2)$ to obtain a $O\left(p^{\alpha}+4,2\right)$.

Proof. Consider the pattern

$$
\begin{array}{lll}
s_{i+1}=K_{h}\left(s_{i}, t_{i}\right), & i=1,2,3, & s_{1}=K_{h}\left(s_{4}, t_{4}\right) \\
t_{i-1}=K_{v}\left(s_{i}, t_{i}\right), & i=2,3,4, & t_{4}=K_{v}\left(s_{1}, t_{1}\right)
\end{array}
$$

that is

$$
\begin{array}{ll}
s_{2}=(1+\mu) s_{1}-\mu t_{1}, & t_{4}=(1+y \mu) s_{1}-y \mu t_{1}, \\
s_{3}=(1+\mu) s_{2}-\mu t_{2}, & t_{1}=(1+y \mu) s_{2}-y \mu t_{2} \\
s_{4}=(1+\mu) s_{3}-\mu t_{3}, & t_{2}=(1+y \mu) s_{3}-y \mu t_{3} \\
s_{1}=(1+\mu) s_{4}-\mu t_{4}, & t_{3}=(1+y \mu) s_{4}-y \mu t_{4} .
\end{array}
$$

Solving this linear system in terms of s_{1} and t_{1}, we obtain as a solution

$$
\begin{aligned}
s_{2}= & (1+\mu) s_{1}-\mu t_{1}, \\
s_{3}= & (1+\mu)\left[1+\mu-\frac{1}{y}(1+y \mu)\right] s_{1} \\
& -\left[\mu(1-\mu)-\frac{1}{y}[\mu(1+y \mu)+1]\right] t_{1}, \\
s_{4}= & {[\mu(1+y \mu)+1] \frac{1}{1+\mu} s_{1}-\frac{y \mu^{2}}{1+\mu} t_{1}, } \\
t_{2}= & {\left[(1+y \mu)(1+\mu) \frac{1}{y \mu}\right] s_{1}-[\mu(1+y \mu)+1] \frac{1}{y \mu} t_{1}, } \\
t_{3}= & {[(1+y \mu) 1+\mu[\mu(1+y \mu)+1]-y \mu(1+y \mu)] s_{1} } \\
& -\left[(1+y \mu) y \mu^{2} \frac{1}{1+\mu}-y^{2} \mu^{2}\right] t_{1}, \\
t_{4}= & (1+y \mu) s_{1}-y \mu t_{1} .
\end{aligned}
$$

It is easy to check that the requirement that the solutions exhaust the set $S \cup T$, equivalently that all the lost $2 n_{1} n_{2}$ be recovered by the rows and columns of the projections, reduces the rank of the system to at most four. It is seen that if $s_{1} \neq t_{1}$ then the following equation must hold:

$$
(1+\mu)^{3}-(1+\mu)^{2} y \mu+(1+\mu) y^{2} \mu^{2}-y^{3} \mu^{3}=0 .
$$

Dividing by $y^{3} \mu^{3}$ and making $(1+\mu) / y \mu=\lambda$ we obtain

$$
\lambda^{3}-\lambda^{2}+\lambda=1=0 \quad \text { or } \quad(\lambda-1)\left(\lambda^{2}+1\right)=0
$$

$\lambda=1$ would give $s_{3}=s_{1}$, therefore we must have $\lambda^{2}+1=0$, that is, -1 has to be a quadratic residue in $\operatorname{GF}\left(p^{\alpha}\right)$, which is possible only if p is of the form $p=4 m+1$.

Calling $i^{2}=-1$, the condition becomes

$$
y(1 \pm i(1-x))=1
$$

which is satisfied by the pair $x=2, y=(1 \pm i) / 2$. Using $s_{1}=0, t_{1}=1$ we obtain as solution of the system

$$
\begin{array}{ll}
s_{2}=\frac{3 \pm i}{5}, & t_{2}=\frac{3 \mp 4 i}{5} \\
s_{3}=\frac{4 \mp 2 i}{5}, & t_{3}=\frac{-1 \mp 2 i}{5} \\
s_{4}=\frac{1 \mp 3 i}{5}, & t_{4}=\frac{1 \pm 2 i}{5}
\end{array}
$$

To conclude the proof of the theorem we have to show that the solutions exhibited here are distinct for all values of $p=4 m+1, m>1$. By considering the 28 differences it is easy to see that both values for s_{i} and t_{i}, $i=2,3,4$, are admissible.

To illustrate the theorem we shall compose $O(17,2)$ with $O(4,2)$ to obtain $O(21,2)$. We shall use $y=(1+i) / 2$ with $i=-4$ and $s_{1}=0$, $t_{1}=1$. Then $s_{2}=10, s_{3}=16, s_{4}=6, t_{2}=14, t_{3}=15, t_{4}=2$. We shall obtain two orthogonal Latin squares of order 21 substituting in $A(2)$ for the entries having cells of $A(1) 0,10,16$, and $6 A, B, C$, and D, respectively. In $A(7)$ we shall substitute A, B, C, and D in the places corresponding to $1,14,15$, and 2 in $A(1)$. The resulting orthogonal squares of size 21 will have the form:

ThEOREM 2. If $p \equiv 1,2,4(\bmod 7), p \geqslant 11$ it is possible to compose $O\left(p^{\alpha}, 2\right)$ based on $\operatorname{GF}\left(p^{\alpha}\right)$ with $O(4,2)$ to obtain a $O\left(p^{\alpha}+4,2\right)$.

Proof. Consider the pattern

$$
\begin{array}{ll}
s_{1}=K_{h}\left(s_{2}, t_{2}\right), & t_{1}=K_{v}\left(s_{2}, t_{2}\right) \\
s_{2}=K_{h}\left(s_{3}, t_{3}\right), & t_{2}=K_{v}\left(s_{3}, t_{3}\right) \\
s_{3}=K_{h}\left(s_{4}, t_{4}\right), & t_{3}=K_{v}\left(s_{1}, t_{4}\right) \\
s_{4}=K_{h}\left(s_{1}, t_{1}\right), & t_{4}=K_{v}\left(s_{4}, t_{1}\right)
\end{array}
$$

Using the same method as in Theorem 1 we may solve this system of equations in terms of s_{2} and t_{2}. Imposing the condition that $s_{2} \neq t_{2}$ we shall conclude that the following equation must hold.

$$
1-\mu(y-1)-\mu^{2}(y-1)^{2}\left(\mu^{2} y+\mu y-1\right)=0
$$

| A | 1 | 2 | 3 | 4 | 5 | D | 7 | 8 | 9 | B | 11 | 12 | 13 | 14 | 15 | C | 0 | 10 | 16 | 6 |
| ---: |
| 2 | 3 | 4 | 5 | 6 | D | 8 | 9 | 10 | B | 12 | 13 | 14 | 15 | 16 | C | A | 1 | 11 | 0 | 7 |
| 4 | 5 | 6 | 7 | D | g | 10 | 11 | B | 13 | 14 | 15 | 16 | 0 | C | A | 3 | 2 | 12 | 1 | 8 |
| 6 | 7 | 8 | D | 10 | 11 | 12 | B | 14 | 15 | 16 | 0 | 1 | C | A | 4 | 5 | 3 | 13 | 2 | 9 |
| 8 | 9 | D | 11 | 12 | 13 | B | 15 | 16 | 0 | 1 | 2 | C | A | 5 | 6 | 7 | 4 | 14 | 3 | 10 |
| 10 | D | 12 | 13 | 14 | B | 16 | 0 | 1 | 2 | 3 | C | A | 6 | 7 | 8 | 9 | 5 | 15 | 4 | 11 |
| D | 13 | 14 | 15 | B | 0 | 1 | 2 | 3 | 4 | C | A | 7 | 8 | 9 | 10 | 11 | 6 | 16 | 5 | 12 |
| 14 | 15 | 16 | B | 1 | 2 | 3 | 4 | 5 | C | A | 8 | 9 | 10 | 11 | 12 | D | 7 | 0 | 6 | 13 |
| 16 | 0 | B | 2 | 3 | 4 | 5 | 6 | C | A | 9 | 10 | 11 | 12 | 13 | D | 15 | 8 | 1 | 7 | 14 |
| 1 | B | 3 | 4 | 5 | 6 | 7 | C | A | 10 | 11 | 12 | 13 | 14 | D | 16 | 0 | 9 | 2 | 8 | 15 |
| B | 4 | 5 | 6 | 7 | 8 | C | A | 11 | 12 | 13 | 14 | 15 | D | 0 | 1 | 2 | 10 | 3 | 9 | 16 |
| 5 | 6 | 7 | 8 | 9 | C | A | 12 | 13 | 14 | 15 | 16 | D | 1 | 2 | 3 | B | 11 | 4 | 10 | 0 |
| 7 | 8 | 9 | 10 | C | A | 13 | 14 | 15 | 16 | 0 | D | 2 | 3 | 4 | B | 6 | 12 | 5 | 11 | 1 |
| 9 | 10 | 11 | C | A | 14 | 15 | 16 | 0 | 1 | D | 3 | 4 | 5 | B | 7 | 8 | 13 | 6 | 12 | 2 |
| 11 | 12 | C | A | 15 | 16 | 0 | 1 | 2 | D | 4 | 5 | 6 | B | 8 | 9 | 10 | 14 | 7 | 13 | 3 |
| 13 | C | A | 16 | 0 | 1 | 2 | 3 | D | 5 | 6 | 7 | B | 9 | 10 | 11 | 12 | 15 | 8 | 14 | 4 |
| C | A | 0 | 1 | 2 | 3 | 4 | D | 6 | 7 | 8 | B | 10 | 11 | 12 | 13 | 14 | 16 | 9 | 15 | 5 |
| 0 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | A | B | C | D |
| 3 | 2 | 1 | 0 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | B | A | D | C |
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 16 | C | D | A | B |
| 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 16 | 15 | 14 | 13 | D | C | B | A |

0	A	D	3	4	5	6	7	8	9	10	11	12	13	B	C	16	1	14	15	2
A	D	9	10	11	12	13	14	15	16	0	1	2	B	C	5	6	7	3	4	8
D	15	16	0	1	2	3	4	5	6	7	8	B	C	11	12	A	13	9	10	14
4	5	6	7	8	9	10	11	12	13	14	B	C	0	1	A	D	2	15	16	3
11	12	13	14	15	16	0	1	2	3	B	C	6	7	A	D	10	8	4	5	9
1	2	3	4	5	6	7	8	9	B	C	12	13	A	D	16	0	14	10	11	15
8	9	10	11	12	13	14	15	B	C	1	2	A	D	5	6	7	3	16	0	4
15	16	0	1	2	3	4	B	c	7	8	A	D	11	12	13	14	9	5	6	10
5	6	7	8	9	10	B	C	13	14	A	D	0	1	2	3	4	15	11	12	16
12	13	14	15	16	B	C	2	3	A	D	6	7	8	9	10	11	4	0	1	5
2	3	4	5	B	C	8	9	A	D	12	13	14	15	16	0	1	10	6	7	11
9	10	11	B	C	14	15	A	D	1	2	3	4	5	6	7	8	16	12	13	0
16	0	B	C	3	4	A	D	7	8	9	10	11	12	13	14	15	5	1	2	6
6	B	C	9	10	A	D	13	14	15	16	0	1	2	3	4	5	11	7	8	12
B	C	15	16	A	D	2	3	4	5	6	7	8	9	10	11	12	0	13	14	1
C	4	5	A	D	8	9	10	11	12	13	14	15	16	0	1	B	6	2	3	7
10	11	A	D	14	15	16	0	1	2	3	4	5	6	7	B	C	12	8	9	13
7	1	12	6	0	11	5	16	10	4	15	9	3	14	8	2	13	A	B	C	D
13	7	1	12	6	0	11	5	16	10	4	15	9	3	14	8	2	C	D	A	B
3	14	8	2	13	7	1	12	6	0	11	5	16	10	4	15	9	D	C	B	A
14	8	2	13	7	1	12	6	0	11	5	16	10	4	15	9	3	B	A	D	c

It can be checked, moreover, that satisfying this condition ensures also that all the remaining values for the unknowns will be distinct. Making $x-1=u, y-1=v$ we get

$$
\begin{aligned}
v^{1}(u-1)\left(u^{2}+1\right) & +v^{3} u\left(3 u^{2}-3 u+4\right) \\
& -v^{2} u^{2}\left(u^{2}-3 u+6\right)-v u^{3}(u-4)-u^{4}=0 .
\end{aligned}
$$

For $u-1$ the equation becomes

$$
4 v^{3}-4 v^{2}+3 v-1=0
$$

which can be factorized

$$
(2 v-1)\left(2 v^{2}-v+1\right)=0 .
$$

However $u=1, v=\frac{1}{2}$ gives $t_{2}=t_{4}$, so we have to look for the roots of $2 v^{2}-v+1=0$.

To solve that equation it is necessary that -7 be a quadratic residue, and this is so if $p \equiv 1,2,4(\bmod 7)$.
Calling $i^{2}=-7, u=1$ gives $x=2, y=(5 \pm i) / 4$ and using $s_{2}=1$, $t_{2}=0$ we obtain as solution of the system

$$
\begin{array}{ll}
s_{1}=\frac{1 \mp i}{4}, & t_{1}=\frac{1 \mp i}{2}, \\
s_{3}=\frac{3 \mp i}{2}, & t_{3}=2 \\
s_{4}=\frac{7 \mp 3 i}{8}, & t_{4}=\frac{9 \mp 5 i}{8}
\end{array}
$$

It is easy to check that 28 differences are not equal to zero for both values of i except for $p=11$. In this case $s_{2}=t_{4}=1$ for $i=-2$. However, using $i=2$ we obtain $s_{1}=8, s_{3}=6, s_{4}=7, t_{1}=5, t_{3}=2$, $t_{4}=4$. Notice that Theorems 1 and 2 do not preclude the possibility of constructing three orthogonal squares using the method of sum composition since to each value of x correspond two values of y, except for $p=11$. However, our attempts to construct three mutually orthogonal Latin squares using the method of sum composition failed thus far.

Theorem 3. If $n_{2} \neq 6$ is even, then for any prime number $p \geqslant 2 n_{2}$ it is always possible to compose $O\left(p^{\alpha}, 2\right)$ based on $\operatorname{GF}\left(p^{\alpha}\right)$ with $O\left(n_{2}, 2\right)$ to obtain a $O\left(p^{\alpha}+n_{2}, 2\right)$ set.

Proof. Consider the pattern

$$
\begin{array}{ll}
s_{1}=K_{h}\left(s_{2}, t_{2}\right), & t_{1}=K_{v}\left(s_{2}, t_{2}\right) \\
s_{2}=K_{h}\left(s_{1}, t_{1}\right), & t_{2}=K_{v}\left(s_{1}, t_{1}\right)
\end{array}
$$

This system is solvable and will yield distinct solutions provided that the rank is two and

$$
y \mu=1+\mu
$$

Taking $t_{1}=s_{1}+1$ we obtain

$$
s_{2}=s_{1}-\mu, \quad t_{2}=s_{1}-y \mu=s_{2}-1
$$

that is, t_{2}, s_{2} are also consecutive numbers. By properly choosing y, which uniquely determines x, since the equation of compatability is of first degree in s, we may achieve that $t_{2}=t_{1}+1$; the choice is $\mu=-3$, which provides $y=\frac{2}{3}$ and $x=\frac{1}{2}$. The sets S and T are therefore

$$
\begin{aligned}
& S=\left\{s_{1}, s_{1}+3\right\} \\
& T=\left\{s_{1}+1, s_{1}+2\right\}
\end{aligned}
$$

By starting with $s_{1}=0$ and repeating the above process $n_{2} / 2$ times, we obtain the sets of transversals

$$
\begin{aligned}
& S=\left\{0,3 ; 4,7 ; \cdots ; 2 n_{2}-4,2 n_{2}-1\right\} \\
& T=\left\{1,2 ; 5,6 ; \cdots ; 2 n_{2}-3,2 n_{2}-2\right\}
\end{aligned}
$$

We could also have considered the pattern

$$
\begin{array}{ll}
s_{1}=K_{h}\left(s_{2}, t_{2}\right), & t_{1}=K_{v}\left(s_{1}, t_{2}\right) \\
s_{2}=K_{h}\left(s_{1}, t_{1}\right), & t_{2}=K_{v}\left(s_{2}, t_{1}\right)
\end{array}
$$

Taking s_{1}, t_{1} as independent unknowns, the compatibility condition reduces to

$$
y \mu(1+\mu)=1
$$

Using again $t_{1}=s_{1}+1$ we obtain

$$
s_{2}=s_{1}-\mu, \quad t_{2}=s_{1}-(1+\mu)=s_{2}-1
$$

that is, t_{2}, s_{2} are also consecutive numbers; $t_{2}=t_{1}+1$ would imply as before $\mu=-3, y=\frac{1}{6}, x=\frac{1}{4}$ and we will get

$$
\begin{aligned}
& S=\left\{s_{1}, s_{1}+3\right\} \\
& T=\left\{s_{1}+1, s_{1}+2\right\} .
\end{aligned}
$$

Again by starting with $s_{1}=0$ and repeating the process $n_{2} / 2$ times we obtain

$$
\begin{aligned}
& S=\left\{0,3 ; 4,7 ; \cdots ; 2 n_{2}-4,2 n_{2}-1\right\} \\
& T=\left\{1,2 ; 5,6 ; \cdots ; 2 n_{2}-3,2 n_{2}-2\right\}
\end{aligned}
$$

however this time we have to reverse the order of the set T before projecting vertically.

Note that $x y=1$, the condition used by Hedayat and Seiden for constructing orthogonal Latin squares using the method of sum composition, does not hold in this theorem. However, as in their work this theorem precludes obtaining more than two orthogonal Latin squares.

We shall conclude this paper showing that in some of the work of Hedayat and Seiden the condition $x y=1$ was in fact necessary.

Proposition. If a pattern for composition of a $O\left(p^{\alpha}, 2\right)$ and a $O(3,2)$ set is such that horizontal projection recovers transversals from both sets S and T, then $x y=1$.

Proof. Any of the six equations which determine the pattern, three will involve the function K_{h} and the other three equations will involve the function K_{v}. Adding the six equations we will always obtain, no matter what the pattern is,

$$
\sum s_{i}+\sum t_{i}=(1+\mu+1+y \mu) \sum s_{i}-(\mu+y \mu) \sum t_{i}
$$

or

$$
\left(\sum s_{i}-\sum t_{i}\right)(1+\mu+y \mu)=0
$$

If the horizontal projection recovers transversals from both S and T, adding the three equations involving K_{h} we will obtain in the l.h.s. the sum of either two s 's and one t, or one s and two t 's; in the r.h.s. we will obtain $\sum s_{i}-\mu\left(\sum t_{i}-\sum s_{i}\right)$. Therefore, if $\sum t_{i}-\sum s_{i}=0$ we will have $s_{i}=t_{j}$ for some i, j. We must then have $1+\mu+y \mu=0$; but $1+\mu+y \mu=$ $x y-1$, thus the result.

This proposition applies to 36 of the 48 possible patterns to compose $O\left(p^{\alpha}, 2\right)$ and $O(3,2)$ sets; they have been fully investigated by Hedayat and Seiden.

Remark. The condition $\left(\sum s_{i}-\sum t_{i}\right)(1+\mu+y \mu)=0$ must hold for all patterns and is independent of the size of the system of equations involved. Hence, if we search for orthogonal Latin squares by the method of sum composition we must have either $x y=1$ as assumed by Hedayat and Seiden or $\sum s_{i}=\sum t_{i}$, which will reduce the rank by at least 2 .

References

1. A. Hedayat and E. Seiden, On a method of sum composition of orthogonal Latin squares, RM-238, Department of Statistics and Probability, Michigan State University, 1969.
2. A. Hedayat and E. Seiden, On a method of sum composition of orthogonal Latin squares, II, RM-257, Department of Statistics and Probability, Michigan State University, 1970.
3. A. Hedayat and E. Seden, On a method of sum composition of orthogonal Latin squares, III, RM-259, Department of Statistics and Probability, Michigan State University, 1970.
4. A. Hedayat and E. Seiden, On a method of sum composition of orthogonal Latin squares, "Proceedings of the Conference on Combinatorical Geometry and Its Applications," Perugia, Italy, September 11-17, 1970, pp. 239-256.
