
COMPUllNG F’RACTICES

Edgar H. Sibi’ey
Panel Editor

Orthogonal Latin squares-a new method for testing compilers-yields the
informational equivalent of exhaustive testing at a fraction of the cost. The
method has been used successfully in designing some of the tests in the Ada
Compiler Valid,ation Capability (ACVC) test suite.

ORTHOGONAL LATIN SQUARES: AN
APPLICATION OF EXPERIIWEUT DESIGN
TO COMPILER TESTING

ROBERT MANDL

When writing test suites for testing a compiler or any
other progra:m or system, it is often neces:sary to test a
set of states--statements, complex constructs, data
paths, etc.-whose form or action depends on a number
of factors, each of which spans an associated range. If
the factors are independent, the state space is the
Cartesian product of the ranges, which reflects the or-
thogonality of the system. For example, in simple dec-
larations like

‘static int ABCDE;’

in C, ’ static ’ can be replaced by any member
oftheset {'auto', 'extern', 'register',
'static'), and 'int' by any member of the set
('int', 'float', 'char', 'unsigned int'). This
results in a legal declaration for which we can then
check correct allocation of storage, correct initializa-
tion, etc. In this perhaps overly simplified example, the
state space consists of all possible selections of two
items: one from the list of storage-class specifiers (first
list), and one from the list of type specifiers (second list)
for a total of 16 selections. If we want to test the opera-
tion of binary arithmetic operators working on such
values, we add a third list, (‘+‘, ‘-‘, ‘/I, ‘*‘). The

This work was performed at Softech (Waltham, Massachwetts) under contract
MDA-90%79.C0687.

01985 ACMOOOV0782/85/1000-1054 750

size of the resulting state space now becomes 64, be-
cause there are 43 ways of selecting one item per list
from the three four-element lists. The original example
'static int ABCDE; ’ is orthogonal because the
two selection processes can take place independently of
each other and in any order. Since the designers of C
have decreed that taking the ratio of two values of type
’ char ’ and taking the product of two values of type
’ char ’ are meaningful operations, the expanded ex-
ample is also orthogonal. However, not everything in C
is orthogonal. For instance, it is legal to define func-
tions returning numeric types and functions returning
pointers, but not functions returning arrays or struc-
tures; one can define arrays of just about anything, but
not arrays of functions.

To illustrate the use of the orthogonal-Latin-squares
method, we present an example derived from an actual
ACVC’ test that utilizes the method. The test verifies
that, in Ada@, ordering operators on enumeration val-
ues are evaluated correctly even when these enumera-
tion values are ASCII characters.

THE EXAMPLE: ADA COMPILER VALIDATION
In Ada, when a programmer defines an enumeration
type, the type definition lists all the enumeration liter-

’ Ada Compiler Validation Capability.
Ada is a trademark of the U.S. DOD (Ada Joint Program Office)

1054 Communicatior,s of the ACM October 1985 Volume 28 Number 10

als that are to constitute the values of the type being
defined, for example,

TYPE thermostat-belief IS
(too-cold-in-here, too-hot-in-here,

just-right);
TYPE gyrostabilizer-belief IS

(plus, minus, just-right);
TYPE openers IS ('(', '(', '[');

If an enumeration literal appears in at least two such
definitions (“is overloaded”), qualifying the literal by
the name of the type to which it belongs will remove
the ambiguity:

IF thermostat-belief'(just_right)
= . . . THEN

There are two kinds of enumeration literals: user-
selected identifiers and character literals. ASCII
characters automatically belong to the built-in type
CHARACTER, for which the ordering relationship is the
ordinary ASCII collating sequence. Therefore, ASCII
characters that have been explicitly listed in user-
defined enumeration types are overloaded. (It is the
programmer’s responsibility to avoid situations where
the overloading cannot be resolved by the compiler.)

One particular complication of Ada’s enumerated
types is that (although characters already have an im-
plied ordering, which for letters amounts to the alpha-
betic order), when the ordering operator is applied to
two literals (more precisely, to two instances of literals
in the program text) that are known to be functioning
as enumeration literals and happen also to be ASCII
characters, it is the enumeration order that must be
upheld, not the predefined default ordering for ASCII
characters. In other words, the test objective is Assume
that a user-defined enumeration type imposes on some of the
letters of the alphabet an ordering that is different from the
standard lexicographical ordering. Check that, when the or-
dering operators are applied to such letters (qualified as
members of the user-defined enumeration type), the answers
produced reflect the new definition and not the standard
lexicographical ordering. To implement this objective, an
enumerated type must be defined that is not consistent
with the natural ordering of the characters and in
which some of the ordering relationships between indi-
vidual characters are the same as in ASCII while others
are different. Enumerated types may contain mixtures
of character literals and user-named identifiers; we as-
sume that the test in question is restricted to enumera-
tions consisting exclusively of ASCII characters.

The first step is to test the correctness of the opera-
tors on pairs that contain an element that is first or last
in the enumeration, and also on pairs that do not con-
tain such extreme values. In order not to expand the
size of state space unnecessarily, we settle on four val-
ues in the enumerated type--the four letters (charac-
ters) S, P, M, and R, in this order:

TYPE my-enumeration-type IS
('S', 'P', 'M', 'R');.

In addition to the four literals, we also introduce four

October 1985 Volume 28 Number 10

Computing Practices

variables of this type and initialize them to the same
four values. (We have replaced the name ‘my-enu -
meration-type' by the shorter name ‘t’.)

mvar : t := t'('M');
pvar : t := t'('P');
rvar : t := t'('R');
svar : t := t'('S');

As it may make a difference whether a value is used
as a left operand as opposed to a right operand, we
consider the two operands as separate relevant features,
as separate factors in the generation of state space. Two
other determining factors are the identity of the opera-
tor and the pattern of distribution of literal values
among the operands.

In our example, there are four operators in the
“ordering-operator” class. Although we would have pre-
ferred to extend the scope to cover equality/inequality
operators in addition to the ordering operators, for rea-
sons that will soon become apparent we had to restrict
ourselves to the four ordering operators. Since we are
not concerned here with expression evaluation, we dis-
tinguish only two kinds of expression operands: liter-
als-specifically, character literals considered as ele-
ments of a user-defined enumerated type-and vari-
ables of the user-defined enumerated type. Both oper-
ands may be literals, or neither of them, or precisely
one (the left or the right); thus, this factor also has four
distinguishable levels.

In short, we have isolated the following relevant fac-
tors, each of which has four levels:

the value of the left operand
('S', 'P', 'M', 'RI),

the value of the right operand
('S', 'P', 'M', 'R'),

which operator is used
(‘<‘, ‘<=‘, I>‘, ‘>=‘),and

the literality pattern for the two operands:

literal vs. literal, asin t'('P') < t'('R')
literal vs. variable, as in t ’ (’ P ') < rvar
variable vs. literal, as in pvar < t'(rvar)
variable vs. variable, as in pvar < rvar.

This makes a total of 256 test cases (nk combinations in
the case of k factors with n levels each), which take the
form

IF t'('S') >= t'(svar) THEN END IF;.

In most situations, testing all these combinations
would be prohibitively expensive. We argue in this ar-
ticle that in many cases testing every single combination
is not really necessary. Assume, for the sake of argu-
ment, that we really intended to test all 256 combina-
tions, but somehow managed to perform only 255 or
254. We might argue that 254 are almost as good: and
that if all 254 have passed, then surely all relevantly
distinct combinations must have been tested and the
missing cases would surely have passed also. (Of
course, if only one of the 254 tests produced a wrong
result, this would be absolute proof of failure, indepen-

Communications of the ACM 1055

Computing Practices

dently of anything that the remaining tests could pre-
sent.) The method proposed here attempts to formalize
the phrase ‘I <surely all relevantly distinct ~combinations.”

THE PROBLEM
Given a test objective (not necessarily in the context of
compiler testing), we identify a state space spanned by
a finite number of variables with a number of allowable
values (or representative values, if the test objective
allows it). Two traditional approaches are (1) exhaus-
tively covering the state space, and (2) making a
random selection of test cases from the state space.
Although exhausting the state space may be ideal, the
state space may be prohibitively large. The other
approach-making a random, selection-may of course
uncover deficiencies; but even if it does, it is difficult to
assess the level of confidence to be derived from the
apparently successful testing.

If we acce:pt the premise that in some situations it is
possible to achieve a high level of confidence by
performing a suitably chosen nonexhaustive test
procedure, we must make explicit what conditions
would render such a procedure satisfactory-perhaps
even as satisfactory as the exhaustive testing.

Suppose that all potential combinations are divided
into a reasonable number of distinct classes by applying
some criterion that places two combinations in the
same class if and only if the testing of one combination
provides nothing new over what is available from the
testing of the other and combinations from the other
classes. In th(is case, testing one representative
combination from each such class would be perfectly
satisfactory. Actually, it is unnecessary to define classes
such that an,y selection of one representative per class
would provide as much confidence as exhaustive
testing; it is :sufficient to provide one selection rule that
provides that level of confidence-and th.is is what we
are attempting to do.

RELEVANCE OF LATIN SQUARES
In the ACVC example, there are two factors (known as
index factors) whose levels reflect the values of the two
operands, as well as a number of factors reflecting the
shape of the construct (contents factors). There are two
contents factors: One reflects the identity of the opera-
tor, and the other the literality pattern for its operands.
When the matrix representation of the test plan is pre-
sented later in terms of matrices that are Latin squares,
the index factors will correspond to the indexes of the
matrix, and the contents factors will correspond to the
contents of the matrix entries. Since mat:rices are two-
dimensional arrays, the number of index factors is
always 2.

In a faulty implementation, it is quite possible that
some operatsor will always return a value opposite to
the value expected, or will always return. TRUE, or that
one or the other of these situations will obtain if, and
only if, a specific form of the construct is used. How-
ever, it is less likely that two operands that both evalu-
ate to 17 will be recognized as equal while two oper-
ands that evaluate to 18 will not. Therefore, although

we do require that every combination be “represented”,
we do not insist that every combination be present with
all possible operand values. What we do require is that
for any given ordered pair of contents-factor levels (not
both belonging to the same factor) there exist an ordere’d
pair of index-factor levels such that the given pair of
contents-factor levels is tested in the context provided
by the pair of index-factor levels. We then know that
every single combination of contents-factor levels has
been tested in some context (although not necessarily
with all possible combinations of value parameters).
More precisely, we know that every combination of
contents-factor levels has been tested in exactly one
context (with exactly one combination of value
parameters).’

The design of test cases is similar in some respects to
the design of statistical experiments. From the variety
of experiment-design methods used in statistics, the
most useful to us seems to be Latin squares. A Latin
square is a balanced two-way classification scheme that
is usually represented as a square matrix. For example,
the matrix

A B C II
CDAB
D C B A
B A D C

reflects a scheme with a total of three variables, each
having four levels. It might be used to test the applica-
tion of four different treatments A, B, C, D (variable 3)
to four different crops (rows 1, 2, 3, 4) (variable 2) using,
one at a time, four different application methods (col-
umns 1, 2, 3, 4) (variable 1). In this scheme, each of the
four treatment levels A, B, C, D appears precisely once
in each column of the matrix; and each of the four
treatment levels A, B, C, D appears precisely once in
each row of the matrix. With the rows and the columns
labeled, the matrix appears as follows:

Application method
#l #2 #3 #4

Crop #l A B C D
Crop #2 C D A B
Crop #3 D C B A
Crop #4 B A D C.

Testing all possible combinations in the above example
would require 64 tests (= 43), whereas the Latin-squares
method will yield much the same information at the
cost of performing only 16 tests.

The four treatments of the respective crops could
have been four different dosages, or levels, of one and
the same substance. The generalization from “4 crops, 4
methods, and 4 treatment levels” to “n crops, n meth-
ods, and n treatment levels” is immediate. Exhaustive
testing in this situation would require n3 tests, whereas
Latin-squares testing requires only nZ tests.

To investigate the impact of the presence of another
substance-a fourth variable-(also in four levels-
* This methodology can he generalized in several ways: by increasing the
number of contents factors: and by using balanced incomplete block designs [5],
where the combinations, instead of each occurring exactly once, occur ex-
actly twice, or exactly X times for some A.

1056 Communicatiom of the ACM October 1985 Volume 28 Number 10

Computing Practices

alpha, beta, gamma, delta), one could perform two sepa-
rate experiments, each described by a Latin square as
above; however, this scheme would yield no informa-
tion about any effect of the simultaneous presence of
the two subs,tances-the substance represented by the
Latin letter and the substance represented by the Greek
letter. An economical design for studying the combined
effects would consist of a Greco-Latin square

For n = 3, 4, 5, 7, 8, and 9, one can find n - 1 distinct,
mutually orthogonal n x n Latin squares.
The largest possible number of orthogonal n x n Latin
squares is n - 1.
If the factorization of n into powers of distinct primes p, , p2,

, p, (p,<p2<p3< . ..)is

pp x pB x . . . ppp

A alpha B beta C gamma D delta
C delta D gamma A beta B alpha
D beta C alpha B delta A gamma
B gamma A delta D alpha C beta

where each of the 16 combinations of a Latin letter
with a Greek letter occurs precisely once. A Greco-
Latin square results from combining, entry by entry,
two Latin squares that are orthogonal to each other in
the sense that they satisfy the following orthogonality
condition:

1.

2.

3.

4.

5.

then there exist at least

p; - 1

Two Latin squares are orthogonal if, when they are
combined entry by entry, each pair of symbols occurs
precisely once in the combined square.

orthogonal Latin squares of order n [6].
(This theorem guarantees three orthogonal Latin squares if
n is a multiple of 4, and nothing at all if n is an even integer
not divisible by 4. Euler conjectured [6] that for such
“unevenly even numbers” orthogonal Latin squares do not
exist. The conjecture was disproved in 1959 [l , 2, 71.)
For n = 6, orthogonal Latin squares do not exist.’
For every integer n greater than 6, there exists a pair of
orthogonal Latin squares of order n. (The existence of a pair
of orthogonal Latin squares of some order does not imply
that for any Latin square of that order one can find a Latin
square orthogonal to it.)

The number of index factors is always two because
they correspond to the indexes (dimensions) of a two-
dimensional array. If we have identified k contents fac-
tors (with n levels each), then we need a set of k mu-
tually orthogonal II x n matrices (k can be 1, 2, 3, or
more). Thus, we have reduced the problem of finding
suitable designs to that of finding sets of orthogonal
Latin squares.

* This is why we cannot deal with six-level variables

FIGURE 1. Facts about Pairs or Sets of Orthogonal Latin Squares

Some basic properties of orthogonal Latin squares are
given in Figure 1. Further good examples of Greco-
Latin and orthogonal Latin squares can be found in
[4, Tables 15 and 161.

ACHIEVING NEAR-EXHAUSTIVE TESTING
THROUGH EXPERIMENT DESIGN
Returning now to the problem of devising a suitable set
of test cases for near-exhaustive testing (whether for
compiler testing or testing in a more general setting),
we propose a method borrowed from statistical experi-
ment design that utilizes the properties of orthogonal
Latin squares and balanced incomplete block designs.

Occasionally. one may want to choose a Greco-Latin
square having additional propeities. For instance, if the
diagonal of the square has some special significance in
the problem space, one might want to choose a Greco-
Latin square in which the Latin diagonal and the Greek
diagonal each contain n distinct values. Furthermore,
since the diagonal (1, l), (2, 2), , (n, n) is unsatis-
factory in some cases. one could choose a square whose
diagonals are nontrivial permutations of the full set
of n values. This was done in the test that served
as the basis for the example discussed in this paper:
The Greco-Latin square representing this test is given
in Figure 2, and the actual code for the relevant

For k variables each admitting n values (that is, for
which we recognize n levels as being relevantly dis-
tinct: RESTRICTION: k <= n + l), choose a set of k - z
orthogonal n x n Latin squares and implement, instead
of the total number nk of test cases, only the n* combi-
nations corresponding to the entries of the square. This
guarantees the “essential exhaustiveness” at a substan-
tially lower cost (e.g., in the case of n = 4 and k = 4, 16

test cases instead of 256). Of course, a single Latin
square is sufficient in the case of three variables: and a
Greco-Latin square in the case of four variables. As can
be seen from Figure I showing the properties of orthog-
onal Latin squares, Greco-Latin squares exist for all
values of n other than 6. Although large sets of mu-
tually orthogonal Latin squares do exist, it is usually
not necessary to resort to them, since most practical
situations do not involve more than four variables.

Len Right operand

operand S P M R

S A-ALPHA B-BETA C-GAMMA D-DELTA
P C-DELTA D-GAMMA A-BETA B-ALPHA
M D-BETA C-ALPHA B-DELTA A-GAMMA
R B-GAMMA A-DELTA D-ALPHA C-BETA

(A= ‘<I ALPHA = VV
B = ‘<=’ BETA = VL
c = ‘>’ GAMMA = LV
D = I>=’ DELTA = LL)

FIGURE 2. The Greco-Latin Square Used in the Example

October 7985 Volume 28 Number 10 Communications of the ACM 1057

Confpufirrg Practices

IF t’(svar) ‘: t:’ Svar) THEN bump j END IF;
IF t’(svar) -<= 1:’ ‘P’) THEN NULL ; ELSE bump ; END IF;
IF t’(‘S’) :> 1:’ mvar) THEN bump ; END IF;
IF t’(‘S’) 3>= 1;’ ‘R’) THEN bump ; END IF;

IF t’(‘P’) 3> t:’ ‘S’) THEN NULL; ELSE bump ; END IF;
IF t’(‘P’) 3>= 1.’ war) THEN NULL ; ELSE bump ; END IF;
IF t’(pvar) << t:’ ‘M’) THEN NULL ; ELSE bump i END IF;
IF t’(pvar) d:= t:‘(rvar) THEN NULL; ELSE bump ; END IF;

IF t’(mvar) 3>= t:‘(‘S’) THEN NULL; ELSE bump ; END IF;
IF t’(mvar) 3> t:‘(pvar) THEN NULL ; ELSE bump ; END IF;
IF t’(‘M’) <:= t:’ (‘M ‘) THEN NULL; ELSE bump ; END IF;
IF t’(‘M’) <: t.‘(rvar) THEN NULL ; ELSE bump ; END IF;

IF t’(‘R’) Z> t.‘(svar) THEN bump ; END IF;
IF t’(‘R’) :b= t:‘(‘P’) THEN bump ; END IF;
IF t’(rvar) <: t.’ (mvar) THEN NULL ; ELSE bump ; END IF;
IF t’(rvar) <:= t.‘(‘R’) THEN bump ; END IF;

Note--bump is a procedure that bumps an error-count variable.

FIGURE 3. The Code for the Relevant Portion of the ACVC Test

portion of the test is presented in Figure 3.
The orthogonal Latin squares method described here

has been successfully used in a number of tests devel-
oped at SoftlOch for use in the ACVC test suite. The
examples are based on tests C45210A.ADA of October
15. 1980. and C83A05A.ADA of February 11, 1980. Both
tests, as well as several others, include extensive com-
mentary describing the method in general and the
method as applied specifically to these tests. Most of
these comments (unless repetitive] have ‘been incorpo-
rated in some form in this paper.

CONCLUSIONS
An exhaustive test suite for a state space with k
n-valued variables would enumerate all the ordered
k-tuples where each position has n possible values, at a
cost of nk (the number of tests required), which is some-
times more t.han we can afford.

A reasonable random selection of test cases would
probably be about the same size as a test suite that
simply takes the k variables in turn, and includes for
each of them n tests to cover the n legal values of the
variable: its cost in terms of tests would also be about
the same, n x k, compared to nz for the o:rthogonal-
squares met.hod. However, the random-selection ap-
proach is much less effective in detecting malfunctions
and yields much less information when i-t does in fact
detect somei hing.

The ortho,gonal-Latin-squares method being proposed
seems to strike a very efficient compromise between
the level of effort required and the amount of informa-
tion obtained: At a cost commensurate with that of a
traditional set of test cases selected at random, it yields
about as much useful information as the prohibitively
expensive exhaustive testing.

Acknowledgments. The author would like to thank
John R. Kelly, of Softech, for a critical reading of an
early version of this paper.

REFERENCES
Note: References [3] and [S] are not mentioned in the text.
1. Bose. R.C.. and Shrikhande. S.S. On the construction of sets of mu.

tually orthogonal Latin squares and the falsity of a conjecture of
Euler. Trans. Am. Math. Sm. 95 (1960). 191-209.

2. Bose. R.C., Parker. E.T., and Shrikhande, S.S. Further results on the
construction of mutually orthogonal Latin squares and the falsity of
Euler’s conjecture. Can. 1, Math. 12 (June 1960). 189-203.

3. Diamond, W.J. Practical Experimenf Designs for Engineers and Scien-
tists. Lifetime Learning Publications, Belmont, Calif., 1981.

4. Fischer, R.A... and Yates. F. Statistical Tables for Biological. Agricul-
tural, and Medical Research. 2nd ed. Oliver and Boyd. London, 1943.

5. Hall, M., Ir. Combinatorial Theory. Blaisdell Publishing Co.. Waltham.
Mass.. 1967.

6. MacNeish, H.F. Euler squares. Ann. Math. 23, 3 (Mar. 1922). 22%X17.
7. Parker. E. Construction of scnne sets of mutually orthogonal Latin

squares. Proc. Am. Math. SK. IO, 6 (Dec. 1959). 946-949.
8. Winer, B.J. Statistical Principles in Experimental Design. 2nd ed.

McGraw-Hill. New York. 1971.

CR Categories and Subject Descriptors: D.2.4 [Software Engineer-
ing]: Program Verification-validafion: G.l.O [Numerical Analysis]:
General--error analysis; G.3 (Probability and Statistics]

General Terms: Verification
Additional Key Words and Phrases: Greco-Latin squares. orthogonal

Latin squares

Received Z/63; revised 12/64; accepted 3/85

Author’s Present Address: Robert Mandl. Analogic Corporation, Audu-
bon Road, Wakefield. MA 01880.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publicatilm
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise. or to
republish. requires a fee and/or specific permission.

1058 Communicatioa of the ACM October 1985 Volume 28 Number 10

