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Orthogonal Latin squares-a new method for testing compilers-yields the 
informational equivalent of exhaustive testing at a fraction of the cost. The 
method has been used successfully in designing some of the tests in the Ada 
Compiler Valid,ation Capability (ACVC) test suite. 
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APPLICATION OF EXPERIIWEUT DESIGN 
TO COMPILER TESTING 
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When writing test suites for testing a compiler or any 
other progra:m or system, it is often neces:sary to test a 
set of states--statements, complex constructs, data 
paths, etc.-whose form or action depends on a number 
of factors, each of which spans an associated range. If 
the factors are independent, the state space is the 
Cartesian product of the ranges, which reflects the or- 
thogonality of the system. For example, in simple dec- 
larations like 

‘static int ABCDE;’ 

in C, ’ static ’ can be replaced by any member 
oftheset {'auto', 'extern', 'register', 
'static'), and 'int' by any member of the set 
('int', 'float', 'char', 'unsigned int'). This 
results in a legal declaration for which we can then 
check correct allocation of storage, correct initializa- 
tion, etc. In this perhaps overly simplified example, the 
state space consists of all possible selections of two 
items: one from the list of storage-class specifiers (first 
list), and one from the list of type specifiers (second list) 
for a total of 16 selections. If we want to test the opera- 
tion of binary arithmetic operators working on such 
values, we add a third list, (‘+‘, ‘-‘, ‘/I, ‘*‘). The 
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size of the resulting state space now becomes 64, be- 
cause there are 43 ways of selecting one item per list 
from the three four-element lists. The original example 
'static int ABCDE; ’ is orthogonal because the 
two selection processes can take place independently of 
each other and in any order. Since the designers of C 
have decreed that taking the ratio of two values of type 
’ char ’ and taking the product of two values of type 
’ char ’ are meaningful operations, the expanded ex- 
ample is also orthogonal. However, not everything in C 
is orthogonal. For instance, it is legal to define func- 
tions returning numeric types and functions returning 
pointers, but not functions returning arrays or struc- 
tures; one can define arrays of just about anything, but 
not arrays of functions. 

To illustrate the use of the orthogonal-Latin-squares 
method, we present an example derived from an actual 
ACVC’ test that utilizes the method. The test verifies 
that, in Ada@, ordering operators on enumeration val- 
ues are evaluated correctly even when these enumera- 
tion values are ASCII characters. 

THE EXAMPLE: ADA COMPILER VALIDATION 
In Ada, when a programmer defines an enumeration 
type, the type definition lists all the enumeration liter- 

’ Ada Compiler Validation Capability. 
Ada is a trademark of the U.S. DOD (Ada Joint Program Office) 
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als that are to constitute the values of the type being 
defined, for example, 

TYPE thermostat-belief IS 
(too-cold-in-here, too-hot-in-here, 

just-right); 
TYPE gyrostabilizer-belief IS 

(plus, minus, just-right); 
TYPE openers IS ('(', '(', '['); 

If an enumeration literal appears in at least two such 
definitions (“is overloaded”), qualifying the literal by 
the name of the type to which it belongs will remove 
the ambiguity: 

IF thermostat-belief'(just_right) 
= . . . THEN . . . . 

There are two kinds of enumeration literals: user- 
selected identifiers and character literals. ASCII 
characters automatically belong to the built-in type 
CHARACTER, for which the ordering relationship is the 
ordinary ASCII collating sequence. Therefore, ASCII 
characters that have been explicitly listed in user- 
defined enumeration types are overloaded. (It is the 
programmer’s responsibility to avoid situations where 
the overloading cannot be resolved by the compiler.) 

One particular complication of Ada’s enumerated 
types is that (although characters already have an im- 
plied ordering, which for letters amounts to the alpha- 
betic order), when the ordering operator is applied to 
two literals (more precisely, to two instances of literals 
in the program text) that are known to be functioning 
as enumeration literals and happen also to be ASCII 
characters, it is the enumeration order that must be 
upheld, not the predefined default ordering for ASCII 
characters. In other words, the test objective is Assume 
that a user-defined enumeration type imposes on some of the 
letters of the alphabet an ordering that is different from the 
standard lexicographical ordering. Check that, when the or- 
dering operators are applied to such letters (qualified as 
members of the user-defined enumeration type), the answers 
produced reflect the new definition and not the standard 
lexicographical ordering. To implement this objective, an 
enumerated type must be defined that is not consistent 
with the natural ordering of the characters and in 
which some of the ordering relationships between indi- 
vidual characters are the same as in ASCII while others 
are different. Enumerated types may contain mixtures 
of character literals and user-named identifiers; we as- 
sume that the test in question is restricted to enumera- 
tions consisting exclusively of ASCII characters. 

The first step is to test the correctness of the opera- 
tors on pairs that contain an element that is first or last 
in the enumeration, and also on pairs that do not con- 
tain such extreme values. In order not to expand the 
size of state space unnecessarily, we settle on four val- 
ues in the enumerated type--the four letters (charac- 
ters) S, P, M, and R, in this order: 

TYPE my-enumeration-type IS 
('S', 'P', 'M', 'R');. 

In addition to the four literals, we also introduce four 
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variables of this type and initialize them to the same 
four values. (We have replaced the name ‘my-enu - 
meration-type' by the shorter name ‘t’.) 

mvar : t := t'('M'); 
pvar : t := t'('P'); 
rvar : t := t'('R'); 
svar : t := t'('S'); 

As it may make a difference whether a value is used 
as a left operand as opposed to a right operand, we 
consider the two operands as separate relevant features, 
as separate factors in the generation of state space. Two 
other determining factors are the identity of the opera- 
tor and the pattern of distribution of literal values 
among the operands. 

In our example, there are four operators in the 
“ordering-operator” class. Although we would have pre- 
ferred to extend the scope to cover equality/inequality 
operators in addition to the ordering operators, for rea- 
sons that will soon become apparent we had to restrict 
ourselves to the four ordering operators. Since we are 
not concerned here with expression evaluation, we dis- 
tinguish only two kinds of expression operands: liter- 
als-specifically, character literals considered as ele- 
ments of a user-defined enumerated type-and vari- 
ables of the user-defined enumerated type. Both oper- 
ands may be literals, or neither of them, or precisely 
one (the left or the right); thus, this factor also has four 
distinguishable levels. 

In short, we have isolated the following relevant fac- 
tors, each of which has four levels: 

the value of the left operand 
('S', 'P', 'M', 'RI), 

the value of the right operand 
('S', 'P', 'M', 'R'), 

which operator is used 
(‘<‘, ‘<=‘, I>‘, ‘>=‘),and 

the literality pattern for the two operands: 

literal vs. literal, asin t'('P') < t'('R') 
literal vs. variable, as in t ’ ( ’ P ' ) < rvar 
variable vs. literal, as in pvar < t'(rvar) 
variable vs. variable, as in pvar < rvar. 

This makes a total of 256 test cases (nk combinations in 
the case of k factors with n levels each), which take the 
form 

IF t'('S') >= t'(svar) THEN . . . . END IF;. 

In most situations, testing all these combinations 
would be prohibitively expensive. We argue in this ar- 
ticle that in many cases testing every single combination 
is not really necessary. Assume, for the sake of argu- 
ment, that we really intended to test all 256 combina- 
tions, but somehow managed to perform only 255 or 
254. We might argue that 254 are almost as good: and 
that if all 254 have passed, then surely all relevantly 
distinct combinations must have been tested and the 
missing cases would surely have passed also. (Of 
course, if only one of the 254 tests produced a wrong 
result, this would be absolute proof of failure, indepen- 
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dently of anything that the remaining tests could pre- 
sent.) The method proposed here attempts to formalize 
the phrase ‘I <surely all relevantly distinct ~combinations.” 

THE PROBLEM 
Given a test objective (not necessarily in the context of 
compiler testing), we identify a state space spanned by 
a finite number of variables with a number of allowable 
values (or representative values, if the test objective 
allows it). Two traditional approaches are (1) exhaus- 
tively covering the state space, and (2) making a 
random selection of test cases from the state space. 
Although exhausting the state space may be ideal, the 
state space may be prohibitively large. The other 
approach-making a random, selection-may of course 
uncover deficiencies; but even if it does, it is difficult to 
assess the level of confidence to be derived from the 
apparently successful testing. 

If we acce:pt the premise that in some situations it is 
possible to achieve a high level of confidence by 
performing a suitably chosen nonexhaustive test 
procedure, we must make explicit what conditions 
would render such a procedure satisfactory-perhaps 
even as satisfactory as the exhaustive testing. 

Suppose that all potential combinations are divided 
into a reasonable number of distinct classes by applying 
some criterion that places two combinations in the 
same class if and only if the testing of one combination 
provides nothing new over what is available from the 
testing of the other and combinations from the other 
classes. In th(is case, testing one representative 
combination from each such class would be perfectly 
satisfactory. Actually, it is unnecessary to define classes 
such that an,y selection of one representative per class 
would provide as much confidence as exhaustive 
testing; it is :sufficient to provide one selection rule that 
provides that level of confidence-and th.is is what we 
are attempting to do. 

RELEVANCE OF LATIN SQUARES 
In the ACVC example, there are two factors (known as 
index factors) whose levels reflect the values of the two 
operands, as well as a number of factors reflecting the 
shape of the construct (contents factors). There are two 
contents factors: One reflects the identity of the opera- 
tor, and the other the literality pattern for its operands. 
When the matrix representation of the test plan is pre- 
sented later in terms of matrices that are Latin squares, 
the index factors will correspond to the indexes of the 
matrix, and the contents factors will correspond to the 
contents of the matrix entries. Since mat:rices are two- 
dimensional arrays, the number of index factors is 
always 2. 

In a faulty implementation, it is quite possible that 
some operatsor will always return a value opposite to 
the value expected, or will always return. TRUE, or that 
one or the other of these situations will obtain if, and 
only if, a specific form of the construct is used. How- 
ever, it is less likely that two operands that both evalu- 
ate to 17 will be recognized as equal while two oper- 
ands that evaluate to 18 will not. Therefore, although 

we do require that every combination be “represented”, 
we do not insist that every combination be present with 
all possible operand values. What we do require is that 
for any given ordered pair of contents-factor levels (not 
both belonging to the same factor) there exist an ordere’d 
pair of index-factor levels such that the given pair of 
contents-factor levels is tested in the context provided 
by the pair of index-factor levels. We then know that 
every single combination of contents-factor levels has 
been tested in some context (although not necessarily 
with all possible combinations of value parameters). 
More precisely, we know that every combination of 
contents-factor levels has been tested in exactly one 
context (with exactly one combination of value 
parameters).’ 

The design of test cases is similar in some respects to 
the design of statistical experiments. From the variety 
of experiment-design methods used in statistics, the 
most useful to us seems to be Latin squares. A Latin 
square is a balanced two-way classification scheme that 
is usually represented as a square matrix. For example, 
the matrix 

A B C II 
CDAB 
D C B A 
B A D C 

reflects a scheme with a total of three variables, each 
having four levels. It might be used to test the applica- 
tion of four different treatments A, B, C, D (variable 3) 
to four different crops (rows 1, 2, 3, 4) (variable 2) using, 
one at a time, four different application methods (col- 
umns 1, 2, 3, 4) (variable 1). In this scheme, each of the 
four treatment levels A, B, C, D appears precisely once 
in each column of the matrix; and each of the four 
treatment levels A, B, C, D appears precisely once in 
each row of the matrix. With the rows and the columns 
labeled, the matrix appears as follows: 

Application method 
#l #2 #3 #4 

Crop #l A B C D 
Crop #2 C D A B 
Crop #3 D C B A 
Crop #4 B A D C. 

Testing all possible combinations in the above example 
would require 64 tests (= 43), whereas the Latin-squares 
method will yield much the same information at the 
cost of performing only 16 tests. 

The four treatments of the respective crops could 
have been four different dosages, or levels, of one and 
the same substance. The generalization from “4 crops, 4 
methods, and 4 treatment levels” to “n crops, n meth- 
ods, and n treatment levels” is immediate. Exhaustive 
testing in this situation would require n3 tests, whereas 
Latin-squares testing requires only nZ tests. 

To investigate the impact of the presence of another 
substance-a fourth variable-(also in four levels- 
* This methodology can he generalized in several ways: by increasing the 
number of contents factors: and by using balanced incomplete block designs [5], 
where the combinations, instead of each occurring exactly once, occur ex- 
actly twice, or exactly X times for some A. 
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alpha, beta, gamma, delta), one could perform two sepa- 
rate experiments, each described by a Latin square as 
above; however, this scheme would yield no informa- 
tion about any effect of the simultaneous presence of 
the two subs,tances-the substance represented by the 
Latin letter and the substance represented by the Greek 
letter. An economical design for studying the combined 
effects would consist of a Greco-Latin square 

For n = 3, 4, 5, 7, 8, and 9, one can find n - 1 distinct, 
mutually orthogonal n x n Latin squares. 
The largest possible number of orthogonal n x n Latin 
squares is n - 1. 
If the factorization of n into powers of distinct primes p, , p2, 

, p, (p,<p2<p3< . ..)is 

pp x pB x . . . ppp 

A alpha B beta C gamma D delta 
C delta D gamma A beta B alpha 
D beta C alpha B delta A gamma 
B gamma A delta D alpha C beta 

where each of the 16 combinations of a Latin letter 
with a Greek letter occurs precisely once. A Greco- 
Latin square results from combining, entry by entry, 
two Latin squares that are orthogonal to each other in 
the sense that they satisfy the following orthogonality 
condition: 

1. 

2. 

3. 

4. 

5. 

then there exist at least 

p; - 1 

Two Latin squares are orthogonal if, when they are 
combined entry by entry, each pair of symbols occurs 
precisely once in the combined square. 

orthogonal Latin squares of order n [6]. 
(This theorem guarantees three orthogonal Latin squares if 
n is a multiple of 4, and nothing at all if n is an even integer 
not divisible by 4. Euler conjectured [6] that for such 
“unevenly even numbers” orthogonal Latin squares do not 
exist. The conjecture was disproved in 1959 [l , 2, 71.) 
For n = 6, orthogonal Latin squares do not exist.’ 
For every integer n greater than 6, there exists a pair of 
orthogonal Latin squares of order n. (The existence of a pair 
of orthogonal Latin squares of some order does not imply 
that for any Latin square of that order one can find a Latin 
square orthogonal to it.) 

The number of index factors is always two because 
they correspond to the indexes (dimensions) of a two- 
dimensional array. If we have identified k contents fac- 
tors (with n levels each), then we need a set of k mu- 
tually orthogonal II x n matrices (k can be 1, 2, 3, or 
more). Thus, we have reduced the problem of finding 
suitable designs to that of finding sets of orthogonal 
Latin squares. 

* This is why we cannot deal with six-level variables 

FIGURE 1. Facts about Pairs or Sets of Orthogonal Latin Squares 

Some basic properties of orthogonal Latin squares are 
given in Figure 1. Further good examples of Greco- 
Latin and orthogonal Latin squares can be found in 
[4, Tables 15 and 161. 

ACHIEVING NEAR-EXHAUSTIVE TESTING 
THROUGH EXPERIMENT DESIGN 
Returning now to the problem of devising a suitable set 
of test cases for near-exhaustive testing (whether for 
compiler testing or testing in a more general setting), 
we propose a method borrowed from statistical experi- 
ment design that utilizes the properties of orthogonal 
Latin squares and balanced incomplete block designs. 

Occasionally. one may want to choose a Greco-Latin 
square having additional propeities. For instance, if the 
diagonal of the square has some special significance in 
the problem space, one might want to choose a Greco- 
Latin square in which the Latin diagonal and the Greek 
diagonal each contain n distinct values. Furthermore, 
since the diagonal (1, l), (2, 2), , (n, n) is unsatis- 
factory in some cases. one could choose a square whose 
diagonals are nontrivial permutations of the full set 
of n values. This was done in the test that served 
as the basis for the example discussed in this paper: 
The Greco-Latin square representing this test is given 
in Figure 2, and the actual code for the relevant 

For k variables each admitting n values (that is, for 
which we recognize n levels as being relevantly dis- 
tinct: RESTRICTION: k <= n + l), choose a set of k - z 
orthogonal n x n Latin squares and implement, instead 
of the total number nk of test cases, only the n* combi- 
nations corresponding to the entries of the square. This 
guarantees the “essential exhaustiveness” at a substan- 
tially lower cost (e.g., in the case of n = 4 and k = 4, 16 

test cases instead of 256). Of course, a single Latin 
square is sufficient in the case of three variables: and a 
Greco-Latin square in the case of four variables. As can 
be seen from Figure I showing the properties of orthog- 
onal Latin squares, Greco-Latin squares exist for all 
values of n other than 6. Although large sets of mu- 
tually orthogonal Latin squares do exist, it is usually 
not necessary to resort to them, since most practical 
situations do not involve more than four variables. 

Len Right operand 

operand S P M R 

S A-ALPHA B-BETA C-GAMMA D-DELTA 
P C-DELTA D-GAMMA A-BETA B-ALPHA 
M D-BETA C-ALPHA B-DELTA A-GAMMA 
R B-GAMMA A-DELTA D-ALPHA C-BETA 

( A= ‘<I ALPHA = VV 
B = ‘<=’ BETA = VL 
c = ‘>’ GAMMA = LV 
D = I>=’ DELTA = LL ) 

FIGURE 2. The Greco-Latin Square Used in the Example 
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IF t’(svar) ‘: t:’ Svar) THEN bump j END IF; 
IF t’(svar) -<= 1:’ ‘P’ ) THEN NULL ; ELSE bump ; END IF; 
IF t’( ‘S’ ) :> 1:’ mvar ) THEN bump ; END IF; 
IF t’(‘S’ ) 3>= 1;’ ‘R’ ) THEN bump ; END IF; 

IF t’(‘P’ ) 3> t:’ ‘S’ ) THEN NULL; ELSE bump ; END IF; 
IF t’( ‘P’ ) 3>= 1.’ war) THEN NULL ; ELSE bump ; END IF; 
IF t’(pvar) << t:’ ‘M’ ) THEN NULL ; ELSE bump i END IF; 
IF t’(pvar) d:= t:‘(rvar) THEN NULL; ELSE bump ; END IF; 

IF t’(mvar) 3>= t:‘( ‘S’ ) THEN NULL; ELSE bump ; END IF; 
IF t’(mvar) 3> t:‘(pvar) THEN NULL ; ELSE bump ; END IF; 
IF t’(‘M’ ) <:= t:’ ( ‘M ‘ ) THEN NULL; ELSE bump ; END IF; 
IF t’(‘M’ ) <: t.‘(rvar) THEN NULL ; ELSE bump ; END IF; 

IF t’(‘R’ ) Z> t.‘(svar) THEN bump ; END IF; 
IF t’(‘R’ ) :b= t:‘(‘P’ ) THEN bump ; END IF; 
IF t’(rvar) <: t.’ (mvar) THEN NULL ; ELSE bump ; END IF; 
IF t’(rvar) <:= t.‘(‘R’ ) THEN bump ; END IF; 

Note--bump is a procedure that bumps an error-count variable. 

FIGURE 3. The Code for the Relevant Portion of the ACVC Test 

portion of the test is presented in Figure 3. 
The orthogonal Latin squares method described here 

has been successfully used in a number of tests devel- 
oped at SoftlOch for use in the ACVC test suite. The 
examples are based on tests C45210A.ADA of October 
15. 1980. and C83A05A.ADA of February 11, 1980. Both 
tests, as well as several others, include extensive com- 
mentary describing the method in general and the 
method as applied specifically to these tests. Most of 
these comments (unless repetitive] have ‘been incorpo- 
rated in some form in this paper. 

CONCLUSIONS 
An exhaustive test suite for a state space with k 
n-valued variables would enumerate all the ordered 
k-tuples where each position has n possible values, at a 
cost of nk (the number of tests required), which is some- 
times more t.han we can afford. 

A reasonable random selection of test cases would 
probably be about the same size as a test suite that 
simply takes the k variables in turn, and includes for 
each of them n tests to cover the n legal values of the 
variable: its cost in terms of tests would also be about 
the same, n x k, compared to nz for the o:rthogonal- 
squares met.hod. However, the random-selection ap- 
proach is much less effective in detecting malfunctions 
and yields much less information when i-t does in fact 
detect somei hing. 

The ortho,gonal-Latin-squares method being proposed 
seems to strike a very efficient compromise between 
the level of effort required and the amount of informa- 
tion obtained: At a cost commensurate with that of a 
traditional set of test cases selected at random, it yields 
about as much useful information as the prohibitively 
expensive exhaustive testing. 
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