y in $(\mathfrak{q}_2 \cap \ldots \cap \mathfrak{q}_i) - \mathfrak{p}$ we have that (x_j) : $y = \mathfrak{p}$. Since x_j is not in $\mathfrak{M}\mathfrak{p}$ and hd $\mathfrak{p} \leq 1$, it follows from the previous proposition that $\mathfrak{p} = (x_j)$.

THEOREM 3. Let R be a local domain of dimension ≤ 3 such that hd $R/\mathfrak{p} < \infty$ for all minimal prime ideals \mathfrak{p} . Then R is a unique factorization domain.

Proof: Since R is a noetherian domain, it follows from reference 4; Lemma 1, pg. 408, that it suffices to show that each minimal prime ideal is principal in order to show that R is a unique factorization domain. But by Corollary 2, it will follow that a minimal prime ideal \mathfrak{p} is principal if we can show that $hd R/\mathfrak{p} \leq 2$. Since $hd R/\mathfrak{p} < \infty$ we have by reference 1; 3.7 and 1.3 that $hd R/\mathfrak{p} + \operatorname{Codim} R/\mathfrak{p} = \operatorname{Codim} R \leq \dim R$. But $\operatorname{Codim} R/\mathfrak{p} \geq 1$ and $\dim R \leq 3$. Thus $hd R/\mathfrak{p} \leq 2$, which completes the proof.

Since every module has finite homological dimension over a regular local ring, we have established

COROLLARY 4. Every regular local ring of dimension ≤ 3 is a unique factorization domain.

THEOREM 5. Every regular local ring is a unique factorization domain.

* Prior to this result, Zariski proved that if every complete regular local ring of dimension 3 is a unique factorization domain, then every complete regular local ring is a unique factorization domain (unpublished). Combining this with Mori's and Krull's result that a local ring is a unique factorization domain if it's completion is a unique factorization domain, we obtain another proof of this reduction theorem.

¹ Auslander, M., and D. A. Buchsbaum, "Homological Dimension in Noetherian Rings," Trans. Am. Math. Soc., 85, 390-405 (1957).

² Auslander, M., and D. Buchsbaum, "Codimension and Multiplicity," Ann. Math., 68, 625-657 (1958).

⁵ Cartan, H., and S. Eilenberg, Homological Algebra (Princeton, 1955).

⁴ Nagata, M., "A General Theory of Algebraic Geometry over Dedekind Rings II," Am. J. Math., 80, 382-420 (1958).

ON THE FALSITY OF EULER'S CONJECTURE ABOUT THE NON-EXISTENCE OF TWO ORTHOGONAL LATIN SQUARES OF ORDER 4t + 2*

By R. C. Bose and S. S. Shrikhande

UNIVERSITY OF NORTH CAROLINA

Communicated by A. A. Albert, March 13, 1959

1. Introduction.—The purpose of this paper is to prove a general theorem on the existence of pairwise orthogonal Latin squares (p.o.l.s.) of a given order and to give a counter example to Euler's conjecture³ that there do not exist two p.o.l.s. of order 4t + 2.

2. Definitions.—An arrangement of v objects (called treatments) in b sets (called blocks) will be called a pairwise balanced design of index unity and type $(v; k_1, k_2, \ldots, k_m)$ if each block contains either k_1, k_2, \ldots , or k_m treatments which are all distinct $(k_i \leq v, k_i \neq k_j)$, and every pair of distinct treatments occurs exactly in one block of the design. If the number of blocks containing k_i treatments is b_i , then clearly

Vol. 45, 1959

$$b = \sum_{i=1}^{m} b_i, \quad v(v-1) = \sum_{i=1}^{m} b_i k_i (k_i - 1)$$
(1)

LEMMA 1. Suppose there exists a set Σ of q - 1 p.o.l.s. of order k, then we can construct a $q \times k(k - 1)$ matrix P, whose elements are the symbols 1, 2, ..., k and such that any ordered pair $\binom{i}{j}$ $i \neq j$, occurs as a column exactly once in any two-rowed submatrix of P.

We can take the set Σ in the standard form in which the first row of each Latin square contains the symbols 1, 2, ..., k in that order. We then prefix to the set $\Sigma a k \times k$ square containing the symbol *i* in each position in the *i*th column. If we then write the elements of each square in a single row such that the symbol in the *i*th row and *j*th column occupies the *n*th position in the row, where n = k(i - 1) + j then we can display these squares (as in reference 2) in the form of an orthogonal array $A[k^2, q, k, 2]$ of q rows. By deleting the first k columns, we get the matrix P with the required properties.

Let γ be a column of k distinct treatments t_1, t_2, \ldots, t_k in that order, then we shall denote by $P(\gamma)$, the $q \times k(k-1)$ matrix obtained by replacing the symbol i in P, by the treatment t_i occupying the *i*th position in $\gamma(i = 1, 2, \ldots, k)$. Clearly every treatment occurs exactly k - 1 times in every row of $P(\gamma)$, and any ordered pair $\binom{t_i}{t_i}$ occurs as a column exactly once in any two-rowed submatrix of $P(\gamma)$.

THEOREM 1. Let there exist a pairwise balanced design of index unity and type $(v; k_1, k_2, \ldots, k_m)$ and suppose there exist $q_i - 1$ p.o.l.s. of order k_i . If

$$q = \min(q_1, q_2, \ldots, q_m)$$

then there exist q - 2 p.o.l.s. of order v.

Let the treatments of the design be t_1, t_2, \ldots, t_n , and let the blocks of the design (written out as columns) which contain k_i treatments be denoted by $\gamma_{i1}, \gamma_{i2}, \ldots, \gamma_{ini}$. Let P_i be the matrix of order $q_i \times k_i(k_i - 1)$ defined in Lemma 1, the elements of P_i being the symbols 1, 2, ..., k_i . Let $C_{ij} = P_i(\gamma_{ij})$ be the matrix obtained from P_i and γ_{ij} . Retain only q rows of C_{ij} to get C_{ij}^* . From (1) the matrix

$$C^* = [C_{11}^*, C_{12}^*, \ldots, C_{1b_1}^*, \ldots, C_{i1}^*, C_{i2}^*, \ldots, C_{ib_i}^*, \ldots, C_{m1}^*, C_{m2}^*, \ldots, C_{mb_m}^*]$$

is of order $q \times v(v-1)$, and is such that any ordered pair of treatments $\binom{t_i}{t_j}$, $i \neq J$ occurs as a column exactly once in any two-rowed submatrix of C^* . Let C_0^* be a $q \times v$ matrix whose *i*th column contains t_i in every position $(i = 1, 2, \ldots, v)$. Then (from reference 2), the matrix $[C_0^*, C^*]$ is an orthogonal array $A[v^2, q, v, 2]$. Using two rows to coordinatize we get a set of q - 2 p.o.l.s. of order v.

3. Counter Examples to Euler's Conjecture.—Consider the balanced incomplete block (BIB) design with parameters $v^* = 15$, $b^* = 35$, $r^* = 7$, $k^* = 3$, $\lambda^* = 1$. A resolvable solution is given in Table III of reference 1. To each block of the *i*th complete replication add a new treatment θ_i (i = 1, 2, ..., 7) and take a new block consisting of the treatments θ_1 , θ_2 , θ_3 , θ_4 , θ_5 , θ_6 , θ_7 . We then get a pairwise balanced design of index unity and type (22; 4, 7). Since there exist 3 p.o.l.s. of order 4, and 6 p.o.l.s. of order 7, it follows from the theorem that there exist two orthogonal Latin squares of order 22. The squares follow.

A detailed paper generalizing and improving the results of Mann⁴ and Parker⁵

is being prepared where, among other things, it will be shown that there are an infinity of values of t for which there exist two or more p.o.l.s. of order 4t + 2.

												(L_1))											
		1	2	5	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	
	1	1	4	7	16	6	20	22	15	19	21	12	18	10	9	17	2	8	11	14	5	13	3	
	ź	16	2	5	1	17	7	21	10	15	20	22	13	19	11	18	4	3	9	12	8	6	14	
	3	22	17	3	6	2	18	1	12	11	15	21	-16	14	20	19	8	5	4	10	13	9	7	
	4	2	16	18	4	7	3	19	21	13	12	15	22	17	8	20	1	9	6	5	11	14	10	
	5	20	3	17	19	5	1	4	9	22	14	13	15	16	18	21	11	2	10	7	6	12	8	
	6	5	21	4	18	20	6	2	19	10	16	8	14	15	17	22	9	12	3	11	1	7	13	
	7	3	6	22	5	19	21	7	18	20	11	17	9	8	15	16	14	10	13	4	12	2	1	
	8	17	20	16	14	22	11	13	8	5	2	19	3	18	21	1	12	15	7	6	10	4	9	
	9	14	18	21	17	8	16	12	22	9	6	3	20	4	19	2	10	13	15	1	7	11	5	
-	10	13	8	19	22	18	9	17	20	16	10	11	4	21	0 00	3	19	11	14	15	15	1	12	
	11	18	14	9	20	10	19	10	16	21	17	11	19	9	44 R	4 5	10	14	14	12	10	0 15	4	
	1.75 1.42	11 91	19	20	10	11	22	18	7	17	1	16	10	13	3	6	5	4	8	2	14	10	15	
	11	10	22	13	21	10	12	16	4	1	18	2	17	20	14	7	15	6	5	9	3	8	11	
	15	8	-9	10	11	12	13	14	17	18	19	20	21	22	16	15	7	ĩ	2	3	4	5	6	
	18	4	1	19	2	13	10	15	3	6	0	5	8	11	7	14	16	18	20	22	17	19	21	
	17	15	5	2	13	3	14	11	ĩ	4	7	10	6	9	12	8	22	17	19	21	16	18	20	
	18	12	15	6	3	14	4	8	13	2	5	1	11	7	10	9	21	16	18	20	22	17	19	
	19	9	13	15	7	4	8	5	11	14	3	6	2	12	1	10	20	22	17	19	21	16	18	
:	20	6	10	14	15	1	5	9	2	12	8	4	7	3	13	11	19	21	16	18	20	22	17	
;	21	10	7	11	8	15	2	6	14	3	13	9	5	1	4	12	18	20	22	17	19	21	16	
2	22	7	11	1	12	9	15	3	5	8	4	14	10	6	2	13	17	19	21	16	18	20	22	
	(L2)															10	17	10	10	a 0	@ 1	a a		
		1	z	3	4	0		<i>'</i>		9	10	11	18	10	14	10	10	17	10	19	20	10	22	
	1	1	16	22	2	20	5	3	17	14	13	18	11	21	19	8	4	10	12	12	10	10	11	
	8	4	- 2	17	10	3 17	21	0 99	20 16	18	10	14	19	20	12	10	12	2	10	15	14	11	1	
	3	16	9 1	6 8	10	10	19	5	14	17	22	20	10	20	21	11	2	13	3	7	15	8	12	
	4	6	17	2	7	5	20	19	22	8	18	16	21	11	10	12	13	3	14	4	1	15	9	
	8	20	7	18	3	1	6	21	11	16	-0	19	17	22	12	13	10	14	4	8	5	2	15	
	7	22	21	1	19	4	2	7	13	12	17	10	20	18	16	14	15	11	8	5	9	6	3	
	8	15	10	12	21	9	19	18	8	22	20	6	16	7	4	17	3	1	13	11	2	14	5	
	9	19	15	11	13	22	10	20	5	9	16	21	7	17	1	18	6	4	2	14	12	3	8	
	10	21	20	15	12	14	16	11	2	6	10	17	22	1	18	19	9	7	5	3	8	13	4	
	11	12	22	21	15	13	8	17	19	3	7	11	18	16	2	20	5	10	1	6	4	9	14	
	12	18	13	16	22	15	14	9	3	20	4	1	12	19	17	21	8	6	11	2	7	5	10	
	13	10	19	14	17	16	15	.8	18	4	21	5	2	13	20	10	11 7	19	10	12	3 19	1	0	
	14	.9	11	20	8	18	17	10	21	19	2	22	0 5	6 6	14	10	14	12	10	10	10	4 19	12	
	15	17	18	19	20	21	22	10		2			0			10		•	9			12		
	16	2	4	8	1	11	9	14	12	10	6	13	3	5	15	7	16	20	17	21	18	22	19	
	17	8	3	5	9	2	12	10	15	13	11	7	14	4	6	1	20	17	21	18	22	19	16	
	18	11	9	4	6	10	3	13	7	15	14	12	1	8	5	2	17	21	18	22	19	16	20	
	19	14	12	10	5	7	11	4	10 10	1	15	8	13	2	9	3	10	18	10	19	20	20	17 91	
	20	5	8	13	11	6	1 7	12	10	11	2	15	9 15	14	৩	4 5	10	10	19	20	20 17	21	21 18	
	21 	13	14	9	14	12	19	2	4	л к	12	3	4	15	11	6	10	16	20	17	21	18	22	
	<i>1</i> 5 10	3	14		10	9	10	*	9	3		~		10			1 - 5		-5					

* This research was supported by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command, under Contract No. AF 49(638)-213. Reproduction in whole or in part is permitted for any purpose of the United States Government.

¹ Bose, R. C., S. S. Shrikhande, and K. N. Bhattacharya, "On the Construction of Group Divisible Incomplete Block Designs," Ann. Math. Stat., 24, 167–195 (1953).

² Bush, K. A., "Orthogonal Arrays of Index Unity," Ann. Math. Stat., 23, 426-434 (1952).

³ Euler, L., "Recherches sur une Nouvelle Espèce de Quarres Magiques," Verh. Genootsch. der Wet. Vlissingen, 9, 85-232 (1782). Vol. 45, 1959

⁴ Mann, H. B., Analysis and Design of Experiments (Dover, 1949), p. 105.

⁵ Parker, E. T., "Construction of Some Sets of Pairwise Orthogonal Latin Squares," Am. Math. Soc. Notices, 5, 815 (1958).

WHICH LIE GROUPS ARE HOMOTOPY-ABELIAN?

By IOAN JAMES AND EMERY THOMAS*

OXFORD UNIVERSITY AND UNIVERSITY OF CALIFORNIA (BERKELEY)

Communicated by N. E. Steenrod, March 9, 1959

1. Let H be a subgroup of a topological group G. We describe H as homotopyabelian in G if $f \simeq f: H \times H \to G$ where f, f are the maps given by

$$f(x, y) = xy = \overline{f}(y, x) \qquad (x, y \in H).$$

This is the case, for example, when G is pathwise-connected and H is conjugate to a subgroup whose elements commute with those of H. If H is homotopy-abelian in G, then any subgroup of H is homotopy-abelian in any group which contains G as a subgroup. A homotopy-abelian group is one which is homotopy-abelian in itself. There exist homotopy-abelian groups, such as the stable classical groups,¹ which are not abelian.

Consider the nonabelian classical groups²

$$SO(n)$$
 $(n \ge 3)$, $U(n)$ $(n \ge 2)$, $Sp(n)$ $(n \ge 1)$;

subject to the standard embeddings (m > n):

 $SO(n) \subset SO(m),$ $U(n) \subset U(m),$ $Sp(n) \subset Sp(m).$

Because their elements commute with those of appropriate conjugate subgroups it follows that SO(n), U(n), Sp(n) are homotopy-abelian in SO(2n), U(2n), Sp(2n), respectively. We shall prove

THEOREM (1.1). U(n) is not homotopy-abelian in U(2n - 1).

THEOREM (1.2). Sp(n) is not homotopy-abelian in Sp(2n - 1).

The analogous statement is not true in the case of rotation groups since, for example, SO(4) is homotopy-abelian in³ SO(7). However, we shall prove

THEOREM (1.3). If n is odd, SO(n) is not homotopy-abelian in SO(2n - 2).

COROLLARY (1.4). If n is even, SO(n) is not homotopy-abelian in SO(2n - 4).

These results imply that none of the groups SO(n), U(n), Sp(n) is homotopyabelian. Furthermore we shall prove

THEOREM (1.5). The classical structure classes contain no Lie group which is homotopy-abelian but not abelian.

Although it seems probable that the only homotopy-abelian Lie groups are abelian, we have not been able to eliminate the possibility that certain of the exceptional groups are homotopy-abelian. Our method is a development of one employed by Samelson⁴ to show that Sp(1) cannot be homotopy-abelian. It involves consideration of the pairing in the homotopy groups of G, called the Samelson product, whose definition⁵ depends on the operation of commutation in G. This pairing is related to the Whitehead product in the homotopy groups of