y in $\left(\mathfrak{q}_{2} \cap \ldots \cap \mathfrak{q}_{2}\right)-\mathfrak{p}$ we have that $\left(x_{j}\right): y=\mathfrak{p}$. Since x_{j} is not in $\mathfrak{M p}$ and $h d$ $\mathfrak{p} \leq 1$, it follows from the previous proposition that $\mathfrak{p}=\left(x_{j}\right)$.

Theorem 3. Let R be a local domain of dimension ≤ 3 such that $h d R / p<\infty$ for all minimal prime ideals \mathfrak{p}. Then R is a unique factorization domain.

Proof: Since R is a noetherian domain, it follows from reference 4; Lemma 1, pg. 408, that it suffices to show that each minimal prime ideal is principal in order to show that R is a unique factorization domain. But by Corollary 2 , it will follow that a minimal prime ideal p is principal if we can show that $h d R / p \leq 2$. Since $h d R / \mathfrak{p}<\infty$ we have by reference $1 ; 3.7$ and 1.3 that $h d R / \mathfrak{p}+\operatorname{Codim} R / \mathfrak{p}=$ $\operatorname{Codim} R \leq \operatorname{dim} R$. But $\operatorname{Codim} R / p \geq 1$ and $\operatorname{dim} R \leq 3$. Thus $h d R / \mathfrak{p} \leq 2$, which completes the proof.
Since every module has finite homological dimension over a regular local ring, we have established

Corollary 4. Every regular local ring of dimension ≤ 3 is a unique factorization domain.

Theorem 5. Every regular local ring is a unique factorization domain.

[^0]
on the faldity of euler's conjecture about the NON-EXISTENCE OF TWO ORTHOGONAL LATIN SQUARES OF ORDER $4 t+2^{*}$

By R. C. Bose and S. S. Shrikhande

UNIVERSITY OF NORTH CAROLINA
Communicated by A. A. Albert, March 18, 1959

1. Introduction.-The purpose of this paper is to prove a general theorem on the existence of pairwise orthogonal Latin squares (p.o.l.s.) of a given order and to give a counter example to Euler's conjecture ${ }^{3}$ that there do not exist two p.o.l.s. of order $4 t+2$.
2. Definitions.-An arrangement of v objects (called treatments) in b sets (called blocks) will be called a pairwise balanced design of index unity and type $\left(v ; k_{1}, k_{2}, \ldots, k_{m}\right.$) if each block contains either k_{1}, k_{2}, \ldots, or k_{m} treatments which are all distinct ($k_{i} \leq v, k_{i} \neq k_{j}$), and every pair of distinct treatments occurs exactly in one block of the design. If the number of blocks containing k_{i} treatments is b_{i}, then clearly

$$
\begin{equation*}
b=\sum_{i=1}^{m} b_{i}, \quad v(v-1)=\sum_{i=1}^{m} b_{i} k_{i}\left(k_{i}-1\right) \tag{1}
\end{equation*}
$$

Lemma 1. Suppose there exists a set Σ of $q-1$ p.o.l.s. of order k, then we can construct a $q \times k(k-1)$ matrix P, whose elements are the symbols $1,2, \ldots, k$ and such that any ordered pair $\left.{ }_{(}^{i}\right) i \neq j$, occurs as a column exactly once in any two-rowed submatrix of P.

We can take the set Σ in the standard form in which the first row of each Latin square contains the symbols $1,2, \ldots, k$ in that order. We then prefix to the set Σ a $k \times k$ square containing the symbol i in each position in the i th column. If we then write the elements of each square in a single row such that the symbol in the i th row and j th column occupies the nth position in the row, where $n=k(i-1)+j$ then we can display these squares (as in reference 2) in the form of an orthogonal array $A\left[k^{2}, q, k, 2\right]$ of q rows. By deleting the first k columns, we get the matrix P with the required properties.

Let γ be a column of k distinct treatments $t_{1}, t_{2}, \ldots, t_{k}$ in that order, then we shall denote by $P(\gamma)$, the $q \times k(k-1)$ matrix obtained by replacing the symbol i in P, by the treatment t_{i} occupying the i th position in $\gamma(i=1,2, \ldots, k)$. Clearly every treatment occurs exactly $k-1$ times in every row of $P(\gamma)$, and any ordered pair ($\left.\begin{array}{c}t \\ t\end{array}\right)$ occurs as a column exactly once in any two-rowed submatrix of $P(\gamma)$.
Theorem 1. Let there exist a pairwise balanced design of index unity and type $\left(v ; k_{1}, k_{2}, \ldots, k_{m}\right)$ and suppose there exist $q_{i}-1$ p.o.l.s. of order k_{i}. If

$$
q=\min \left(q_{1}, q_{2}, \ldots, q_{m}\right)
$$

then there exist $q-2$ p.o.l.s. of order v.
Let the treatments of the design be $t_{1}, t_{2}, \ldots, t_{v}$, and let the blocks of the design (written out as columns) which contain k_{i} treatments be denoted by $\gamma_{i 1}, \gamma_{i 2}, \ldots$, $\gamma_{i b_{i}}$. Let P_{i} be the matrix of order $q_{i} \times k_{i}\left(k_{i}-1\right)$ defined in Lemma 1 , the elements of P_{i} being the symbols $1,2, \ldots, k_{i}$. Let $C_{i j}=P_{i}\left(\gamma_{i j}\right)$ be the matrix obtained from P_{i} and $\gamma_{i j}$. Retain only q rows of $C_{i j}$ to get $C_{i j}{ }^{*}$. From (1) the matrix

$$
C^{*}=\left[C_{11}{ }^{*}, C_{12}{ }^{*}, \ldots, C_{1 b_{1}}{ }^{*}, \ldots, C_{i 1}{ }^{*}, C_{i 2}{ }^{*}, \ldots, C_{i b_{i}}{ }^{*}, \ldots, C_{m 1}{ }^{*}, C_{m 2}{ }^{*}, \ldots, C_{m b}{ }^{*}\right]
$$

is of order $q \times v(v-1)$, and is such that any ordered pair of treatments $\binom{t i}{t_{j}}, i \neq j$ occurs as a column exactly once in any two-rowed submatrix of C^{*}. Let $C_{0}{ }^{*}$ be a $q \times v$ matrix whose i th column contains t_{i} in every position $(i=1,2, \ldots, v)$. Then (from reference 2), the matrix $\left[C_{0}{ }^{*}, C^{*}\right]$ is an orthogonal array $A\left[v^{2}, q, v, 2\right]$. Using two rows to coordinatize we get a set of $q-2$ p.o.l.s. of order v.
3. Counter Examples to Euler's Conjecture.-Consider the balanced incomplete block (BIB) design with parameters $v^{*}=15, b^{*}=35, r^{*}=7, k^{*}=3, \lambda^{*}=1$. A resolvable solution is given in Table III of reference 1. To each block of the i th complete replication add a new treatment $\theta_{i}(i=1,2, \ldots, 7)$ and take a new block consisting of the treatments $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6}, \theta_{7}$. We then get a pairwise balanced design of index unity and type ($22 ; 4,7$). Since there exist 3 p.o.l.s. of order 4 , and 6 p.o.l.s. of order 7, it follows from the theorem that there exist two orthogonal Latin squares of order 22. The squares follow.

A detailed paper generalizing and improving the results of Mann ${ }^{4}$ and Parker ${ }^{5}$
is being prepared where, among other things, it will be shown that there are an infinity of values of t for which there exist two or more p.o.l.s. of order $4 t+2$.

											$\left(L_{1}\right)$											
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
1	1	4	7	16	6	20	22	15	19	21	12	18	10	9	17	2	8	11	14	5	13	3
2	16	2	5	1	17	7	21	10	15	20	22	13	19	11	18	4	3	9	12	8	6	14
3	22	17	3	6	2	18	1	12	11	15	21	16	14	20	19	8	5	4	10	13	9	7
4	2	16	18	4	7	3	19	21	13	12	15	22	17	8	20	1	9	6	5	11	14	10
5	20	3	17	19	5	1	4	9	22	14	13	15	16	18	21	11	2	10	7	6	12	8
6	5	21	4	18	20	6	2	19	10	16	8	14	15	17	22	9	12	3	11	1	7	13
7	3	6	22	5	19	21	7	18	20	11	17	9	8	15	16	14	10	13	4	12	2	1
8	17	20	16	14	22	11	13	8	5	2	19	3	18	21	1	12	15	7	6	10	4	9
9	14	18	21	17	8	16	12	22	9	6	3	20	4	19	2	10	13	15	1	7	11	5
10	13	8	19	22	18	9	17	20	16	10	7	4	21	5	3	6	11	14	15	2	1	12
11	18	14	9	20	16	19	10	6	21	17	11	1	5	22	4	13	7	12	8	15	3	2
18	11	19	8	10	21	17	20	16	7	22	18	12	2	6	5	3	14	1	13	9	15	4
13	21	12	20	9	11	22	18	7	17	1	16	19	13	3	6	5	4	8	2	14	10	15
14	19	22	13	21	10	12	16	4	1	18	2	17	20	14	7	15	6	5	9	3	8	11
15	8	9	10	11	12	13	14	17	18	19	20	21	22	16	15	7	1	2	3	4	5	6
16	4	1	12	2	13	10	15	3	6	9	5	8	11	7	14	16	18	20	22	17	19	21
17	15	5	2	13	3	14	11	1	4	7	10	6	9	12	8	22	17	19	21	16	18	20
18	12	15	6	3	14	4	8	13	2	5	1	11	7	10	9	21	16	18	20	22	17	19
19	9	13	15	7	4	8	5	11	14	3	6	2	12	1	10	20	22	17	19	21	16	18
20	6	10	14	15	1	5	9	2	12	8	4	7	3	13	11	19	21	16	18	20	22	17
21	10	7	11	8	15	2	6	14	3	13	9	5	1	4	12	18	20	22	17	19	21	16
21	7	11	1	12	9	15	3	5	8	4	14	10	6	2	13	17	19	21	16	18	20	22
	$\left(L_{2}\right)$																					
	1	2	3	4	5	6	7	8	9	10	11	18	13	14	15	16	17	18	19	20	21	28
1	1	16	22	2	20	5	3	17	14	13	18	11	21	19	8	4	15	12	9	6	10	7
\$	4	2	17	16	3	21	6	20	18	8	14	19	12	22	9	1	5	15	13	10	7	11
3	7	5	3	18	17	4	22	16	21	19	9	8	20	13	10	12	2	6	15	14	11	1
4	16	1	6	4	19	18	5	14	17	22	20	10	9	21	11	2	13	3	7	15	8	12
5	6	17	2	7	5	20	19	22	8	18	16	21	11	10	12	13	3	14	4	1	15	9
6	20	7	18	3	1	6	21	11	16	9	19	17	22	12	13	10	14	4	8	5	2	15
7	22	21	1	19	4	2	7	13	12	17	10	20	18	16	14	15	11	8	5	9	6	3
8	15	10	12	21	9	19	18	8	22	20	6	16	7	4	17	3	1	13	11	2	14	5
9	19	15	11	13	22	10	20	5	9	16	21	7	17	1	18	6	4	2	14	12	3	8
10	21	20	15	12	14	16	11	2	6	10	17	22	1	18	19	9	7	5	3	8	13	4
11	12	22	21	15	13	8	17	19	3	7	11	18	16	2	20	5	10	1	6	4	9	14
12	18	13	16	22	15	14	9	3	20	4	1	12	19	17	21	8	6	11	2	7	5	10
13	10	19	14	17	16	15	8	18	4	21	5	2	13	20	22	11	9	7	12	3	1	6
14	9	11	20	8	18	17	15	21	19	5	22	6	3	14	16	7	12	10	1	13	4	2
15	17	18	19	20	21	22	16	1	2	3	4	5	6	7	15	14	8	9	10	11	12	13
16	2	4	8	1	11	9	14	12	10	6	13	3	5	15	7	16	20	17	21	18	22	19
17	8	3	5	9	2	12	10	15	13	11	7	14	4	6	1	20	17	21	18	22	19	16
18	11	9	4	6	10	3	13	7	15	14	12	1	8	5	2	17	21	18	22	19	16	20
19	14	12	10	5	7	11	4	6	1	15	8	13	2	9	3	21	18	22	19	16	20	17
20	5	8	13	11	6	1	12	10	7	2	15	9	14	3	4	18	22	19	16	20	17	21
21	13	6	9	14	12	7	2	4	11	1	3	15	10	8	5	22	19	16	20	17	21	18
82	3	14	7	10	8	13	1	9	5	12	2	4	15	11	6	19	16	20	17	21	18	22

* This research was supported by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command, under Contract No. AF 49(638)-213. Reproduction in whole or in part is permitted for any purpose of the United States Government.
${ }^{1}$ Bose, R. C., S. S. Shrikhande, and K. N. Bhattacharya, "On the Construction of Group Divisible Incomplete Block Designs," Ann. Math. Stat., 24, 167-195 (1953).
${ }^{2}$ Bush, K. A., "Orthogonal Arrays of Index Unity," Ann. Math. Stat., 23, 426-434 (1952).
${ }^{3}$ Euler, L., "Recherches sur une Nouvelle Espéce de Quarres Magiques," Verh. Genootsch. der Wet. Vlissingen, 9, 85-232 (1782).
${ }^{4}$ Mann, H. B., Analysis and Design of Experiments (Dover, 1949), p. 105.
${ }^{5}$ Parker, E. T., "Construction of Some Sets of Pairwise Orthogonal Latin Squares," Am. Madh. Soc. Notices, 5, 815 (1958).

WHICH LIE GROUPS ARE HOMOTOPY-ABELIAN?

By Ioan James and Emery Thomas*
OXFORD UNIVERSITY AND UNIVERSITY OF CALIFORNIA (BERKELEY)
Communicated by N. E. Steenrod, March 9, 1959

1. Let H be a subgroup of a topological group G. We describe H as homotopyabelian in G if $f \simeq f: H \times H \rightarrow G$ where f, f are the maps given by

$$
f(x, y)=x y=f(y, x) \quad(x, y \in H)
$$

This is the case, for example, when G is pathwise-connected and H is conjugate to a subgroup whose elements commute with those of H. If H is homotopy-abelian in G, then any subgroup of H is homotopy-abelian in any group which contains G as a subgroup. A homotopy-abelian group is one which is homotopy-abelian in itself. There exist homotopy-abelian groups, such as the stable classical groups, ${ }^{1}$ which are not abelian.

Consider the nonabelian classical groups ${ }^{2}$

$$
S O(n) \quad(n \geqq 3), \quad U(n) \quad(n \geqq 2), \quad S p(n) \quad(n \geqq 1) ;
$$

subject to the standard embeddings ($m>n$):

$$
S O(n) \subset S O(m), \quad U(n) \subset U(m), \quad S p(n) \subset S p(m)
$$

Because their elements commute with those of appropriate conjugate subgroups it follows that $S O(n), U(n), S p(n)$ are homotopy-abelian in $S O(2 n), U(2 n), S p(2 n)$, respectively. We shall prove

Theorem (1.1). $U(n)$ is not homotopy-abelian in $U(2 n-1)$.
Theorem (1.2). $S p(n)$ is not homotopy-abelian in $S p(2 n-1)$.
The analogous statement is not true in the case of rotation groups since, for example, $S O$ (4) is homotopy-abelian in $^{3} S O(7)$. However, we shall prove
Theorem (1.3). If n is odd, $S O(n)$ is not homotopy-abelian in $S O(2 n-2)$.
Corollary (1.4). If n is even, $S O(n)$ is not homotopy-abelian in $S O(2 n-4)$.
These results imply that none of the groups $S O(n), U(n), S p(n)$ is homotopyabelian. Furthermore we shall prove
Theorem (1.5). The classical structure classes contain no Lie group which is homotopy-abelian but not abelian.

Although it seems probable that the only homotopy-abelian Lie groups are abelian, we have not been able to eliminate the possibility that certain of the exceptional groups are homotopy-abelian. Our method is a development of one employed by Samelson ${ }^{4}$ to show that $S p(1)$ cannot be homotopy-abelian. It involves consideration of the pairing in the homotopy groups of G, called the Samelson product, whose definition ${ }^{5}$ depends on the operation of commutation in G. This pairing is related to the Whitehead product in the homotopy groups of

[^0]: * Prior to this result, Zariski proved that if every complete regular local ring of dimension 3 is a unique factorization domain, then every complete regular local ring is a unique factorization domain (unpublished). Combining this with Mori's and Krull's result that a local ring is a unique factorization domain if it's completion is a unique factorization domain, we obtain another proof of this reduction theorem.
 ${ }^{1}$ Auslander, M., and D. A. Buchsbaum, "Homological Dimension in Noetherian Rings," Trans. Am. Math. Soc., 85, 390-405 (1957).
 ${ }^{2}$ Auslander, M., and D. Buchsbaum, "Codimension and Multiplicity," Ann. Math., 68, 625657 (1958).
 ${ }^{5}$ Cartan, H., and S. Eilenberg, Homological Algebra (Princeton, 1955).
 ${ }^{4}$ Nagata, M., "A General Theory of Algebraic Geometry over Dedekind Rings II," Am. J. Math., 80, 382-420 (1958).

