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y in (q2 n ... n q) -p we have that (xj): y = p. Since x; is not in Up and hd
p < 1, it follows from the previous proposition that p = (xj).
THEOREM 3. Let R be a local domain of dimension <S such that hd R/p < co for

all minimal prime ideals p. Then R is a unique factorization domain.
Proof: Since R is a noetherian domain, it follows from reference 4; Lemma 1,

pg. 408, that it suffices to show that each minimal prime ideal is principal in order
to show that R is a unique factorization domain. But by Corollary 2, it will follow
that a minimal prime ideal p is principal if we can show that hd Rip < 2. Since
hd RIp < a) we have by reference 1; 3.7 and 1.3 that hd R/p + Codim R/ip =
Codim R < dim R. But Codim RIp > 1 and dim R < 3. Thus hd R/p < 2, which
completes the proof.

Since every module has finite homological dimension over a regular local ring,
we have established
COROLLARY 4. Every regular local ring of dimension <3 is a unique factoriza-

tion domain.
THEOREM 5. Every regular local ring is a unique factorization domain.
* Prior to this result, Zariski proved that if every complete regular local ring of dimension 3

is a unique factorization domain, then every complete regular local ring is a unique factorization
domain (unpublished). Combining this with Mori's and Krull's result that a local ring is a unique
factorization domain if it's completion is a unique factorization domain, we obtain another proof
of this reduction theorem.
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1. Introduction.-The purpose of this paper is to prove a general theorem on
the existence of pairwise orthogonal Latin squares (p.o.l.s.) of a given order and
to give a counter example to Euler's conjectures that there do not exist two p.o.l.s.
of order 4t + 2.

2. Definitions.-An arrangement of v objects (called treatments) in b sets
(called blocks) will be called a pairwise balanced design of index unity and type
(v; ki, k2, .. ., ki) if each block contains either k1, k2, .. ., or km treatments which
are all distinct (k, < v, k, $ kj), and every pair of distinct treatments occurs exactly
in one block of the design. If the number of blocks containing k, treatments is
b,, then clearly
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m m
b = A bi, v(v-1) = i biki(k -1) (1)

i=1 i=1

LEMMA 1. Suppose there exists a set 2 of q-1 p.o.i.s. of order k, then we can
construct a q X k(k - 1) matrix P, whose elements are the symbols 1, 2, ..., k and
such that any ordered pair ()i $ j, occurs as a column exactly once in any two-rowed
submatrix of P.
We can take the set 2 in the standard form in which the first row of each Latin

square contains the symbols 1, 2, . . ., k in that order. We then prefix to the set
2 a k X k square containing the symbol i in each position in the ith column. If
we then write the elements of each square in a single row such that the symbol in
the ith row and jth column occupies the nth position in the row, where
n = k(i - 1) + j then we can display these squares (as in reference 2) in the form
of an orthogonal array A [k2, q, k, 2] of q rows. By deleting the first k columns,
we get the matrix P with the required properties.

Let 'y be a column of k distinct treatments ti, t2, . . ., tk in that order, then we shall
denote by P(,y), the q X k(k - 1) matrix obtained by replacing the symbol i in
P) by the treatment ti occupying the ith position in 'y(i = 1, 2, . . ., k). Clearly
every treatment occurs exactly k - 1 times in every row of P(-y), and any ordered
pair (g) occurs as a column exactly once in any two-rowed submatrix of P(,y).
THEOREM 1. Let there exist a pairwise balanced design of index unity and type

(v; ki, k2, ...X kn) and suppose there exist qj - I p.o.l.s. of order keg If

q = min (qll q2, q.*Xm)

then there exist q -2 p.o.l.s. of order v.
Let the treatments of the design be ti, t2, ..., t,, and let the blocks of the design

(written out as columns) which contain k, treatments be denoted by 'Ya, 7t2,
'Yow. Let P, be the matrix of order q, X k,(k, - 1) defined in Lemma 1, the ele-
ments of P, being the symbols 1, 2, ..., kit Let Ca = P,(,yj) be the matrix
obtained from P, and yi,. Retain only q rows of Cal to get Cij*. From (1) the
matrix

0* = [C11* 0 12,y ...* P lb1t ...,* * il X i2X* ..., ..*,yX mly Cm2*P ...** mbm

is of order q X v(v - 1), and is such that any ordered pair of treatments (.), i $ i
occurs as a column exactly once in any two-rowed submatrix of C*. Let Co* be
a q X v matrix whose ith column contains t, in every position (i = 1, 2, . . ., v).
Then (from reference 2), the matrix [Co*, C*] is an orthogonal array A [V2, q, v, 2].
Using two rows to coordinatize we get a set of q - 2 p.o.l.s. of order v.

3. Counter Examples to Euler's Conjecture.-Consider the balanced incomplete
block (BIB) design with parameters v* = 15, b* = 35, r* = 7, k* = 3, \* = 1.
A resolvable solution is given in Table III of reference 1. To each block of the ith
complete replication add a new treatment OI (i = 1, 2, . . ., 7) and take a new block
consisting of the treatments 01, 02, 03, 04, 0a, 06, 07. We then get a pairwise balanced
design of index unity and type (22; 4, 7). Since there exist 3 p.o.l.s. of order 4,
and 6 p.o.l.s. of order 7, it follows from the theorem that there exist two orthogonal
Latin squares of order 22. The squares follow.
A detailed paper generalizing and improving the results of Mann4 and Parker5
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is being prepared where, among other things, it will be shown that there are an
infinity of values of t for which there exist two or more p.o.l.s. of order 4t + 2.

(LI)
I 8 3 4 5 6 7 8 9 10 11 12 13 14 16 16 17 18 19 20 21 88

1 1 4 7 16 6 20 22 15 19 21 12 18 10 9 17 2 8 11 14 5 13 3
2 16 2 5 1 17 7 21 10 15 20 22 13 19 11 18 4 3 9 12 8 6 14
3 22 17 3 6 2 18 1 12 11 15 21 .16 14 20 19 8 5 4 10 13 9 7
4 2 16 18 4 7 3 19 21 13 12 15 22 17 8 20 1 9 6 5 11 14 10
6 20 3 17 19 5 1 4 9 22 14 13 15 16 18 21 11 2 10 7 6 12 8
6 5 21 4 18 20 6 2 19 10 16 8 14 15 17 22 9 12 3 11 1 7 13
7 3 6 22 5 19 21 7 18 20 11 17 9 8 15 16 14 10 13 4 12 2 1
8 17 20 16 14 22 11 13 8 5 2 19 3 18 21 1 12 15 7 6 10 4 9
9 14 18 21 17 8 16 12 22 9 6 3 20 4 19 2 10 13 15 1 7 11 5
10 13 8 19 22 18 9 17 20 16 10 7 4 21 5 3 6 11 14 15 2 1 12
11 18 14 9 20 16 19 10 6 21 17 11 1 5 22 4 13 7 12 8 15 3 2
18 11 19 8 10 21 17 20 16 7 22 18 12 2 6 5 3 14 1 13 9 15 4
13 21 12 20 9 11 22 18 7 17 1 16 19 13 3 6 5 4 8 2 14 10 15
14 19 22 13 21 10 12 16 4 1 18 2 17 20 14 7 15 6 5 9 3 8 11
15 8 9 10 11 12 13 14 17 18 19 20 21 22 16 15 7 1 2 3 4 5 6

16 4 1 12 2 13 10 15 3 6 9 5 8 11 7 14 16 18 20 22 17 19 21
17 15 5 2 13 3 14 11 1 4 7 10 6 9 12 8 22 17 19 21 16 18 20
18 12 15 6 3 14 4 8 13 2 5 1 11 7 10 9 21 16 18 20 22 17 19
19 9 13 15 7 4 8 5 11 14 3 6 2 12 1 10 20 22 17 19 21 16 18
20 6 10 14 15 1 5 9 2 12 8 4 7 3 13 11 19 21 16 18 20 22 17
21 10 7 11 8 15 2 6 14 3 13 9 5 1 4 12 18 20 22 17 19 21 16
88 7 11 1 12 9 15 3 5 8 4 14 10 6 2 13 17 19 21 16 18 20 22

(L2)
1 8 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 88

1 1 16 22 2 20 5 3 17 14 13 18 11 21 19 8 4 15 12 9 6 10 7
2 4 2 17 16 3 21 6 20 18 8 14 19 12 22 9 1 5 15 13 10 7 11
3 7 5 3 18 17 4 22 16 21 19 9 8 20 13 10 12 2 6 15 14 11 1
4 16 1 6 4 19 18 5 14 17 22 20 10 9 21 11 2 13 3 7 15 8 12
5 6 17 2 7 5 20 19 22 8 18 16 21 11 10 12 13 3 14 4 1 15 9
6 20 7 18 3 1 6 21 11 16 9 19 17 22 12 13 10 14 4 8 5 2 15
7 22 21 1 19 4 2 7 13 12 17 10 20 18 16 14 15 11 8 5 9 6 3
8 15 10 12 21 9 19 18 8 22 20 6 16 7 4 17 3 1 13 11 2 14 5
9 19 15 11 13 22 10 20 5 9 16 21 7 17 1 18 6 4 2 14 12 3 8
10 21 20 15 12 14 16 11 2 6 10 17 22 1 18 19 9 7 5 3 8 13 4
11 12 22 21 15 13 8 17 19 3 7 11 18 16 2 20 5 10 1 6 4 9 14
18 18 13 16 22 15 14 9 3 20 4 1 12 19 17 21 8 6 11 2 7 5 10
13 10 19 14 17 16 15 8 18 4 21 5 2 13 20 22 11 9 7 12 3 1 6
14 9 11 20 8 18 17 15 21 19 5 22 6 3 14 16 7 12 10 1 13 4 2
15 17 18 19 20 21 22 16 1 2 3 4 5 6 7 15 14 8 9 10 11 12 13

16 2 4 8 1 11 9 14 12 10 6 13 3 5 15 7 16 20 17 21 18 22 19
17 8 3 5 9 2 12 10 15 13 11 7 14 4 6 1 20 17 21 18 22 19 16
18 11 9 4 6 10 3 13 7 15 14 12 1 8 5 2 17 21 18 22 19 16 20
19 14 12 10 5 7 11 4 6 1 15 8 13 2 9 3 21 18 22 19 16 20 17
20 5 8 13 11 6 1 12 10 7 2 15 9 14 3 4 18 22 19 16 20 17 21
21 13 6 9 14 12 7 2 4 11 1 3 15 10 8 5 22 19 16 20 17 21 18
88 3 14 7 10 8 13 1 9 5 12 2 4 15 11 6 19 16 20 17 21 18 22

* This research was supported by the United States Air Force through the Air Force Office of
Scientific Research of the Air Research and Development Command, under Contract No. AF
49(638)-213. Reproduction in whole or in part is permitted for any purpose of the United States
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1. Let H be a subgroup of a topological group G. We describe H as homotopy-
abelian in G if f - fH X H - G where f, f are the maps given by

f(x, y) = xy = (y, x) (x, y e H).
This is the case, for example, when G is pathwise-connected and H is conjugate to
a subgroup whose elements commute with those of H. If H is homotopy-abelian
in G, then any subgroup of H is homotopy-abelian in any group which contains
G as a subgroup. A homotopy-abelian group is one which is homotopy-abelian
in itself. There exist homotopy-abelian groups, such as the stable classical groups,
which are not abelian.

Consider the nonabelian classical groups2

SO(n) (n _ 3), U(n) (n _ 2), Sp(n) (n _ 1);
subject to the standard embeddings (m > n):

SO(n) c SO(m), U(n) c U(m), Sp(n) c Sp(m).
Because their elements commute with those of appropriate conjugate subgroups it
follows that SO(n), U(n), Sp(n) are homotopy-abelian in SO(2n), U(2n), Sp(2n),
respectively. We shall prove
THEOREM (1.1). U(n) is not homotopy-abelian in U(2n - 1).
THEOREM (1.2). Sp(n) is not homotopy-abelian in Sp(2n - 1).
The analogous statement is not true in the case of rotation groups since, for

example, S0(4) is homotopy-abelian in3 S0(7). However, we shall prove
THEOREM (1.3). If n is odd, SO(n) is not homotopy-abelian in SO(2n -2).
COROLLARY (1.4). If n is even, SO(n) is not homotopy-abelian in SO(2n - 4).
These results imply that none of the groups SO(n), U(n), Sp(n) is homotopy-

abelian. Furthermore we shall prove
THEOREM (1.5). The classical structure classes contain no Lie group which is

homotopy-abelian but not abelian.
Although it seems probable that the only homotopy-abelian Lie groups are

abelian, we have not been able to eliminate the possibility that certain of the
exceptional groups are homotopy-abelian. Our method is a development of one
employed by Samelson4 to show that Sp(l) cannot be homotopy-abelian. It
involves consideration of the pairing in the homotopy groups of G, called the
Samelson product, whose definitions depends on the operation of commutation
in G, This pairing is related to the Whitehead product in the homotopy groups of


