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A latin square of order n is an n× n matrix in which each of n

symbols occurs exactly once in each row and once in each column.

e.g.

1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1

is a latin square of order 4.

Hence a latin square is a 2 dimensional permutation.



Quasigroups are latin squares!
The cancellation laws

ax = ay =⇒ x = y

xa = ya =⇒ x = y

imply that every quasigroup table is a latin square.

1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

multiplication in Z∗
5.



The 16 card trick
Take the picture cards (aces, kings, queens & jacks) from a standard
pack and arrange them in a 4× 4 array so that each row and
column contains one card of each suit and one card of each rank.

There are 6912 ways to do the puzzle, but 20922789881088 ways to
fail to do it.



One solution

♠A ♥K ♦J ♣Q
♥Q ♠J ♣K ♦A

♣J ♦Q ♥A ♠K

♦K ♣A ♠Q ♥J



Each solution is the superposition of two latin squares

♠ ♥ ♦ ♣
♥ ♠ ♣ ♦
♣ ♦ ♥ ♠
♦ ♣ ♠ ♥

A K J Q

Q J K A

J Q A K

K A Q J

These squares have a special property – they are called orthogonal
mates.

When we overlay them each ordered pair of symbols occurs once.



Transversals
A transversal of a latin square is a set of entries which includes
exactly one entry from each row and column and one of each
symbol.

♠ ♥ ♦ ♣
♥ ♠ ♣ ♦
♣ ♦ ♥ ♠
♦ ♣ ♠ ♥

A K J Q

Q J K A

J Q A K

K A Q J



Theorem 1 A latin square has an orthogonal mate iff it can be
decomposed into disjoint transversals.

♠ ♥ ♦ ♣
♥ ♠ ♣ ♦
♣ ♦ ♥ ♠
♦ ♣ ♠ ♥

♠ ♥ ♦ ♣
♥ ♠ ♣ ♦
♣ ♦ ♥ ♠
♦ ♣ ♠ ♥

♠ ♥ ♦ ♣
♥ ♠ ♣ ♦
♣ ♦ ♥ ♠
♦ ♣ ♠ ♥

♠ ♥ ♦ ♣
♥ ♠ ♣ ♦
♣ ♦ ♥ ♠
♦ ♣ ♠ ♥



1a 2b 3c 4d 5e 6f 7g 8h

7b 8a 5d 6c 2f 4e 1h 3g

2c 1d 6a 3b 4g 5h 8e 7f

8d 7c 4b 5a 6h 2g 3f 1e

4f 3e 1g 2h 7a 8b 5c 6d

6e 5f 7h 8g 1b 3a 2d 4c

3h 6g 2e 1f 8c 7d 4a 5b

5g 4h 8f 7e 3d 1c 6b 2a

a b c d e f g h

b a d c f e h g

c d a b g h e f

d c b a h g f e

f e g h a b c d

e f h g b a d c

h g e f c d a b

g h f e d c b a



More generally, there is interest in sets of mutually orthogonal latin
squares (MOLS), that is, sets of latin squares in which each pair is
orthogonal in the above sense.

The literature on MOLS is vast.

A set of MOLS can be thought of as a latin square together with
appropriate sets of transversals of that square.



Orthogonal latin squares exist for all orders n 6∈ {2, 6}.
For n = 6 there is no pair of orthogonal squares, but we get close.

Finney [1945] gives the following example which contains 4 disjoint
transversals indicated by the subscripts a, b, c and d.

1a 2 3b 4c 5 6d

2c 1d 6 5b 4a 3
3 4b 1 2d 6c 5a

4 6a 5c 1 3d 2b

5d 3c 2a 6 1b 4
6b 5 4d 3a 2 1c



Some terminology

Each latin square of order n can be thought of as a set of n2 triples
(row,column,symbol).

Let Sn be the symmetric group on n letters.

The natural action of Sn × Sn × Sn on latin squares of order n is
called isotopism (or isotopy) and its orbits are called isotopy classes.

An important special case of isotopism is the action of the diagonal
subgroup of Sn × Sn × Sn. This action is called isomorphism and its
orbits are called isomorphism classes.



A further group action on latin squares is provided by permutation
of the elements of triples. Such images are the conjugates (also
called parastrophes) of the latin square.

An arbitrary combination of a conjugacy and an isotopism is called
a paratopism (or paratopy). The group of all paratopisms is
isomorphic to the wreath product Sn o S3. The orbits of its action
on the set of all latin squares are called paratopy classes, main
classes or species.

The number of transversals is a species invariant.



m n = 4 5 6 7 8
0 1 0 6 0 33
1 0 1 0 1 0
2 0 0 2 5 7
3 - 0 0 24 46
4 1 - 4 68 712
5 - 1 - 43 71330
6 - - 0 - 209505
7 - - - 6 -
8 - - - - 2024

Total 2 2 12 147 283657

The squares of order n, for 4 ≤ n ≤ 8, counted according to their
maximum number m of disjoint transversals. The entries in the
table are counts of main classes.



Latin squares with no transversals

A latin square of order mq is said to be of q-step type if it can be
represented by a matrix of q × q blocks Aij as follows

A11 A12 · · · A1m

A21 A22 · · · A2m
...

... . . . ...
Am1 Am2 · · · Amm

where each block Aij is a latin subsquare of order q and two blocks
Aij and Ai′j′ contain the same symbols iff i + j ≡ i′ + j′ mod m.
The following classical theorem is due to Maillet [1894].

Theorem 2 Suppose that q is odd and m is even. No q-step type
latin square of order mq possesses a transversal.

This rules out many group tables having transversals. In particular,
no cyclic group of even order has a transversal.



Odd order squares

By contrast, there is no known example of a latin square of odd
order without transversals.

Conjecture 3 Each latin square of odd order has at least one
transversal.

This conjecture is known to be true for n ≤ 9. It is attributed to
Ryser and has been open for forty years. In fact, Ryser’s original
conjecture was somewhat stronger: for every latin square of
order n, the number of transversals is congruent to n mod 2. In
1990, Balasubramanian proved the even case.

Theorem 4 In any latin square of even order the number of
transversals is even.

Despite this, there are many counterexamples of odd order to
Ryser’s original conjecture. Hence the conjecture has now been
weakened to Conjecture 3 as stated.



One obstacle to proving Ryser’s conjecture was recently revealed:

Theorem 5 For every n > 3 there exists a latin square of order n

which contains an entry that is not included in any transversal.

This latest theorem showed existence for all n > 3 of a latin square
of order n without an orthogonal mate.



The ∆ function

We define the following function on the elements (x, y, z) of a latin
square L of order n.

∆(x, y, z) = x + y − z mod n.

Lemma 6 The sum (mod n) of the ∆ values over the elements of
a transversal T is 0 if n is odd, and 1

2n if n is even.

Proof: By definition, T comprises one element from each row,
one element from each column, and one element from each symbol.
Hence, ∑

e∈T

∆(e) =
n−1∑
i=0

i +
n−1∑
i=0

i−
n−1∑
i=0

i = 1
2n(n− 1) ut

Corollary 7 The cyclic square Zn has no transversal if n is even.



Case: n ≡ 3 mod 4

We define a latin square L of order n ≥ 7.

L[i, j] = i + j mod n, except for the following entries:
L[0, 0] = 1; (−1)
L[0, 1] = 0; (1)

for i = 1, 3, . . . , n−5
2

L[i, 0] = i + 2; (−2)
L[i, 2] = i; (2)

L[n−1
2 , 0] = 0; (n−1

2 )
L[n−1

2 , n+1
2 ] = n−1

2 ; (−n−1
2 )

L[n− 1, 1] = 1; (−1)
L[n− 1, 2] = n−1

2 ; (−n−3
2 )

L[n− 1, n+1
2 ] = 0. (n−1

2 )

Consider a possible transversal which includes (n− 1, n+1
2 , 0).



Partial transversals
Define a partial transversal of length k to be a set of k entries, each
selected from different rows and columns of a latin square such that
no two entries contain the same symbol.

Since not all squares of order n have a partial transversal of length
n, the best we can hope for is to find one of length n− 1. The
following conjecture has been attributed by Brualdi.

Conjecture 8 Every latin square of order n possesses a partial
transversal of length n− 1.

There have been several claimed proofs of this conjecture.



The best reliable result to date states that there must be a partial
transversal of length at least n−O(log2 n). This was shown by
Shor [1982].
This improved on a number of earlier bounds including
2
3n + O(1) (Koksma 1969)
3
4n + O(1) (Drake 1977)
9
11n + O(1) (Wang 1978?)
n−

√
n (Brouwer et al. 1978 and Woolbright 1978)

Erdős and Spencer [1991] showed that any n× n array in which no
entry occurs more than (n− 1)/16 times has a transversal (in the
sense of a diagonal with n different symbols on it).
Cameron and Wanless [2005] showed that every latin square
possesses a diagonal in which no symbol appears more than twice.



What is the shortest possible length of a maximal partial
transversal?

It is easy to see that no partial transversal of length strictly less
than 1

2n can be maximal, since there are not enough ‘used’ symbols
to fill the submatrix formed by the ‘unused’ rows and columns.

However, for all n > 4, maximal partial transversals of length
⌈1

2n
⌉

can easily be constructed using a square of order n which contains a
subsquare S of order

⌊1
2n

⌋
and a partial transversal containing the

symbols of S but not using any of the same rows or columns as S.



Number of transversals
We define t(n) and T (n) to be respectively the minimum and
maximum number of transversals among the latin squares of
order n.

We have seen that some latin squares have no transversals. Thus
for lower bounds on t(n) we cannot do any better than t(n) ≥ 0,
with equality occurring at least when n is even.

Open problem: find an upper bound on t(n) when n is odd.



Turning to the maximum number of transversals, it should be clear
that T (n) ≤ n! since there are only n! different diagonals. An
exponential improvement on this trivial bound was obtained by
McKay et al. [2006]:

Theorem 9 For n ≥ 5,

15n/5 ≤ T (n) ≤ cn
√

n n!

where c =
√

3−
√

3
6 e

√
3/6 ≈ 0.61354.

The lower bound in Theorem 9 is very simple and would not be too
difficult to improve. The upper bound took considerably more
work, although it too is probably far from the truth.



In the same paper we reported the results of an exhaustive
computation of the transversals in latin squares of orders up to and
including 9.

n t(n) Mean Std Dev T (n)
2 0 0 0 0
3 3 3 0 3
4 0 2 3.46 8
5 3 4.29 3.71 15
6 0 6.86 5.19 32
7 3 20.41 6.00 133
8 0 61.05 8.66 384
9 68 214.11 15.79 2241

Table 1: Transversals in latin squares of order n ≤ 9.

This confirms Ryser’s conjecture for n ≤ 9.



A latin square is semisymmetric if three of its conjugates are equal.
(The corresponding quasigroup satisfies x(yx) = y)

The following semisymmetric squares are representatives of the
unique main class with t(n) transversals for n ∈ {5, 7, 9}. In each
case the largest subsquares are shown in bold.

1 2 3 4 5
2 1 4 5 3
3 5 1 2 4
4 3 5 1 2
5 4 2 3 1

3 2 1 5 4 7 6
2 1 3 6 7 4 5
1 3 2 7 6 5 4
5 6 7 4 1 2 3
4 7 6 1 5 3 2
7 4 5 2 3 6 1
6 5 4 3 2 1 7

2 1 3 6 7 8 9 5 4
1 3 2 5 4 9 6 7 8
3 2 1 4 9 5 7 8 6
9 5 4 3 2 1 8 6 7
8 4 6 2 5 7 1 9 3
4 7 9 8 3 6 5 1 2
5 8 7 9 6 2 3 4 1
6 9 8 7 1 4 2 3 5
7 6 5 1 8 3 4 2 9



n Lower Bound Upper Bound
10 5504 75000
11 37851 528647
12 198144 3965268
13 1030367 32837805
14 3477504 300019037
15 36362925 2762962210
16 244744192 28218998328
17 1606008513 300502249052
18 6434611200 3410036886841
19 87656896891 41327486367018
20 697292390400 512073756609248
21 5778121715415 6803898881738477

Table 2: Bounds on T (n) for 10 ≤ n ≤ 21.

The lower bound in each case is constructive and likely to be very
close to the true value.
When n 6≡ 2 mod 4 the lower bound comes from the group with the
highest number of transversals.
When n ≡ 2 mod 4 the lower bound comes from a so-called
turn-square.



Turn-squares

A turn-square is obtained by starting with the Cayley table of a
group (typically a group of the form Z2 ⊕ Zm for some m) and
“turning” some of the intercalates (that is, replacing a subsquare of
order 2 by the other possible subsquare on the same symbols).

5 6 2 3 4 0 1 7 8 9
6 2 3 4 0 1 7 8 9 5
2 3 4 0 1 7 8 9 5 6
3 4 0 1 2 8 9 5 6 7
4 0 1 2 3 9 5 6 7 8

0 1 7 8 9 5 6 2 3 4
1 7 8 9 5 6 2 3 4 0
7 8 9 5 6 2 3 4 0 1
8 9 5 6 7 3 4 0 1 2
9 5 6 7 8 4 0 1 2 3



Using the number of transversals as a heuristic in searching for
MOLS is not fail-safe. For example, the turn-square of order 14
with the most transversals (namely, 3477504) does not have any
orthogonal mates. Meanwhile there are squares of order n with
orthogonal mates but which possess only the bare minimum of n

transversals.



Theoretical estimates are hard

There are not even good estimates for zn, the number of
transversals of the cyclic group of order n. In 1991, Vardi predicted:

Conjecture 10 There exist real constants 0 < c1 < c2 < 1 such
that cn

1n! ≤ zn ≤ cn
2n! for all odd n ≥ 3.

Vardi makes this conjecture while considering a variation on the
toroidal n-queens problem.
The upper bound is true. We can take
c2 = 0.9153 [Cooper and Kovalenko 1996]
c2 = 1/

√
2 ≈ 0.7071 [Kovalenko 1996]

c2 = 0.614 [McKay et al. 2006]
Finding a lower bound of the form given in Conjecture 10 is still an
open problem.
Cooper et al. [2000] estimated that perhaps the correct rate of
growth for zn is around 0.39n n!.



Finite Groups
The study of transversals in groups has been phrased in terms of
the equivalent concepts of complete mapping and orthomorphisms.
A permutation θ of the elements of a quasigroup (Q,⊕) is a
complete mapping if η : Q 7→ Q defined by η(x) = x⊕ θ(x) is also a
permutation.
The permutation η is known as an orthomorphism of (Q,⊕).
All results on transversals could be rephrased in terms of complete
mappings and/or orthomorphisms because:

Theorem 11 Let (Q,⊕) be a quasigroup and LQ its Cayley table.
Then θ : Q 7→ Q is a complete mapping iff we can locate a
transversal of LQ by selecting, in each row x, the entry in column
θ(x). Similarly, η : Q 7→ Q is an orthomorphism iff we can locate a
transversal of LQ by selecting, in each row x, the entry containing
symbol η(x).



The extra structure in groups allows for much stronger results. For
example, suppose we know of a transversal of LG that comprises a
choice from each row i of an element gi. Let g be any fixed element
of G. Then if we select from each row i the element gig this will
give a new transversal and as g ranges over G the transversals so
produced will be mutually disjoint. Hence

Theorem 12 If LG has a single transversal then it has a
decomposition into disjoint transversals.



Which groups have transversals?

We are very close to answering this question. Consider:

(i) LG has a transversal.

(ii) LG can be decomposed into disjoint transversals.

(iii) There exists a latin square orthogonal to LG.

(iv) There is some ordering of the elements of G, say a1, a2, . . . , an,
such that a1a2 · · · an = ε, where ε denotes the identity element
of G.

(v) The Sylow 2-subgroups of G are trivial or non-cyclic.

(i), (ii) and (iii) are equivalent.
Paige [1951] showed that (i) implies (iv). Hall and Paige [1955]
then showed that (iv) implies (v). They also showed that (v)
implies (i) if G is a soluble, symmetric or alternating group. They
conjectured that (v) is equivalent to (i) for all groups.



It was subsequently noted by Dénes and Keedwell [1989] that both
(iv) and (v) hold for all non-soluble groups, which proved that (iv)
and (v) are equivalent. A more direct and elementary proof of this
fact was given by Vaughan-Lee and Wanless [2003].
To summarise:

Theorem 13 (i)⇔(ii)⇔(iii)⇒(iv)⇔(v)

Conjecture 14 (i)⇔(ii)⇔(iii)⇔(iv)⇔(v)

After decades of incremental progress on Conjecture 14 there has
recently been what would appear to be a very significant
breakthrough. In a preprint Wilcox has claimed to reduce the
problem to showing it for the sporadic simple groups. In another
preprint Evans is claiming that there are at most 5 candidates for
counterexamples.



The number of transversals through a given entry of LG is
independent of the entry chosen. Hence

Theorem 15 The number of transversals in LG is divisible by |G|.

McKay et al. [2006] also showed the following simple results.

Theorem 16 The number of transversals in any symmetric latin
square of order n is congruent to n modulo 2.

Corollary 17 If G is abelian or |G| is even then the number of
transversals in G is congruent to |G| modulo 2.

Corollary 17 cannot be generalised to non-abelian groups of odd
order, given that the non-abelian group of order 21 has
826814671200 transversals.

Theorem 18 If G is a group of order n 6≡ 1 mod 3 then the
number of transversals in G is divisible by 3.



Let z′n = zn/n denote the number of transversals through any given
entry of the cyclic square of order n. Since zn = z′n = 0 for even n

we shall assume for the following discussion that n is odd.
The initial values of z′n are z′1 = z′3 = 1, z′5 = 3, z′7 = 19, z′9 = 225,
z′11 = 3441, z′13 = 79259, z′15 = 2424195, z′17 = 94471089,
z′19 = 4613520889, z′21 = 275148653115, z′23 = 19686730313955 and
z′25 = 1664382756757625.
If we take these numbers modulo 8 the sequence begins
1,1,3,3,1,1,3,3,1,1,3,3,1. We know from Theorem 16 that z′n is
always odd for odd n, but it is an open question whether there is
any deeper pattern. We also know from Theorem 18 that z′n is
divisible by 3 when n ≡ 2 mod 3. The initial terms of {z′n mod 3}
are 1,1,0,1,0,0,2,0,0,1,0,0,2.
Interestingly, zn is the number of diagonally cyclic latin squares of
order n (ie, the number of quasigroups on the set {1, 2, . . . , n}
which have the transitive automorphism (123 · · ·n)).



n Number of transversals in groups of order n
3 3
4 0, 8
5 15
7 133
8 0, 384, 384, 384, 384
9 2025, 2241

11 37851
12 0, 198144, 76032, 46080, 0
13 1030367
15 36362925
16 0, 235765760, 237010944, 238190592, 244744192, 125599744,

121143296, 123371520, 123895808, 122191872, 121733120,
62881792, 62619648, 62357504

17 1606008513
19 87656896891
20 0, 697292390400, 140866560000, 0, 0
21 5778121715415, 826814671200
23 452794797220965

Table 3: Transversals in groups of order n ≤ 23.



Groups of small order

For groups of order n ≡ 2 mod 4 there can be no transversals, by
Theorem 13.
Bedford and Whitaker [1999] offer an explanation for why all the
non-cyclic groups of order 8 have 384 transversals.

The groups of order 4, 9 and 16 with the most transversals are the
elementary abelian groups of those orders. Similarly, for orders 12,
20 and 21 the group with the most transversals is the direct sum of
cyclic groups of prime order. It is an open question whether such a
statement generalises to all n.

Every 2-group of order n ≤ 16 has a number of transversals which
is divisible by 2n−1. It would be interesting to know if this is true
for general n.



Generalised transversals
A k-plex in a latin square of order n is a set of kn entries which
includes k representatives from each row and each column and of
each symbol. A transversal is a 1-plex. The marked entries form a
3-plex in the following square:

1∗ 2 3 4∗ 5 6∗

2∗ 1 4 3∗ 6∗ 5
3 5∗ 1 6 2∗ 4∗

4 6 2∗ 5 3∗ 1∗

5∗ 4∗ 6∗ 2 1 3
6 3∗ 5∗ 1∗ 4 2

The entries not included in a k-plex of a latin square L of order n

form an (n− k)-plex of L.



Together the k-plex and its complementary (n− k)-plex are an
example of what is called an orthogonal partition of L.
For our purposes, if L is decomposed into disjoint parts K1,
K2, . . . , Kd where Ki is a ki-plex then we call this a
(k1, k2, . . . , kd)-partition of L.
A case of particular interest is when all parts are the same size, k.
We call such a partition a k-partition. For example, the marked
3-plex and its complement form a 3-partition of the square above.

Finding a 1-partition of a square is equivalent to finding an
orthogonal mate.

Some results about transversals generalise directly to other plexes,
while others seem to have no analogue. Theorem 4 and Theorem 12
seem to be in the latter class.



However, the following are direct analogues of earlier results.

Theorem 19 Suppose that q and k are odd integers and m is even.
No q-step type latin square of order mq possesses a k-plex.

Theorem 20 Let G be a group of finite order n with a non-trivial
cyclic Sylow 2-subgroup. The Cayley table of G contains no k-plex
for any odd k but has a 2-partition and hence contains a k-plex for
every even k in the range 0 ≤ k ≤ n.

The situation for even k is quite different to the odd case. Rodney
conjectures that every latin square has a duplex. This conjecture
was strengthened in [W2002] to the following:

Conjecture 21 Every latin square has the maximum possible
number of disjoint duplexes. In particular, every latin square of
even order has a 2-partition and every latin square of odd order has
a (2, 2, 2, . . . , 2, 1)-partition.



Depending on whether a soluble group has a non-trivial cyclic
Sylow 2-subgroup, it either has a k-plex for all possible k, or has
them for all possible even k but no odd k.
If the Hall-Paige conjecture could be proved it would completely
resolve the existence question of plexes in groups, and these would
remain the only two possibilities.
Other scenarios occur for latin squares that are not based on
groups. For example, the square at the start of this section has no
transversal but clearly does have a 3-plex.

Conjecture 22 For all even n > 4 there exists a latin square of
order n which has no transversal but does contain a 3-plex.

Theorem 23 For all even n there exists a latin square of order n

which has k-plexes for every odd value of k between b1
4nc and d3

4ne,
but not for any odd value of k outside this range.

Interestingly, there is no known example of odd integers a < b < c

and a latin square which has an a-plex and a c-plex but no b-plex.



The union of an a-plex and a disjoint b-plex of a latin square L is
an (a + b)-plex of L. However, it is not always possible to split an
(a + b)-plex into an a-plex and a disjoint b-plex.

Consider a duplex which consists of 1
2n disjoint intercalates (latin

subsquares of order 2).

We say that a k-plex is indivisible if it contains no c-plex for
0 < c < k.
For every k there is a indivisible k-plex in some sufficiently large
latin square. This was first shown in [W2002], but “sufficiently
large” in that case meant quadratic in k. This was recently
improved to linear in k as a corollary of the following result.

Theorem 24 For every k ≥ 2 there exists a latin square of order
2k which contains two disjoint indivisible k-plexes.

This is slightly surprising.



It is an open question for what values of k and n there is a latin
square of order n containing an indivisible k-plex. However, we
know the answer when k is small relative to n.

Theorem 25 Let n and k be positive integers satisfying 5k ≤ n.
Then there exists a latin square of order n containing an indivisible
k-plex.



So far we have started with a latin square and asked what sort of
plexes it might have. Now we want to start with a plex and ask
what latin squares it might be contained in.
A k-homogeneous partial latin square of order n is an n× n array in
which each cell is either blank or filled (the latter meaning that it
contains one of {1, 2, . . . , n}), and which has the properties that
(i) no symbol occurs twice within any row or column, (ii) each
symbol occurs k times in the array, (iii) each row and column
contains exactly k filled cells.
We can then sensibly ask whether this k-homogeneous partial latin
square is a k-plex. If it is then we say the partial latin square is
completable because the blank entries can be filled in to produce a
latin square.

Theorem 26 If 1 < k < n and k > 1
4n then there exists a

k-homogeneous partial latin square of order n which is not
completable.



Burton [1997] and Daykin and Häggkvist [1984] independently
conjecture that if k ≤ 1

4n then every k-homogeneous partial latin
square of order n is completable.
It seems certain that for k sufficiently small relative to n, every
k-homogeneous partial latin square of order n is completable. This
has already been proved when n ≡ 0 mod 16.

The following partial extension result due to Burton also seems
relevant.

Theorem 27 For k ≤ 1
4n every k-homogeneous partial latin square

of order n is contained in a (k + 1)-homogeneous partial latin
square of order n.



Covering radii for sets of permutations
A novel approach to Ryser and Brualdi’s conjectures has recently
been opened up by Andre Kézdy and Hunter Snevily. To explain
their approach, we need some terminology.
Consider the symmetric group Sn as a metric space equipped with
Hamming distance. That is, the distance between two permutations
g, h ∈ Sn is the number of points at which they disagree (n minus
the number of fixed points of gh−1). Let P be a subset of Sn. The
covering radius cr(P ) of P is the smallest r such that the balls of
radius r with centres at the elements of P cover the whole of Sn. In
other words every permutation is within distance r of some member
of P , and r is chosen to be minimal with this property.

Theorem 28 Let P ⊆ Sn be a set of permutations. If |P | ≤ n/2,
then cr(P ) = n. However, there exists P with |P | = bn/2c+ 1 and
cr(P ) < n.



Given n and s, what is the smallest m such that there is a set S of
permutations with |S| = m and cr(S) ≤ n− s? We let f(n, s)
denote this minimum value m.
This problem can also be interpreted in graph-theoretic language.
Define the graph Gn,s on the vertex set Sn, with two permutations
being adjacent if they agree in at least s places. Now the size of the
smallest dominating set in Gn,s is f(n, s).
Theorem 28 shows that f(n, 1) = bn/2c+ 1. Since any two distinct
permutations have distance at least 2, we see that f(n, n− 1) = n!
for n ≥ 2. Moreover, f(n, s) is a monotonic increasing function of s.
The next case to consider is f(n, 2). Kézdy and Snevily made the
following conjecture in unpublished notes.

Conjecture 29 If n is even, then f(n, 2) = n; if n is odd, then
f(n, 2) > n.

This conjecture has several connections with transversals.



The rows of a latin square of order n form a sharply transitive set
of permutations (that is, for any i and j, exactly one permutation
carries i to j); and every sharply transitive set is the set of rows of
a latin square.

Theorem 30 Let S be a sharply transitive subset of Sn. Then S

has covering radius at most n− 1, with equality if and only if the
corresponding latin square has a transversal.

Corollary 31 If there exists a latin square of order n with no
transversal, then f(n, 2) ≤ n. In particular, this holds for n even.

Hence Conjecture 29 implies Ryser’s conjecture, as Kézdy and
Snevily observed. In fact a stronger result holds:

Theorem 32 If S is the set of rows of a latin square L of order n

with no transversal, then S has covering radius n− 2.



The following result is also due to Kézdy and Snevily.

Theorem 33 Conjecture 29 implies Brualdi’s conjecture.

In other words, to solve the longstanding Ryser and Brualdi
conjectures it may suffice to answer this: How small can we make a
subset S ⊂ Sn which has the property that every permutation in Sn

agrees with some member of S in at least two places?



We used latin squares to find an upper bound for f(n, 2) when n is
even. For odd n we can also find upper bounds based on latin
squares. The idea is to choose a latin square with few transversals,
or whose transversals have a particular structure, and add a small
set of permutations meeting each transversal twice. For n = 5, 7, 9,
a single extra permutation suffices, showing that f(n, 2) ≤ n + 1 in
these cases.

1 2 3 4 5
2 1 4 5 3
3 5 1 2 4
4 3 5 1 2
5 4 2 3 1

1 3 4 2 5

1 2 3 4 5 6 7
2 3 1 5 4 7 6
3 1 2 6 7 4 5
4 5 6 7 1 2 3
5 4 7 1 6 3 2
6 7 4 2 3 5 1
7 6 5 3 2 1 4

3 2 1 7 6 5 4

1 3 2 4 6 5 7 9 8
2 1 3 5 4 6 8 7 9
3 2 1 7 9 8 4 6 5
4 6 5 9 8 7 1 3 2
5 4 6 8 7 9 3 2 1
6 5 4 2 1 3 9 8 7
7 9 8 1 3 2 5 4 6
8 7 9 3 2 1 6 5 4
9 8 7 6 5 4 2 1 3

5 4 6 1 3 2 9 8 7

In general, we have the following:

Theorem 34 f(n, 2) ≤ 4
3n + O(1) for all n.


