
Solving the Rehearsal Problem with Planning and with
Model Checking

Peter Gregory∗, Alice Miller†, and Patrick Prosser†

∗Computer and Information Sciences, University of Strathclyde, Scotland
peter.gregory@cis.strath.ac.uk

†Department of Computing Science, University of Glasgow, Scotland,
{alice,pat}@dcs.gla.ac.uk

Abstract. Planning problems have been modelled and solved as constraint satis-
faction problems [1–4]. Similarly, model checking problems have been modelled
and solved as constraint satisfaction problems [5, 6]. In this paper we show that,
conversely, planning and model checking techniques can each be applied to a
constraint satisfaction problem. We demonstrate this by modelling and solving
what might generally be accepted as a constraint satisfaction problem, the re-
hearsal problem [7], using both planning and model checking technologies. Both
of these technologies compete with the more natural encoding, the constraint
programming solution, in terms of search time.

1 Introduction

Constraint satisfaction techniques have been applied to planning problems for at least 20
years: Stefik’s MOLGEN [8] used constraint posting to model the interaction between
subproblems. More recently, planning systems have taken a Graphplan representation
of planning problems, mapped this to a constraint satisfaction problem (csp) and solved
the csp with advanced constraint processing techniques [1–4]. Constraint technology
has also been applied to model checking problems [6, 5]. This suggests that constraint
technology has a wide application. Model checking technology has also been applied
to planning problems, where the planning problem is reformulated as a model checking
problem which is then solved using model checking technology [9]. This might suggest
that we can solve a planning problem with any one of these techniques but that the
planning technology is too specialised to be used in any other domain.

Figure 1 depicts what we believe to be the state of the art with respect to modelling
and solving these three classes of problems with these three different technologies.
All our mappings so far are in one direction: from constraint programming (CP) to
model checking and planning, and from model checking to planning. Could we turn
things around? Could we solve a constraint satisfaction problem with planning or model
checking technology? Indeed we can, and we demonstrate this on a problem that is
generally acknowledged to be a constraint satisfaction problem, the rehearsal problem
[7]. In this paper we re-introduce the rehearsal problem and present a constraint model
in the choco toolkit. We then cast the problem as a planning problem and solve it with
a planning toolkit (Metric-FF) and finally model and solve the problem using the SPIN
model checker. We compare the performance of each technology and discuss the merits
of each approach.

2

&%
'$
Planning

&%
'$

CP &%
'$

MC

�
�
���

-
A

A
AAK

Fig. 1. Constraint Programming (CP) has been used to model and solve Planning problems and
Model Checking (MC) problems. Model Checking (MC) has been used to solve planning prob-
lems. Could we turn some of these arrows around? Yes, we can.

2 A constraint satisfaction problem: the rehearsal problem

The rehearsal problem was introduced to the CP community by Barbara Smith, as
cspLib problem number 39, and in APES report 67 [7]. An instance of the problem
is shown in Figure 2 below. There are 9 pieces of music that have to be rehearsed; 5
players, p1 to p5; and a cost for performing each piece. The 0/1 entries indicate whether
a player performs a given piece. For example, player p5 plays pieces 3, 5, 6, 7, and 8.
Assuming the pieces are played in the order shown, player p5 needs to arrive at time 3
and can leave at time 9, and need not be paid for time slots 1, 2, and 9. However p5 will
be paid 3 units for doing nothing while piece 4 is being performed.

piece 1 2 3 4 5 6 7 8 9
p1 1 1 0 1 0 1 1 0 1
p2 1 1 0 1 1 1 0 1 0
p3 1 1 0 0 0 0 1 1 0
p4 1 0 0 0 1 1 0 0 1
p5 0 0 1 0 1 1 1 1 0
cost 2 4 1 3 3 2 5 7 7

Fig. 2. An instance of the rehearsal problem, taken from [7] and also as cspLib entry 39. There are
9 pieces of music to be performed, and there are 5 players, p1 to p5. Each piece has an associated
cost (the bottom line). An entry i,j is 1 if and only if the ith player performs the jth piece. A
player should arrive in time to perform the first piece that they must play, and can leave only after
performing the last piece that they must play. If a player is present when a piece is performed
that player must be paid the cost of that piece, even if the player does not actually perform. The
columns are to be permuted to minimise the cost of paying idle players.

The problem is then to permute the columns of the above table such that the to-
tal cost of idleness is minimised. A minimum cost ordering (there are at least 4) is

3

382715649 (i.e. start with piece 3, then piece 8, piece 2, ... finishing with piece 9), with
a cost of 17.

3 A Constraint Programming Encoding

The encoding below is essentially the same as that of Barbara Smith except that chan-
nelling constraints are not used. Below we introduce the variables and the constraints
(in italics).

M a two dimensional array. M[i][j] = 1 if and only if player i performs piece j. The
array M is essentially an array of constants. That is, M is the data read in initially
and does not change.

s a one dimensional array. If s[i] = j then piece i will be performed in time slot (col-
umn) j. That is, s gives us the permutation of the columns in the above figure. Each
variable in s has a domain 1 to 9, and all the variables in s must take different val-
ues. Therefore we have a constraint amongst all the s variables, allDiff(s) [10]. This
constraint allows us to dispense with the dual variables and channelling constraints
used in [7].

T is the timetable, and is a two dimensional array of 0/1 variables. If s[j] = k then
T[i][k] = M[i][j]. That is, if piece j is being performed in time slot k (s[j] = k) and
person i performs piece j (M[i][j]) then the person i is timetabled to perform piece
j in time k (T[i][k] = M[i][j]).

C is a two dimensional array, such that C[i][j] is the cost of player i performing piece
j. The variable C[i][j] has a domain with two values, 0 and cost[i] (the cost of
performing piece i) where cost[i] is the last row of the above table (e.g. cost[3] =
1).

arrived is a two dimensional array of 0/1 variables. If arrived[i][k] = 1 then player i has
arrived at time k. Furthermore, if a player has arrived at time k he has also arrived
at time k+1. Therefore we have a ladder constraint1 such that if arrived[i][k] = 1
then arrived[i][k+1] = 1. This has a rippling effect. Something must initiate that
ripple, and that is when T[i][k] = 1. We then have the following constraints, if
T[i][k] = 1 then arrived[i][k] = 1. That is, if player i is actually performing a piece
at time k then he has arrived!

notLeft is also a two dimensional array of 0/1 variables. If a player has not yet left at time
k then notLeft[i][k] = 1. Again we have a ladder or rippling constraint, such that if
at time k you have not yet left then at time k-1 you have also not left! Therefore
we have the ladder/ripple constraints if notLeft[i][k] = 1 then notLeft[i][k-1] = 1.
Again, we need something to kick-off this ripple, and again it is when a T[i][k] = 1.
The constraint is then if T[i][k] = 1 then notLeft[i][k] = 1, i.e. if player i is actually
performing at time k then he has not yet left.

CT is the timetabling cost and is a two dimensional array of integer variables, similar
to array C. Each variable in CT has a value in the range 0 to the maximum value in
cost[i]. We now need to tie together arrays C (costs) and CT (the timetabled costs).
If piece j is timetabled to be performed at time k then the timetabled cost at time k

1 Peter Knightingale suggested this name.

4

is the cost at time j. This is expressed as follows: if s[j] = k then C[i][j] = CT[i][k].
The next constraint is the one that makes it all happen. If at time k a player has
arrived, and the player has not yet left, and the player is not actually performing a
piece then we incur the cost of that player being paid to do nothing. The constraint
is then if arrived[i][k] = 1 and notLeft[i][k] = 1 and T[i][k] = 0 then CT[i][k] 6=
0. This constraint ties it all together; the bit about arriving, having not left, being
timetabled but not actually doing anything, and the cost of it all.

total is the objective variable to be minimised, and is the sum of the variables in CT.

The above model was coded in choco which has a default search strategy. First, the
search attempts to resolve all disjunctive constraints. Having done that, the variable with
smallest domain is selected and the domain is split, until it reaches a singleton. This is
hopeless for our model as choco will concentrate on dealing with the ripple constraints,
trying to decide if someone has arrived or not yet left. We must therefore force choco
to consider only the decision variables s[1] to s[9] and examine those variables in a
good order. Barbara Smith proposed a static variable ordering heuristic for this problem
where we select variables in the following order s[1], s[9], s[2], s[8], s[3], s[7], s[4],
s[6], s[5], i.e. work from both ends of the timetable toward the middle. The reasoning
behind this is that as soon as we have decided that someone has arrived and not yet
left we can propagate and update the timetable cost CT. We can then use this in our
branch-and-bound search.

3.1 Performance of the model

There are essentially three versions of the model. Version 1 does not use any heuristic
ordering of the decision variables. Version 2 again does not use any heuristic ordering
but does use a symmetry breaking constraint proposed in [7]. If we have a timetable
with a given cost we can reverse the ordering of the pieces and obtain another timetable
with the same cost. This can be prevented by adding the constraint s[1] < s[9]. Version
3 is the same as version 2 with the additional ends-to-middle variable ordering heuristic.

The choco code was compiled and run on a 755MHz machine with 256MB of ram.
We measured nodes, backtracks and time in milliseconds to find and prove the optimal
solution (cost = 17). The data is tabulated in Figure 3 and we see that Version 3 is by
far the best. The symmetry breaking constraint makes only a marginal improvement in
performance but the static variable ordering makes a significant difference, speeding up
run time by a factor of 4.

4 A Planning Encoding

Planners are not regarded as versatile tools. Neither are they viewed, or even designed,
as tools for solving optimization problems. However, by using the rehearsal problem as
a test-case it can be shown that planners can be adapted to solve constraints problems
optimally. At first glance the rehearsal problem does not seem to be a planning prob-
lem, or a problem that a planning approach could solve. However, similar problems do
appear as subproblems of resource scheduling problems in which resources are to be
scheduled in such a way as to be active for the shortest possible time.

5

nodes backtracks time (ms)
Version 1 95171 197395 357990
Version 2 81170 149820 303100
Version 3 14417 36144 74230

Fig. 3. The performance of the choco model on a 755MHz machine with 256MB of ram. In
Version 1 the variables s[1] to s[9] are selected in index order and there is no symmetry breaking.
Version 2 uses index ordering of the variables and uses the symmetry breaking constraint s[1]
< s[9]. Version 3 selects variables in the order s[1], s[9], s[2], s[8], s[3], s[7], s[4], s[6], s[5]
(i.e. working from both ends of the timetable into the middle) and uses the symmetry breaking
constraint.

4.1 A PDDL encoding of the problem

Despite many ‘benchmark’ planning domains being viewed by the wider community as
toy-domains, the planning community attempts to model realistic problems. Modelling
the rehearsal problem requires several sophisticated features including numerics, quan-
tified and disjunctive preconditions and effects. Many planners can handle a subset of
these requirements but few can solve problems with all of them. However, Metric-FF
[11] can deal with them all. Metric-FF uses a simple forward chaining search strategy;
firstly using an ‘enforced hill-climbing’ algorithm then, on failure of that algorithm,
best-first search. Since all solutions to the rehearsal problem are valid solutions it may
be expected that Metric-FF would just return any arbitrary ordering for a solution. This
is true unless certain restrictions are placed upon the problem. There are four different
predicates necessary to define the rehearsal problem:

– (present ?p - player) musician ?p has arrived.
– (plays in ?p - player ?pi - piece) player ?p plays in piece ?pi.
– (left ?p - player) player ?p has left (in contrast to having not yet arrived).

This predicate is necessary so that musicians do not return once they have left.
– (played ?p - piece) piece ?p has been played.

There were also two functions to evaluate:

– (cost ?p - piece) This is the time that a certain piece of music takes. It can
be seen as a numeric cost associated with the piece.

– (totalcost) This function represents the summation of the wasted time during
the entire rehearsal.

A representation is possible with just one operator but for clarity, we present a three
operator version here. All of the code fragments are written in PDDL 2.1 [12]. The
syntax is lisp-like, so, for example, A or B reads (or A B) in PDDL.

The three operators(arrive ?p - player), (leave ?p - player), and
(perform ?p - piece) are defined as follows:

6

(arrive ?p - player) – The arrive operator has the precondition that the
player has not already arrived and that he/she has not already left the rehearsal. The
effect of the operation is that the musician is now present and able to perform.

(:action arrive
:parameters

(?p - player)
:precondition

(not
(or (present ?p) (left ?p))

)
:effect

(present ?p)
)

(leave ?p - player) – The precondition states that a player has played all of
the pieces he/she was involved in and that they are present. The effect of the action is
that the player is no longer present and that they have left.

(:action leave
:parameters

(?p - player)
:precondition

(and
(present ?p)
(forall (?pi - piece)
(imply (plays_in ?p ?pi) (played ?pi)))

)
:effect

(and
(not (present ?p))
(left ?p)

)
)

(perform ?p - piece) – The precondition of the perform operator states that
everybody who should be playing is present and that the piece hasn’t already been
played. The effect updates totalcost with the product of the cost of the piece and
the amount of idle performers.

7

(:action perform
:parameters

(?p - piece)
:precondition

(and
(not (played ?p))
(forall (?pl - player)
(imply (plays_in ?pl ?p) (present ?pl)))

)
:effect

(and
(forall (?pl - player)
(when (and (present ?pl)

(not(plays_in ?pl ?p)))
(increase (totalcost) (cost ?p))

)
)
(played ?p)

)
)

We exploit symmetry in the same way as that used in versions 2 and 3 of the choco
encoding, described in section 3.1. When run initially, Metric-FF creates a trivial plan
(the same ordering as in the initial state). Clearly a method of optimizing the plan is
required.

4.2 Planning for Optimality

In their revision of the PDDL language, Fox and Long [12] created a method of sup-
plying a metric within a planning problem (i.e. the domain-engineer has the option of
specifying a function to optimize). If an upper-bound is placed on the possible value of
totalcost then, as Metric-FF is a complete planner, eventually either a solution will
be generated or no solution is possible. The optimisation problem can then be posed as a
sequence of decision problems, where we iteratively reduce the value of totalcost.
Of course, the planner must be executed from scratch for each of these iterations. A
more efficient approach would be to employ a branch-and-bound technique to reduce
the search. This would involve significant alteration to the planner and has not been
implemented here.

4.3 Performance of Metric-FF

The following data was generated using Metric-FF V2.3 on a Pentium4 2600 with
512MB of system memory. Metric-FF gives an output of number of states visited. Al-
though this number contains incomplete solutions it is the best comparison we have
between the planning results and the nodes visited in the csp encoding. We report this
measure as nodes, but only for proof of optimality, i.e. when totalcost = 16. We
also report the time in milliseconds to solve the rehearsal problem to optimality, i.e.

8

the sum of the run times for the sequence of decision problems for 49 ≥ totalcost
≥ 17, plus the time to prove optimality, i.e. when totalcost = 16. The initial value
49 of totalcost is the cost of the initial ordering in the problem as presented in Fig-
ure 2. Version 1 is solved without breaking symmetries. Version 2 uses the symmetry-
breaking predicates. We also include the best nodes and time for the choco encoding,
and the run time for the best ILOG Solver implementation in [7]. The reader should
note that different hardware platforms have been used for the 3 studies, so we must be
cautious in comparing results. However, if we assume that the planning technology is
running on a processor 4 times faster than that used in the choco encoding, our best
planning solution is at least an order of magnitude better than our best choco encoding.

nodes time (ms)
Version 1 10299 520
Version 2 6825 910
choco 3 14417 74230
Solver 4 - 990

Fig. 4. The performance of the planning solution. Version 1 and 2 use Metric-FF V2.3 on a Pen-
tium4 2600 with 512 MB of ram. choco 3 is the best version of our choco encoding, running on
a 755 MHz processor. Solver 4 is the best implementation in [7], running on a 600MHz Celeron
PC.

With symmetry-breaking there are less nodes expanded, but the time is slower. It
is often the case with symmetry-breaking that the effort required to break the symme-
tries make execution time less attractive. Since we order arbitrary pieces then it is fully
conceivable that this choice affects the states visited and execution time.

Clearly the planning encoding performed better than the choco implementation.
Compared to the encoding in ILOG Solver [7] our PDDL encoding is reasonably com-
petitive (see the table above).

The choco encoding was greatly improved by a variable-ordering heuristic (Ver-
sion 3, section 3.1). Similarly, Metric-FF makes two different heuristic estimates for its
choice of action: one from the logical side of the problem and the other from the nu-
meric. The user may alter the overall weightings of each of these functions. However,
only the standard weightings were used here.

5 A Model Checking Encoding

Model checking is a technique whereby temporal logic properties of a system can be
checked by building an abstract model of the system and checking whether the model
satisfies the properties. The model is constructed using a specification language, and
checked using an automatic model checker. Failure of the model to satisfy a property
that the system is expected to satisfy indicates either that the model does not accurately
reflect the behaviour of the system, or that there is an error (bug) in the original system.

9

Examination of counter-examples provided by the model checker enable the user to
either refine the model or, more importantly, to debug the original system.

The SPIN verification system [13] is one of the most widely used model checkers.
Developed at Bell labs, SPIN is used to verify high-level models of concurrent software
systems. Promela is the specification language accepted by SPIN. It has a C-like syntax
and has constructs which allow for the specification of non-determinism, concurrency
and communication between processes. During model-checking the execution paths
(sequences of states reachable from the initial state) are explored (usually) via depth-
first search. All states are stored in a hash array. Once a previously visited state has been
reached, the search backtracks. Additionally, all states in the current execution path are
stored in a stack so that the path may be used to provide a counter example when an
error state, for example, is discovered. There are no local search strategies available
with SPIN, but by using a bounded search we can automatically find the shortest path
to an error state (see below)

As well as checking for deadlock, livelock, process starvation etc. SPIN can perform
verification of LTL (linear temporal logic) properties. These properties are assertions
about every possible behaviour (or execution path) of the system and can be loosely
divided into safety properties (a proposition θ1 is always true) and liveness properties
(eventually a proposition θ2 will be true).

Suppose that we have a safety property φ of the form “(along all paths) θ1 is always
true”. To show that φ holds for a given model, SPIN must perform a search of the state-
space of the system to ensure that there are no states at which θ1 is true. If, for a given
model φ is not true, the search will only continue until a state s is found at which θ1 does
not hold. The current execution path, up to s is then provided as a counter-example.

If, on the other hand, we have a liveness property of the form “(along all paths)
eventually θ2 is true”, things are not so simple. Suppose that s0 is the initial state of
the model. A counter-example in this case would consist of a path s0, s1, . . . , sn say,
where θ2 does not hold at si, for 0 ≤ i ≤ n and where sn is reachable from itself. This
counter-example demonstrates that there exists an infinitely looping path along which
θ2 is never true (namely s0, s1, . . . , sn, . . . , sn, . . . , sn, . . .) .

Although we give examples of LTL properties here, we do not provide details of the
logic. A full description of LTL and its use in model checking can be found in [14]. In
SPIN, LTL properties are converted to Büchi automata [15] expressed in the form of
never-claims. Never-claims can be thought of as an additional process which executes a
transition every time one of the other processes in the model has executed a transition.
If no such transition is possible (if the current path can not possibly lead to an error for
example) the current path is blocked, and the search backtracks.

In order to solve the rehearsal problem, very few of the features of SPIN (and of
model checking in general) need to be exploited. For example there is no communica-
tion involved, or any true concurrency. We will only consider a single “process” - the
rehearsal scheduler. The only other process is the never-claim, which can be thought
of as recording the behaviour of the scheduler process, rather than as an independent
process. Similarly, we are only interested in finding paths along which a given condition
(or proposition) eventually holds (not that the condition will eventually hold along all

10

paths). This is equivalent to finding a counter-example to a safety property. Thus we are
not considering liveness properties here.

One of the features of the SPIN model checker that we do make use of is the REACH
algorithm, which allows us to determine whether, for a safety property, an error exists
within a (user-defined) maximum depth, MAX say. (For a safety property “always
θ”, an error is said to exist at depth D if there is a path s0, s1, . . . , sD−1 and θ does not
hold at sD−1.) Once it has been determined that an error exists within a given bound, the
SHORTEST PATH algorithm can be used to find the shortest path to the error. During
the SHORTEST PATH algorithm the value of MAX is successively decremented until
a depth MIN is found such that an error exists at depth MIN but no error exists at
any depth less than MIN .

5.1 Modelling the rehearsal problem in Promela

A Promela program consists of process template proctype descriptions together with an
init process in which instantiations of the (parameterised) proctypes are initiated. In this
case we have a single process template, the scheduler proctype, which is instantiated
via the init process. A simple scheduler process declaration is provided below. Note
that choose next piece and play piece are calls to (user-defined) inline functions. (In
Promela an inline is similar to a procedure in an imperative language like C.)

proctype scheduler()
{byte current_cost=0;
byte count=no_pieces;

do
::(no_played==no_pieces)->break
::else->choose_next_piece(count);

play_piece(count);
no_played++;
count=no_pieces

od;
STOP=1;

}

A call to the choose next piece inline results in the next piece to be chosen non-
deterministically from the remaining pieces. The play piece inline is as follows:

11

inline play_piece(j)
{byte count1=0;
byte temp=0;
do
::atomic{(count1==no_players)->played_piece[j]=1;

count1=0;break}
::else->
if
::((plays[count1].piece[j]==0)&&

(present[count1]==1))
->temp=time_to_play[j];
current_cost=current_cost+temp;temp=0

::atomic{(plays[count1].piece[j]==1)->
present[count1]=1; pieces_left[count1]--;

if
::(pieces_left[count1]==0)->present[count1]=0
::else->skip
fi}

::else->skip
fi;
count1++

od}

When a call to the play piece inline is made, for each player currently present who is
not involved in the current piece, the cost is increased accordingly. Any player who is
involved in the piece is made present (unless already present), and sent home if this is
the final piece in which they are involved.

The current cost variable records the current cost and the (i, j)th element of the
plays.piece array records whether performer i is involved in piece j. The present,
pieces left and time to play arrays record which performers are currently present,
how many pieces each performer has yet to play, and how long each piece takes to play
(the cost of each piece) respectively. Initial values of these variables are either zero, in
which they are set upon declaration within a preamble, or are set within the init process
as seen below. Note that the scheduler process is initiated also from within init.

init
{ time_to_play[0]=2;time_to_play[1]=4;

. . .;time_to_play[8]=7;
plays[0].piece[0]=1; plays[0].piece[1]=1;

. . .;plays[4].piece[7]=1;
pieces_left[0]=6;. . . ;pieces_left[4]=5;

run scheduler()
}

Leaving aside for the moment the issue of the least cost, how can we use SPIN to
show that it is possible to schedule the rehearsal so that the total cost is less than a given
value N say? Note that when all of the pieces have been played the STOP variable
takes the value 1. At all other times it remains set to 0.

12

For a specific value of N we can capture the proposition “all pieces have been
played and the total waiting time is less than N” in LTL via the proposition p where
p is ((STOP == 1)&&(current cost < N)). Checking that the property “always
not p” holds will produce a counter-example if there exists a path in which p becomes
true. It is therefore possible to determine the least waiting time by performing a series of
model checking runs with decreasing values of N , until no error is found. This approach
is similar to that used in the planning approach, described in section 4.2.

However, it would be more desirable for the model checker to perform this iteration
automatically. Indeed, it seems sensible to use the iterative search facility provided by
the SHORTEST PATH algorithm, described above, and to find the shortest path to a
violation of the property “always q”, where q is (STOP == 0).

In order to exploit the SHORTEST PATH algorithm however, we must ensure that
there is a direct correspondence between the length of a given path and the waiting
time associated with that path. To do this, we have introduced a further inline function
wait which forces a new state to be reached for every unit of waiting time (cost). When
piece j is played, for each non-participating player i, instead of increasing the value of
current cost by time to play[j] in one step, it is now increased in time to play[j]
single steps. Thus in the play piece inline we replace the statement current cost =
current cost + temp with a call to the wait inline, via the statement wait(temp)
where the wait inline is given by

inline wait(j)
{byte count2=0;
do
::atomic{(count2==j)->count2=0;break}
::else->current_cost++;count2++
od}

Every unit of waiting time (cost) will now involve an execution of this loop, and a new
state in the current path.

(Atomic statements are used in Promela to reduce the amount of possible interleav-
ings between concurrent processes. In this case it simply reduces the number of times
the never-claim monitors the value of the current cost and STOP variables.)

In order to enable us to determine the performance sequence corresponding to the
shortest path, the scheduler proctype is enhanced with print statements to announce
which pieces are being played, and the final total cost (the value of the current cost

variable when STOP is set to 1). The performance sequence and total waiting time can
then be extracted (via a Perl script for example) from an output file associated with the
error trace.

5.2 Performance of SPIN

For all verification runs we used a PC with a 2.4GHz Intel Xenon processor, 3GB of
available main memory, running Linux (2.4.18).

To perform SPIN verification we performed some initial exploratory runs to find a
reasonable bound below which an error (or solution in this case) was known to exist.
Having found that there was an error within depth 700 the SHORTEST PATH algo-
rithm was used to find the shortest path to the error, corresponding to the solution with

13

minimal waiting time. The SHORTEST PATH search found a solution at depth 670,
took 3.9 seconds (user + system time), and used 90.7 MB of main memory. There were
818164 stored states and 24308 matched states. Note that stored states correspond to
nodes in a constraints solution, and matched states to backtracks.

It was very simple to implement the symmetry reduction used in both the constraints
and planning approaches (see sections and 3.1 and 4.1 respectively). When the next
piece to be played was chosen, piece 8 was only chosen if piece 0 had already been
played. In this case a solution was found at depth 522 in 2.3 seconds, using 53.4 MB of
main memory. In this case there were 473377 stored states and 13540 matched states.
Note that the same rehearsal timetable was produced using the implementation with
symmetry reduction, and that without.

It should be noted that, since model checking involves saving every new state, the
memory requirements associated with model checking can become prohibitive. How-
ever, in this example memory requirements are small. In addition, there are compression
algorithms available with SPIN which reduce the amount of memory required, at the
expense of time.

6 Comparison of Results
In the following table (Figure 5), we compare the number of nodes (or stored states
in the model checking case), number of backtracks (where available), and search time
associated with the constraints, planning and model checking encodings. In each case,
Version 1 is a preliminary encoding without symmetry, and Version 2 the corresponding
encoding with symmetry. There is also a third version for the constraints encoding, in
which the ends-to-middle variable ordering heuristic has been applied. As noted earlier,
each of our experiments took place on different machines. However, if we optimistically
assume that the model checking and planning solutions were running on machines 4
times faster than the choco encoding we can see that the non-CP technologies perform
very well indeed. Measures of nodes and backtracks are reported only to give some
indication of the size of the state space explored by each technology, but we can’t really
compare these figures.

Returning to the original results in [7], the best ILOG Solver encoding took 990ms
on a 600MHz Celeron PC. Again, if we assume that our best performer (the planning
solution), was running on a machine four times faster than the platform in [7] our best
planning solution would be about half the speed of the ILOG solution. We think this is
rather good, as ILOG solver is a highly optimised commercial toolkit whereas Metric-
FF is a freely available planner and was not intended to be used for problems like the
rehearsal problem.

Why did Metric-FF do so well? Metric-FF, like FF [16], employs a novel search
strategy combining hillclimbing with complete search, whilst making use of powerful
heuristic pruning techniques. In [16] Hoffmann and Nebel suggest that FF’s good per-
formance over the planning benchmarks has as much to do with the texture of the state
space of these problems as it has to do with FF’s technology. Maybe all that we can
conclude is that the rehearsal problem has a state space that suits FF.

Could we improve the model checking approach? The algorithms used are rather
basic. In order to allow us to detect the shortest path a new node is created per unit of

14

nodes backtracks time(ms)
Constraints:

Version 1 95171 197395 357990
Version 2 81170 149820 303100
Version 3 14417 36144 74230

Planning:
Version 1 10299 -- 521
Version 2 6825 -- 910

Model checking:
Version 1 818164 24308 3900
Version 2 437377 13540 2300

Fig. 5. The performance of the three approaches. Note that hardware platforms differ across tech-
nologies. Nevertheless, the planning technology is at least an order of magnitude faster than any
of the other approaches.

waiting time. On the one hand, this has the negative effect that the number of nodes is
substantially more than in the other cases. However, the solution with the shortest wait-
ing time could be found automatically, rather than as a sequence of decision problems
as in the planning approach. The Promela description was fairly intuitive, and the hard
work was left entirely to the model checker. It would certainly be beneficial to be able
to direct the model checking search towards a solution faster, as in the csp approach.

Our choco encoding was the slowest. One explanation for this is the runtime envi-
ronment: it was run within the choco interpreter rather than directly on the machine.
Another explanation may be that that the model was not as efficient as it might have
been. The fastest solution continues to be Barbara Smith’s ILOG Solver encoding, when
we factor in processor speed. Her solution was run on a machine approximately 4 times
slower than the planning solution, and when we take that into consideration we should
expect that it will run about twice as fast as the Metric-FF solution.

7 Conclusion

As Mark Twain said To a man with a hammer, everything looks like a nail. And to a
constraint programmer (our third author), does everything look like a constraint sat-
isfaction problem? We cannot afford to ignore other technologies. When we solve a
planning problem with constraint programming we should also give some thought to
doing the reverse: solving a csp with planning (as did our first author). The same holds
with model checking (our second author). As we have seen, model checking and plan-
ning both represent and solve the rehearsal problem with little difficulty. What is more,
they have outperformed our choco constraint programming solution in terms of time.

We have made no attempt to generalise from our study. All we have done is give
an existence proof, that we can indeed model and solve a constraint satisfaction prob-

15

lem quite competitively using two technologies that are very different from constraint
programming. Hopefully this work may be extended such that we can learn general
lessons, and maybe identify the features of csp’s that are best solved with these very
different methods.

Acknowledgements

We would like to thank our reviewers for there useful and encouraging comments.

References

1. Van Beek, P., Chen, X.: CPlan: A Constraint Programming Approach to Planning. In:
AAAI’99. (1999) 585–590

2. Do, M.M., Kambhampati, S.: Planning as constraint satisfaction: Solving the planning graph
by compiling it into CSP. Artificial Intelligence 132 (2001) 151–182

3. Lopez, A., Bacchus, F.: Generalizing GraphPlan by Formulating Planning as a CSP. In:
IJCAI’03. (2003)

4. Jefferson, C., Miguel, A., Miguel, I., Tarim, A.: Modelling and Solving English Peg Solitaire.
In: CPAIOR’03. (2003)

5. Fribourg, L.: Constraint Logic Programming Applied to Model Checking. In: LOPSTR’99.
(1999) 31–42

6. Delzanno, G., Podelski, A.: Model Checking in CLP. In: TACAS/ETAPS’99. (1999) 223–
239

7. Smith, B.: Constraint Programming in Practice: Scheduling a Rehearsal. Technical report,
APES (2003)

8. Stefik, M.: Planning with Constraints. Artificial Intelligence 16 (1981) 111–140
9. Giunchiglia, F., Traverso, P.: Planning as Model Checking. In: ECP’99. (1999)

10. Jean-Charles Regin: A Filtering Algorithm for Constraints of Difference in CSPs. In:
AAAI’94. (1994) 362–367

11. Hoffmann, J.: The Metric-FF planning system: Translating ”ignore delete lists” to numeric
state variables. Journal of Artificial Intelligence Research 20 (2003) 291–341

12. Fox, M., Long, D.: An extension to PDDL for expressing temporal planning domains. Jour-
nal of Artificial Intelligence Research 20 (2003) 61–124

13. Holzmann, G.J.: The SPIN model checker: primer and reference manual. Addison Wesley
(2003)

14. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. The MIT Press (1999)
15. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification

(preliminary report). In: Proceedings, Symposium on Logic in Computer Science, Cam-
bridge, Massachusetts, IEEE Computer Society (1986) 332–344

16. Hoffmann, J., Nebel, B.: The FF Planning System: Fast Plan Generation through Heuristic
Search. Journal of Artificial Intelligence Research 14 (2001) 253–302

