
INFORMS Journal on Computing
Vol. 23, No. 1, Winter 2011, pp. 120–137
issn 1091-9856 �eissn 1526-5528 �11 �2301 �0120

informs ®

doi 10.1287/ijoc.1090.0378
©2011 INFORMS

Solving Talent Scheduling with Dynamic Programming

Maria Garcia de la Banda
Faculty of Information Technology, Monash University, Melbourne, Victoria 3145, Australia,

mbanda@infotech.monash.edu.au

Peter J. Stuckey, Geoffrey Chu
National ICT Australia, Victoria Laboratory, Department of Computer Science and Software Engineering,

University of Melbourne, Melbourne, Victoria 3010, Australia {pjs@cs.mu.oz.au, gchu@csse.unimelb.edu.au}

We give a dynamic programming solution to the problem of scheduling scenes to minimize the cost of
the talent. Starting from a basic dynamic program, we show a number of ways to improve the dynamic

programming solution by preprocessing and restricting the search. We show how by considering a bounded
version of the problem, and determining lower and upper bounds, we can improve the search. We then show
how ordering the scenes from both ends can drastically reduce the search space. The final dynamic programming
solution is orders of magnitude faster than competing approaches and finds optimal solutions to larger problems
than were considered previously.

Key words : dynamic programming; optimization; scheduling
History : Accepted by John Hooker, former Area Editor for Constraint Programming and Optimization;

received December 2008; revised June 2009, October 2009; accepted December 2009. Published online in
Articles in Advance March 23, 2010.

1. Introduction
The talent scheduling problem (Cheng et al. 1993) can
be described as follows. A film producer needs to
schedule the scenes of his or her movie on a given
location. Each scene has a duration (the days it takes
to shoot it) and requires some subset of the cast to
be on location. The cast are paid for each day they
are required to be on location, from the day the first
scene they are in is shot to the day the last scene they
are in is shot, even though some of those days they
might not be required by the scene currently being
shot (i.e., they will be on location waiting for the next
scene they are in to be shot). Each cast member has a
different daily salary. The aim of the film producer is
to order the scenes in such a way as to minimize the
salary cost of the shooting.
We can formalize the problem as follows. Let S be

a set of scenes, let A be a set of actors, and let a�s�
be a function that returns the set of actors involved in
scene s ∈ S. Let d�s� be the duration in days of scene
s ∈ S, and let c�a� be the cost per day for actor a ∈ A.
We say that actor a ∈ A is on location at the time the
scene placed in position k, 1≤ k ≤ �S�, in the schedule
is being shot, if there is a scene requiring a scheduled
before or at position k, and there also is a scene requir-
ing a scheduled at or after position k. In other words,
a is on location from the time the first scene a is in is
shot until the time the last scene a is in is shot. The tal-
ent scheduling problem aims at finding a schedule for

scenes S (i.e., a permutation of the scenes) that mini-
mizes the total salary cost.
The talent scheduling problem as described in the

previous paragraph is certainly an idealised version of
the real problem. Real shooting schedules must con-
tend with actor availability, setup costs for scenes,
and other constraints ignored in this paper. In addi-
tion, actors can be flown back from location mid-
shoot to avoid paying their holding costs for extended
periods. However, the talent cost in real situations
is a prominent feature of the movie budget (Cheng
et al. 1993). Hence, concentrating on this core prob-
lem is worthwhile. Furthermore, the underlying math-
ematical problem has many other uses, including
archaeological site ordering, concert scheduling, very
large-scale integration (VLSI) design, and graph lay-
out. See §6 for more discussion on this.

Example 1. Consider the talent scheduling prob-
lem defined by the set of actors A = �a1� a2� a3� a4�
a5� a6�, the set of scenes S = �s1� s2� s3� s4� s5� s6� s7� s8�
s9� s10� s11� s12�, and the a�s� function determined by
the matrix M shown in Figure 1(a), where an X at
position Mij indicates that actor ai takes part in scene
sj . The daily cost per actor c�a� is shown in the
rightmost column, and the duration of each scene d�s�
is shown in the last row.
Consider the schedule obtained by shooting the

scenes in order s1� s2� s3� s4� s5� s6� s7� s8� s9� s10� s11� s12.
The consequences of this schedule in terms of an
actor’s presence and cost are illustrated by the matrix

120

Garcia de la Banda et al.: Solving Talent Scheduling with Dynamic Programming
INFORMS Journal on Computing 23(1), pp. 120–137, © 2011 INFORMS 121

(a)
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 c�a�

a1 X . X . . X . X X X X X 20
a2 X X X X X . X . X . X . 5
a3 . X X X 4
a4 X X . . X X 10
a5 . . . X . . . X X . . . 4
a6 X . . 7

d�s� 1 1 2 1 3 1 1 2 1 2 1 1

(b)
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 c�a�

a1 X – X – – X – X X X X X 20
a2 X X X X X – X – X – X . 5
a3 . X – – – – X X 4
a4 X X – – X X 10
a5 . . . X – – – X X . . . 4
a6 X . . 7

cost 35 39 78 43 129 43 33 66 29 64 25 20 604
extra 0 20 28 34 84 13 24 10 0 10 0 0 223

Figure 1 (a) An Example a�s� Function: ai ∈ a�sj � if the Row for ai

in Column sj Has an X; (b) An Example Schedule: ai Is on
Location When Scene sj Is Scheduled if the Row for ai in
Column sj Has an X or an“–”

M shown in Figure 1(b), where actor ai is on location at
the jth shot scene if the position Mij contains either an
X (ai is in the scene) or an “–” (ai is waiting). The cost
of each scene is shown in the second-to-last row and
is the sum of the daily costs of all actors on location
multiplied by the duration of the scene. The total cost
for this schedule is 604. The extra cost for each scene
is shown in the last row and is the sum of the daily
costs of only those actors waiting on location multi-
plied by the duration of the scene. The extra cost for
this schedule is 223.

The scene scheduling problem was introduced
by Cheng et al. (1993). In its original form each of
the scenes is actually a shooting day, and hence, the
duration of each of the scenes is one. A variation
of the problem, called concert scheduling (Adelson
et al. 1976), considers the case where the cost for each
player is identical. The scene scheduling problem is
known to be NP-hard (Cheng et al. 1993): even if each
actor appears in only two scenes, and all costs and
all durations are identical.
The main contributions of this paper are as follows:
• We define an effective dynamic programming

solution to the problem.
• We define and prove correct a number of opti-

mizations for the dynamic programming solution that
increase the size of problems we can feasibly tackle.
• We show how using bounded dynamic program-

ming can substantially improve the solving of these
problems.

• We show how, by considering a more accurate
notion of subproblem equivalence, we can substan-
tially improve the solving.
The final code can find optimal solutions to larger

problems than previous methods.
In §2 we give our call-based best-first dynamic

programming formulation for the talent scheduling
problem and consider ways it can be improved by
preprocessing and modifying the search. Section 3
examines how to solve a bounded version of the prob-
lem, which can substantially improve performance,
and how to compute upper and lower bounds for the
problem. Section 4 investigates a better search strat-
egy where we schedule scenes from both ends of the
search, and §5 presents an experimental evaluation
of the different approaches. In §6 we discuss related
work, and in §7 we conclude the paper.

2. Dynamic Programming
Formulation

The talent scheduling problem is naturally expressible
in a dynamic programming formulation. To do so,
we extend the function a�s�, which returns the set of
actors in scene s ∈ S, to handle a set of scenes, Q ⊆ S.
That is, we define a�Q� = ⋃

s∈Q a�s� as a function that
returns the set of actors appearing in any scene Q ⊆ S.
Similarly, we extend the cost function c�a� to sets of
actors G ⊆ A in the obvious way: c�G� =∑

a∈G c�a�.
Let l�s�Q� denote the set of actors on location at

the time scene s is scheduled assuming that the set of
scenes Q ⊆ �S − �s�� is scheduled after s and the set
S − Q − �s� is scheduled before s. Then,

l�s�Q� = a�s� ∪ �a�Q� ∩ a�S − Q − �s����

i.e., the on-location actors are those who appear in
scene s, plus those who appear in both a scene sched-
uled after s and one scheduled before s. The prob-
lem is amenable to dynamic programming because
l�s�Q� does not depend on any particular order of
the scenes in Q or S − Q − �s�. Let Q ⊆ S denote the
set of scenes still to be scheduled, and let schedule�Q�
be the minimum cost required to schedule the scenes
in Q. Dynamic programming can be used to define
schedule�Q� as

schedule�Q�

=

⎧⎪⎪⎨
⎪⎪⎩

0� Q = ��

mins∈Q��d�s� × c�l�s�Q − �s����

+ schedule�Q − �s���� otherwise,

which computes, for each scene s, the cost of schedul-
ing the scene s first, d�s�×c�l�s�Q−�s���, plus the cost
of scheduling the remaining scenes, Q − �s�. Dynamic
programming is effective for this problem because it

Garcia de la Banda et al.: Solving Talent Scheduling with Dynamic Programming
122 INFORMS Journal on Computing 23(1), pp. 120–137, © 2011 INFORMS

reduces the raw search space from �S�! to 2�S�, because
we only need to investigate costs for each subset of S
(rather than for each permutation of S).

2.1. Basic Best-First Algorithm
The code in Figure 2 illustrates our best-first call-based
dynamic programming algorithm, which improves
over a naïve formulation by pruning children that can-
not yield a smaller cost.
The algorithm starts by checking whether Q is

empty, in which case the cost is zero. Otherwise, it
checks whether the minimum cost for Q has already
been computed (and stored in scost�Q), in which case
it returns the previously stored result (code shown
in light gray). We assume the scost array is initial-
ized with zero. If not, the algorithm selects the next
scene s to be scheduled (using a simple heuristic that
will be discussed later) and computes in sp the value
cost�s�Q−�s��+schedule�Q−�s��, where the function
cost�s�B� returns the cost of scheduling scene s before
any scene in B ⊆ S (and after any scene in S − B − �s�),
calculated as

cost�s�B� = d�s� × c�l�s�B��

Note, however, that the algorithm avoids (thanks to
the break) considering scenes whose lower bound is
greater than or equal to the current minimum min,
since they cannot improve on the current solution.
As a result, the order in which the Q scenes are
selected can significantly affect the amount of work
performed. In our algorithm, this order is determined
by a simple heuristic that selects the scene s with the
smallest calculated lower bound if scheduled immedi-
ately, cost�s�Q − �s�� + lower�Q − �s��, where function
lower�B� returns a lower bound on the cost of schedul-
ing the scenes in B ⊆ S, and it is calculated simply as

lower�B� =∑
s∈B

d�s� × c�a�s���

schedule�Q�
if (Q = �) return 0

if (scost�Q) return scost�Q	

min �= +	
T �= Q
while (T
= �)

s �= index mins∈T cost�s�Q − �s�� + lower�Q − �s��
T �= T − �s�
if (cost�s�Q − �s�� + lower�Q − �s�� ≥min) break
sp �= cost�s�Q − �s�� + schedule�Q − �s��
if (sp <min) min �= sp

scost�Q	 �=min

return min

Figure 2 Pseudocode for Best-First Call-Based Dynamic
Programming Algorithm: schedule�Q� Returns the
Minimum Cost Required for Scheduling the Set of Scenes Q

which is the sum of the costs for actors that appear
in each scene. The index construct, indexmins∈Q e�s�,
returns the s in Q that causes the expression e�s� to
take its minimum value.
A call to the function schedule�S� returns the min-

imum cost required to schedule the scenes in S.
Extracting the optimal schedule found from the array
of stored answers, scost[], is straightforward and stan-
dard for dynamic programming.

Example 2. Consider the problem of Example 1.
An optimal solution is shown in Figure 3. The total
cost is 434, and the extra cost is 53.

2.2. Preprocessing
We can simplify the problem in the following two
ways:
• Eliminate single-scene actors: Any actor a′ that

appears only in one scene s can be removed from s
(i.e., we can redefine set a�s� as a�s�−�a′�), and we can
add its fixed cost d�s�×c�a′� to the overall cost. This is
correct because the cost of a′ is the same independent
of where s is scheduled (since a′ will never have to
wait while on location).
• Concatenate duplicate scenes: Any two scenes s1

and s2 such that a�s1� = a�s2� can be replaced by a
single scene s with duration d�s� = d�s1� + d�s2�. This
is correct because there is always an optimal schedule
in which s1 and s2 are scheduled together.
Because each simplification can generate new can-

didates for the other kind of simplification, we need
to repeatedly apply them until no new simplification
is possible.
The simplification that concatenates duplicate

scenes has been applied before but has not been for-
mally proved to be correct. For example, the real-
scene scheduling data from Cheng et al. (1993) were
used in Smith (2005) with this simplification applied.

Lemma 1. If there exists s1 and s2 in S where a�s1� =
a�s2�, then there is an optimal order with s1 and s2 sched-
uled together.

Proof. Let � denote a possibly empty sequence
of scenes. In an abuse of notation, and when clear
from context, we will sometimes use sequences

s5 s2 s7 s1 s6 s8 s4 s9 s3 s11 s10 s12 c�a�

a1 . . . X X X – X X X X X 20
a2 X X X X – – X X X X . . 5
a3 . X X – – X 4
a4 X X – X X 10
a5 X X X 4
a6 X . 7

cost 45 19 19 39 39 66 29 29 50 25 54 20 434
extra 0 0 10 4 9 10 20 0 0 0 0 0 53

Figure 3 An Optimal Order for the Problem of Example 1

Garcia de la Banda et al.: Solving Talent Scheduling with Dynamic Programming
INFORMS Journal on Computing 23(1), pp. 120–137, © 2011 INFORMS 123

as if they were sets. Without loss of generality,
take the order �1s1�2s

′�3s2�4 of the scenes in S
and consider the actors on location for scene s1
to be l�s1��2s

′�3s2�4� = A1 and for scene s2 to be
l�s2��4� = A2. Now, either c�A1� ≤ c�A2� (which, since
a�s1� = a�s2�, means that the cost of the actors wait-
ing in A1 is smaller than or equal to that of the actors
waiting in A2) or c�A1� > c�A2�. We will show how, in
the first case, choosing the new order �1s1s2�2s

′�3�4

(hereafter referred to as (a)) can only decrease the cost
for each scene. It is symmetric to show that, in the
second case, choosing the new order �1�2s

′�3s1s2�4

(hereafter referred to as (b)) can only decrease the cost
for each scene.
Let us examine the costs of s1 and s2. The cost

of s1 does not change from the original order to
that of (a) because the set of scenes before and
after s1 remains unchanged (i.e., since, by definition,
l�s1� s2�2s

′�3�4� = l�s1��2s
′�3s2�4�). The cost of s2 in

(a) is the cost of the actors in

l�s2��2s
′�3�4� = a�s2� ∪ �a��2s

′�3�4� ∩ a��1s1��
by definition of l�s�Q�

= a�s1� ∪ �a��2s
′�3�4� ∩ a��1s1��

by hypothesis of a�s1� = a�s2�

= a�s1� ∪ �a��2s
′�3�4� ∩ a��1��

by definition of a�Q�

= a�s1� ∪ �a��2s
′�3s2�4� ∩ a��1��

by definition of a�Q� and by
hypothesis of a�s1� = a�s2�

= l�s1��2s
′�3s2�4�

by definition of l�s�Q��

which is known to be A1. Hence, the cost of s2 can
only decrease, because c�A1� ≤ c�A2�.
Let us consider the other scenes. First, it is clear

that the products in �1 and �4 have the same on-
location actors because the set of scenes before and
after remain unchanged. Second, let us consider
the changes in the on-location actors for s′, which
can be seen as a general representative of scenes
scheduled between s1 and s2 in the original order.
Whereas in the original order the set of on-location
actors at the time s′ is scheduled is l�s′��3s2�4� =
a�s′� ∪ �a��1s1�2� ∩ a��3s2�4��, in the new order
the set of on-location actors is l�s′��3�4� = a�s′� ∪
�a��1s1s2�2� ∩ a��3�4��. Clearly, (i) a��3�4� ⊆
a��3s2�4�, and (ii) since a�s1� = a�s2�, we have that
a��1s1s2�2� = a��1s1�2�. Hence, by (i) and (ii) we
have that l�s′��3�4� ⊆ l�s′��3s2�4�, which means the
set of on-location actors when s′ is scheduled can only
decrease, and hence, the cost of scheduling s does not
increase. �

Example 3. Consider the scene scheduling problem
from Example 1. Because actor a6 only appears in
one task, we can remove this actor and add a total
of 2 × 7 = 14 to the cost of the resulting problem to
get the cost of the original problem. We also have
that a�s3� = a�s11�, and after the simplification above,
a�s10� = a�s12�. Hence, we can replace these pairs by
single new scenes of the combined duration. The
resulting preprocessed problem is shown in Figure 4.

2.3. Scheduling Actor-Equivalent Scenes First
Let o�Q� = a�S − Q� ∩ a�Q� be the set of on-location
actors just before an element of Q is scheduled, i.e.,
those for whom some of their scenes have already
been scheduled (appear in S − Q), and some have
not (appear in Q). We can reduce the amount of
search performed by the code shown in Figure 2 (and
thus improve its efficiency) by noticing that any scene
whose actors are exactly the same as those on loca-
tion now can always be scheduled first without affect-
ing the optimality of the solution. In other words, for
every s ∈ Q for which a�s� = o�Q�, there must be an
optimal solution to schedule�Q� that starts with s.

Example 4. Consider the scene scheduling prob-
lem in Example 1. Let us assume that the set of
scenes Q = �s1� s2� s4� s7� s8� s9� is scheduled after those
in S − Q = �s3� s5� s6� s10� s11� s12� have been scheduled.
Then, the set of on-location actors after S −Q is sched-
uled is o�Q� = �a1� a2� a4�, and an optimal schedule can
begin with s1 since a�s1� = o�Q�. An optimal schedule
of this form is shown in Figure 5.

Lemma 2. If there exists s ∈ Q where a�s� = o�Q�,
then there is an optimal order for schedule�Q� beginning
with s.

Proof. Let � denote a possibly empty sequence of
scenes. As before, we will sometimes use sequences as
if they were sets. Without loss of generality, take the
order �1�2s

′�3s�4 of the scenes in S where �2s
′�3s�4

is the sequence of scenes in Q and consider altering
the order to �1s�2s

′�3�4. We show that the cost for
each scene in Q can only decrease.
First, it is clear that the scenes in �4 have the same

on-location actors because the set of scenes before and
after it remains unchanged. Second, let us consider the

s1 s2 s′
3 s4 s5 s6 s7 s8 s9 s′

10 c�a�

a1 X . X . . X . X X X 20
a2 X X X X X . X . X . 5
a3 . X X X . . 4
a4 X X . . X X 10
a5 . . . X . . . X X . 4
a6 7

d�s� 1 1 3 1 3 1 1 2 1 3

Figure 4 The Problem of Example 1 After Preprocessing

Garcia de la Banda et al.: Solving Talent Scheduling with Dynamic Programming
124 INFORMS Journal on Computing 23(1), pp. 120–137, © 2011 INFORMS

s12 s10 s11 s3 s5 s6 o�Q� s1 s2 s9 s8 s7 s4 c�a�

a1 X X X X – X – X – X X . . 20
a2 . . X X X – – X X X – X X 5
a3 X – X X . 4
a4 X X – X X 10
a5 X X – X 4
a6 . X 7

d�s� 1 2 1 2 3 1 1 1 1 2 1 1

Figure 5 An Optimal Schedule for the Scenes Q =
�s1� s2� s4� s7� s8� s9�, Assuming �s3� s5� s6� s10� s11� s12� Have
Already Been Scheduled

changes in the on-location actors for s′, which can be
seen as a general representative of scenes scheduled
before s in the original order. Whereas in the origi-
nal order the set of on-location actors at the time s′ is
scheduled is l�s′��3s�4� = a�s′�∪�a��1�2�∩a��3s�4��,
in the new order the set of on-location actors is
l�s′��3�4� = a�s′� ∪ �a��1s�2� ∩ a��3�4��. Now for
every set of scenes Q′′ ⊆ Q′ we know that a�Q′′� ⊆
a�Q′�; i.e., increasing the number of scenes can only
increase the number of actors involved. Thus, we have
that (i) a��3�4� ⊆ a��3s�4�, and (ii) since a�s� = o�Q� =
�a�Q�∩a��1��, we have that a�s� ⊆ a��1� and thus that
a��1s�2� = a��1�2�. Hence, by (i) and (ii) we have that
l�s′��3�4� ⊆ l�s′��3s�4�, which means the set of on-
location actors for s′ in the altered schedule can only
decrease, and thus its cost cannot increase. Finally, we
also have to examine the cost for s. Since a�s� = o�Q�,
we have that l�s�Q − �s�� = a�s�. That means there is
no actor waiting if we schedule s now, which is the
cheapest possible way to schedule s. Hence, the costs
of scheduling this scene here are no more expensive
than in the original position. �

We can modify the pseudocode of Figure 2 to take
advantage of Lemma 2 by adding the line

if �∃s ∈ Q · a�s� = o�Q�� return d�s� × c�l�s�Q − �s���

+ schedule�Q − �s��

before the line min �= +	.

2.4. Pairwise Subsumption
When we have two scenes s1 and s2 where the actors
in one scene (s1) are a subset of the actors in the other
scene (s2), and the extra actors a�s2�−a�s1� are already
on location, then we can guarantee a better schedule
if we always schedule s2 before s1. Intuitively, this is
because if s1 is shot first, the missing actors would be
waiting on location for scene s2 to be shot, whereas if
s2 is shot first, some of those missing actors might not
be needed on location anymore.

Lemma 3. If there exists �s1� s2� ⊆ Q, such that a�s1� ⊆
a�s2�, a�S − Q� ∪ a�s1� ⊇ a�s2�, then for any order of Q
where s1 appears before s2, there is a permutation of that
order where s2 appears before s1 with equal or lower cost.

Proof. Let � denote a possibly empty sequence of
scenes. As before, we will sometimes use sequences
as if they were sets. Without loss of generality, take
the order �1�2s1�3s

′�4s2�5 of scenes in S where
�2s1�3s

′�4s2�5 is the sequence of scenes in Q and
consider the actors on location for scene s1 to be
l�s1��3s

′�4s2�5� = A1 and for s2 to be l�s2��5� = A2.
Now either c�A1� ≤ c�A2� or c�A1� > c�A2�.
Case c�A1� ≤ c�A2�. We show that choosing

�1�2s2s1�3s
′�4�5 as the new order can only decrease

the cost for each scene. The cost of s1 in the original
schedule is the cost of the actors in l�s1��3s

′�4s2�5�,
which is computed as a�s1� ∪ �a��3s

′�4s2�5� ∩
a��1�2��, whereas for the second schedule the cost
of s1 is the cost of the actors in l�s1��3s

′�4�5�, which
is computed as a�s1� ∪ �a��3s

′�4�5� ∩ a��1�2s2��.
Since by hypothesis a��1� ∪ a�s1� ⊇ a�s2�, and by def-
inition a��3s

′�4�5� ⊆ a��3s
′�4s2�5�, we have that

l�s1��3s
′�4�5� ⊆ l�s1��3s

′�4s2�5�, and hence, the cost
of s1 can only decrease.
Regarding s2, the set of actors in the new order is

l�s2� s1�3s
′�4�5�

= a�s2� ∪ �a�s1�3s
′�4�5� ∩ a��1�2��

by definition of l�s�Q�

= �a�s2� ∪ a�s1�3s
′�4�5�� ∩ �a�s2� ∪ a��1�2��

distributing∪ over∩
= �a�s1� ∪ a�s2�3s

′�4�5�� ∩ �a�s2� ∪ a��1�2��
by definition of a�Q�

⊆ �a�s1� ∪ a�s2�3s
′�4�5�� ∩ �a�s1� ∪ a��1�2��

by hypothesis of a��1� ∪ a�s1� ⊇ a�s2�

= l�s1��3s
′�4s2�5�

by definition of l�s�Q��

which is known to be A1. Hence, the cost of s2 can
only decrease in the new schedule.
Let us now consider the other scenes. First, it is clear

that the products in �1, �2, and �5 have the same on-
location actors because the set of scenes before and
after remain unchanged. Second, let us consider the
changes in the on-location actors for s′, which can be
seen as a general representative of scenes scheduled
in between s1 and s2 in the original order. Whereas
in the original order the set of on-location actors
at the time s′ is scheduled is l�s′��4s2�5� = a�s′� ∪
�a��1�2s1�3� ∩ a��4s2�5��, in the new order the
set of on-location actors is l�s′��4�5� = a�s′� ∪
�a��1�2s2s1�3� ∩ a��4�5��. Clearly, (i) a��4�5� ⊆
a��4s2�5� and (ii) since by hypothesis a��1� ∪ a�s1� ⊇
a�s2�, we have that a��1�2s2s1�3� ⊆ a��1�2s1�3�.
Hence, by (i) and (ii) we have that l�s′��4�5� ⊆
l�s′��4s2�5�, and hence, the cost of scheduling it can-
not increase.

Garcia de la Banda et al.: Solving Talent Scheduling with Dynamic Programming
INFORMS Journal on Computing 23(1), pp. 120–137, © 2011 INFORMS 125

Case c�A1� > c�A2�. We show that choosing
�1�2�3s

′�4s2s1�5 as the new order can only decrease
the cost for each scene.
Regarding s1, the set of actors in the new order is

l�s1��5� = a�s1� ∪ �a��5� ∩ a��1�2�3s
′�4s2��

by definition of l�s�Q�

= �a�s1� ∪ a��5�� ∩ �a�s1� ∪ a��1�2�3s
′�4s2��

distributing∪ over∩
= �a�s1� ∪ a��5�� ∩ �a�s2� ∪ a��1�2s1�3s

′�4��
by definition of a�Q�

⊆ �a�s2� ∪ a��5�� ∩ �a�s2� ∪ a��1�2s1�3s
′�4��

by hypothesis of a�s1� ⊆ a�s2�

= l�s2��5�
by definition of l�s�Q��

which is known to be A2. Hence, the cost of s1 can
only decrease in the new schedule.
Now, since a�s1� ⊆ a�s2�, we have that a�s2s1�5� =

a�s2�5�, and because adding scenes can only increase
cost, we have that a��1�2�3s

′�4� ⊆ a��1s1�2�3s
′�4�.

Thus, l�s2� s1�5� ⊆ l�s2��5�, which means the cost of
s2 can only decrease.
Let us consider the other scenes. As before, it is clear

that the products in �1, �2, and �5 have the same
on-location actors because the set of scenes before
and after remain unchanged. Let us then consider
the changes in the on-location actors for s′, which
can be seen as a general representative of scenes
scheduled between s1 and s2 in the original order.
Whereas in the original order the set of on-location
actors at the time s′ is scheduled is l�s′��4s2�5� =
a�s′� ∪ �a��1�2s1�3� ∩ a��4s2�5��, in the new order
the set of on-location actors is l�s′��4s2s1�5� = a�s′� ∪
�a��1�2�3� ∩ a��4s2s1�5��. Clearly, (i) by definition
a��1�2s1�3� ⊇ a��1�2�3� and (ii) by hypothesis of
a�s1� ⊆ a�s2�, we have that a��4s2s1�5� = a��4s2�5�.
Hence, by (i) and (ii) we have that l�s′��4s2s1�5� ⊆
l�s′��4s2�5�, which means the set of on-location actors
when s′ is scheduled can only decrease, and hence, the
cost of scheduling cannot increase. �

Example 5. Consider the scene scheduling problem
in Example 1. Let us assume that the set of scenes
Q = S−�s5� is scheduled after s5. Then, the on-location
actors after �s5� are o�Q� = �a2� a4�. Consider s1 and s6.
Since a�s6� ⊆ a�s1� and o�Q� ∪ a�s6� ⊇ a�s1�, s1 should
be scheduled before s6. This means we should never
consider scheduling s6 next!

We can modify the pseudocode of Figure 2 to take
advantage of Lemma 3 by adding the line

forall �s1 ∈ T �

if �∃s2 ∈ T · a�s1� ⊆ a�s2� ∧ a�S − Q� ∪ a�s1� ⊇ a�s2��

· T �= T − �s1�

after the line T �= Q and before the while loop. How-
ever, this is too expensive in practice. To make this effi-
cient enough, we need to precalculate the pairs P of the
form �s� s′�, where a�s� ⊆ a�s′�, and check that s′ ∈ T ,
s ∈ T , and a�S − Q� ∪ a�s� ⊇ a�s′� for each pair in P .

Pairwise subsumption was first used in the solution
of Smith (2005, 2003), although it was restricted to
cases where the difference in the sets is one or two
elements. Although no formal proof is given, there is
an extensive example in Smith (2003) explaining the
reasoning for the case where the scenes differ by one
element.

2.5. Optimizing Extra Cost
The base cost of a scene scheduling problem is given
by

∑
s∈S d�s� × c�a�s��. This is the cost for paying only

for the time of the actors of the scenes in which they
actually appear. Instead of minimizing the total cost,
we can minimize the extra cost, which is the total cost
minus the base cost (i.e., the cost of paying for actors
that are waiting rather than playing). We can recover
the minimal cost by adding the base cost to the min-
imal extra cost.
To do so, we simply need to change the cost and

lower functions used in Figure 2 as follows:

cost�s�Q� = d�s� × c�l�s�Q� − a�s��

lower�Q� = 0

The main benefit of this optimization is that the cost
of computing the lower bounds becomes free.

3. Bounded Dynamic Programming
We can modify our problem to be a bounded problem.
Let bnd_schedule�Q�U� be the minimal cost required
to schedule scenes Q if this is less than or equal to
the bound U and otherwise some number k where
U < k ≤ schedule�Q�. We can change the dynamic pro-
gram to take into account upper bounds U on a solu-
tion of interest. The recurrence equation becomes

bnd_schedule�Q�U�

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0� Q=�∨U <0�

min
s∈Q

d�s�×c
(
a�s�Q−�s���

+bnd_schedule�Q−�s��

U −d�s�×c�a�s�Q−�s���
)
� otherwise.

The only complexity here is that the upper bound is
reduced in the recursive relation to take into account
the cost of scene s.
Using bounding can have two effects, one positive

and one negative. On the positive side, we may be
able to determine without much search that a subprob-
lem cannot provide a better solution for the original

Garcia de la Banda et al.: Solving Talent Scheduling with Dynamic Programming
126 INFORMS Journal on Computing 23(1), pp. 120–137, © 2011 INFORMS

problem, thus restricting the search. On the negative
side, it may increase the search space because we have
now multiplied the potential number of subproblems
by the upper bound U .

3.1. Bounded Best-First Algorithm
Some of the potential subproblem explosion of adding
bounds can be ameliorated since if schedule�Q� ≤
U , then bnd_schedule �Q�U� = schedule�Q�; otherwise,
bnd_schedule�Q�U� ≤ schedule�Q� (i.e., bnd_schedule�Q�
U� is a lower bound for schedule�Q�). Therefore, we
only need to store one answer in the hash table
for problem Q (rather than one per U): either the
value OPT�v�, indicating we have computed the opti-
mal answer v, or the value LB�v�, indicating we
have determined a lower bound v on the answer.
We assume the hash table is initialized with entries
NONE, indicating no result has been stored. The only
time we have to reevaluate a subproblem Q is if the
stored lower bound v is less than or equal to the
current U .
The code for the bounded dynamic program is

shown in Figure 6. Note that the hash table handling
is slightly more complex, since we can immediately
return a lower bound v > U if that is stored in the
hash table already. The key advantage with respect to
efficiency is that the break in the while loop uses the
value U rather than min, because clearly no schedule
beginning with s will be able to give a schedule cost-
ing less than U in this case. This requires us to update
the bound U if we find a new minimum. When the
search completes we have either discovered the opti-
mal (if it is less than U), in which case we store it as
optimal, or we have discovered a lower bound (>U)
that we store in the hash table.

bnd_schedule�Q�U�
if (Q = �) return 0

if (scost�Q	 = OPT �v�) return v

if (scost�Q	 = LB�v� ∧ v > U) return v

min �= +	
T �= Q
while (T
= �)

s �= index mins∈T cost�s�Q − �s�� + lower�Q − �s��
T �= T − �s�
if (cost�s�Q − �s�� + lower�Q − �s�� ≥ U) break
sp := cost�s�Q − �s�� +bnd_schedule�Q − �s��U − cost�s�Q − �s���
if (sp <min) min �= sp
if (min≤ U) U �=min

if (min≤ U) scost�Q	 �= OPT �min�

else scost�Q	 �= LB�min�

return min

Figure 6 Pseudocode for Bounded Best-First Call-Based Dynamic Pro-
gramming Algorithm: bnd_schedule�Q�U� Returns the Min-
imum Cost Required for Scheduling the Set of Scenes Q if It
Is Less Than or Equal to U: Otherwise, It Returns a Lower
Bound on the Minimal Cost

This means we can prune more subproblems. Note
that this kind of addition of bounds can be automated
(Puchinger and Stuckey 2008).

3.2. Upper Bounds
Now that we are running a bounded dynamic pro-
gram, we need an initial upper bound for the original
problem. A trivial upper bound is the maximum pos-
sible cost; i.e., if all actors are on location at all times,(∑

s∈S

d�s�

)
×
(∑

a∈A

c�a�

)

To generate a better upper bound, we use a heuris-
tic based on the idea that keeping expensive actors
waiting around is bad. Thus, it prioritises expensive
actors by attempting to keep their scenes together as
much as possible (i.e., as long as this does not imply
separating scenes of more expensive actors). To do
this, the algorithm maintains a sequence of disjoint
sets of scenes (each set corresponding to the scenes
kept together for some actors) that provides a par-
tial schedule; i.e., the scenes in a set are known to be
scheduled after the scenes in any set to the left and
before the scenes in any set to the right. The idea is
to (i) only partition sets into smaller sets when this
benefits the next actor to be processed and (ii) never
to insert new scenes into the middle of the schedule
(i.e., scenes are never added to an already-formed set,
and sets are only added at the beginning or the end
of the partial schedule).
Initially, the schedule is empty and the remaining

actors are R = A. Then, we select the remaining actor
a ∈ R with greatest fixed cost c�a� × �

∑
s∈S�a∈a�s� d�s��,

and we determine the first and last sets in the sched-
ule involving a. If the actor is currently not involved
in any set, then we simply add a new set at the end of
the schedule with all the scenes in which a appears. If
all the scenes involving a are in a single set, we break
the set into those involving a and those that do not,
arbitrarily placing the second set afterwards. If all the
scenes involving a are already scheduled, we split the
first set that involves the actor into two: first those
not involving the actor, and then those involving the
actor. We do the same for the last set involving the
actor, except that the set involving the actor goes first.
This ensures that the scenes involving a are placed as
close as possible without disturbing the scheduling of
the previous actors.
If not all the scenes involving a are already sched-

uled, we first need to decide whether to put the set
of remaining scenes at the beginning or the end of
the current schedule. To do this we calculate the total
duration for which actor a will be on location if the
remaining scenes are scheduled either all before or
all after the current schedule. We place the remaining
scenes in the position (either all before or all after) that

Garcia de la Banda et al.: Solving Talent Scheduling with Dynamic Programming
INFORMS Journal on Computing 23(1), pp. 120–137, © 2011 INFORMS 127

leads to the shortest duration. Then, if we place the
scenes afterwards, we split the group where the actor
a first appears into two: first those not involving the
actor, and then those involving the actor. Similarly, if
the remaining scenes are scheduled at the beginning
we split the last group where a appears into two: first
those involving the actor, and then those not involv-
ing the actor.
This process continues until all actors are consid-

ered. We may have some groups that are still not sin-
gletons after this process. We order them in any way
because it cannot make a difference to the cost.
Note that this algorithm ensures that the two most

expensive actors will never be waiting.

Example 6. Consider the scene scheduling problem
in Example 1. The fixed cost of the actors a1, a2, a3,
a4, a5, and a6 are, respectively, 220, 55, 16, 60, 16, and
14. Thus, we first schedule all scenes involving a1 in
one group, �s1� s3� s6� s8� s9� s10� s11� s12�. We next con-
sider a4, which has some scenes scheduled (s1 and s6)
and some not (s2 and s5). Thus, we first need to
decide whether to place the set �s2� s5� after or before
the current schedule. Because the duration for which
a4 will be waiting on location is zero in both cases,
we follow the default (place it after) and split the
already-scheduled group into those not involving a4
and those involving a4, resulting in partial schedule
�s3� s8� s9� s10� s11� s12� �s1� s6� �s2� s5�. The total durations
of the groups are 9, 2, and 4, respectively.
We next consider a2, whose scenes �s4� s7� are not

scheduled. The total duration for a2 placing these
at the beginning is 2 + 9 + 2 + 4 = 17, whereas
placing them at the end is 4 + 2 + 4 + 2 = 10.
Thus, again we place them at the end and split
the first group, obtaining the partial schedule
�s8� s10� s12� �s3� s9� s11� �s1� s6� �s2� s5� �s4� s7�.

We next consider a3, whose scenes are all sched-
uled, and some appear in the first and the last
group. We thus split these two groups to obtain
�s10� s12� �s8� �s3� s9� s11� �s1� s6� �s2� s5� �s7� �s4�. Then
we consider a5, whose scenes are also all scheduled
and appear first in the second group and last in
the last group. Splitting these groups has no effect
because a5 appears in all scenes in the group so
the partial schedule is unchanged. Similarly, a6 only
appears in one group (the first), so this is split
into those containing a6 and those that do not to
obtain �s10��s12��s8��s3� s9� s11��s1� s6��s2� s5��s7��s4�. The
final resulting schedule is shown in Figure 7.

Note that we can easily improve a heuristic solution
of a scene scheduling problem by considering swap-
ping the positions of any two pairs of scenes and mak-
ing the swap if it lowers the total cost. This heuristic
method is explored in Cheng et al. (1993). We also tried
a heuristic that attempted to build the schedule from

s10 s12 s8 s3 s9 s11 s1 s6 s2 s5 s7 s4 c�a�

a1 X X X X X X X X 20
a2 . . . X X X X – X X X X 5
a3 . . X – – – – – X – X . 4
a4 X X X X . . 10
a5 . . X – X – – – – – – X 4
a6 X 7

d�s� 2 1 2 2 1 1 1 1 1 3 1 1

Figure 7 The Schedule Defined by the Heuristic Upper Bound
Algorithm

the middle by first choosing the most expensive scene
and then choosing the next scene that minimizes cost
to the left or right. However, our experiments indi-
cate that the upper bounds provided by any heuristic
have very little effect on the overall computation of
the optimal order, probably because the bnd_schedule
function overwrites the upper bound as soon as it
finds a better solution. Hence, we did not explore
many options for better heuristic solutions. Instead,
we focused on devising better search strategies.

3.3. Looking Ahead
We can further reduce the search performed in
bnd_schedule (and schedule) by looking ahead.
That is, we examine each of the subproblems we are
about to visit, and if we have already calculated an
optimal value or correct bound for them, we can use
this to get a better estimate of the lower bound cost.
Furthermore, we can use this opportunity to change
the lower bound function so that it memorizes any
lower bound calculated in the hash table scost. The
only modification required is to change the definition
of the lower function to the following.

lower(Q)
if (scost�Q	 = OPT �v�) return v
if (scost�Q	 = LB�v�) return v
lb �=∑

s∈Q d�s� × c�a�s�� %% if we are using
normal costs

lb := 0 %% if we are using
extra costs

scost�Q	 �= LB�lb�
return lb.

This has the effect of giving a much better lower
bound estimate and, hence, reducing search. Looka-
head is somewhat related to the lower-bounding tech-
nique used in the Russian Doll Search (Verfaillie et al.
1996), but in that case all smaller problems are forced
to be solved before the larger problem is tackled,
whereas lookahead is opportunistic, using results that
are already there.

3.4. Better Lower Bounds
If we are storing the lower bound computations,
as described in the previous subsection, it may be

Garcia de la Banda et al.: Solving Talent Scheduling with Dynamic Programming
128 INFORMS Journal on Computing 23(1), pp. 120–137, © 2011 INFORMS

worthwhile spending more time to derive a better
lower bound. Here, we describe a rather complex
lower bound that is strong enough to reduce the num-
ber of subproblems examined by one to two orders
of magnitude. We use the following straightforward
result.

Lemma 4. Let ai� bi� i = 1�

 �n be positive real num-
bers. Let be a permutation of the indices. Define f �� =∑n

i=1�a�i� ∗
∑i

j=1 b�j�	. The permutation that minimizes
f �� satisfies b�1�/a�1� ≤ b�2�/a�2� ≤ · · · ≤ b�n�/a�n�.

This lemma allows us to solve certain special cases
of the talent scheduling problem with a simple sort.
Consider the following special case. We have a set
of actors a1�

 � an already on location and a set of
scenes s1�

 � sn, where si only involves the actor ai

for each i. Then given a schedule s�1�s�2�

 s�n�,
where is some permutation, the cost is given by
f �� = ∑n

i=1 c�a�i�� ∗ ∑i
j=1 d�s�j��. This is of the form

required for Lemma 4, and we can find the optimal
scene permutation opt simply by sorting the numbers
d�si�/c�ai� in ascending order. The minimum cost can
then be calculated by a simple summation. Unfortu-
nately, in general, the subproblems for which we wish
to calculate lower bounds do not fall under the spe-
cial case, as scenes generally involve multiple actors.
To take advantage of Lemma 4, then, we need to do
much more work.

Theorem 1. Let Q be a set of scenes remaining to be
scheduled. Let A′ = o�Q�, the actors currently on location.
Without loss of generality, let A′ = �a1�

 � an�. Let Q′ ⊆
Q be the set of unscheduled scenes that involve at least
one actor from A′. Let sc�s� =∑

a∈A′∩a�s� c�a�. Let x�a� s� =
1 if a ∈ a�s�, and 0 otherwise. Let w�a� s� = x�a� s� ∗
c�a�/sc�s�. Let e�a� = ∑

s∈Q′ w�a� s� ∗ d�s�. Let f �� =∑n
k=1 c�a�k�� ∗∑k

i=1 e�a�i��. A correct lower bound on the
extra cost for actors A′ for scenes Q′ is given by f �opt�−∑

s∈Q′ d�s� ∗ �sc�s� + ∑
a∈A′∩a�s� c�a�2/sc�s�	/2, where opt

is the permutation of the indices given by sorting r�ai� =
e�ai�/c�ai� in ascending order.

Proof. First, we describe what each of the defined
quantities mean. The term sc�s� gives the sum of the
cost of the actors for scene s, but only counting the
actors that are currently on location. The term w�a� s�
is a measure of how much actor a is contributing
to the cost of scene s. We have 0 ≤ w�a� s� ≤ 1, and∑

a∈A′∩a�s� w�a� s� = 1. e�a� is a weighted sum of the
duration of the scenes that a is involved in, weighted
by w�a� s�. The term f �� is constructed so that it fol-
lows the form required for Lemma 4 to apply, which
we will take advantage of. The actual lower bound is
given by the minimum value of f ��, minus a certain
constant.
Given any complete schedule that extends the cur-

rent partial schedule, there is an order in which the

on-location actors a1�

 � an may finish. Without loss
of generality, label the actors so that they finish in the
order a1� a2�

 � an (break ties randomly). We have the
following inequalities for the cost of the remaining
schedule t�a� for each of these actors:

t�ak� ≥ c�ak�∗
∑

�s∈Q′ �∃i�i≤k�ai∈a�s��

d�s�

≥ c�ak�∗
[k∑

i=1

e�ai�

+ ∑
�s∈Q′ �ak∈a�s��

[
d�s�∗

(
1−

k∑
i=1

w�ai�s�

)]]

These inequalities hold for the following reasons.
Consider ak. Any scene that involves any of a1�

 � ak

must be scheduled before ak can leave, because by
definition a1�

 � ak−1 can leave no later than ak. So
for such scenes s, we must pay c�ak�∗d�s� for actor ak,
which gives rise to the first inequality. Now, in the
second inequality, the scene durations from the first
line are split up and summed together in a differ-
ent way, with some terms thrown away. The second
inequality consists of two sums within the outer set
of square brackets. A scene that does not involve any
of a1�

 � ak will not be counted in any e�a� in the first
sum and is not counted by the second sum, which
only counts scenes involving ak. Thus as required,
such durations do not appear in the second inequal-
ity. A scene that involves some of a1�

 � ak will have
part of its duration counted in the first sum. To be
exact, a proportion

∑k
i=1 w�ai� s� ≤ 1 of the duration is

counted in the first sum. The second sum counts the
bits that were not counted in the first sum for scenes
that involve ak. Because the second inequality never
counts more than d�s� for any scene appearing in the
first line, the inequality is valid.
Now, we split the right-hand side of the second

inequality into its two parts and sum over the actors.
Define U and V as follows:

U =
n∑

k=1

c�ak� ∗
k∑

i=1

e�ai��

V =
n∑

k=1

c�ak� ∗ ∑
�s∈Q′ �ak∈a�s��

[
d�s� ∗

(
1−

k∑
i=1

w�ai� s�

)]

Then U + V is a lower bound on the cost for the
actor finish order a1�

 � an. As can be seen, U cor-
responds to f �� in Theorem 1. Different permuta-
tions of actor finish order will give rise to different
values of U equal to f ��. By applying Lemma 4,
we can quickly find a lower bound on U over all
possible actor finish orders. That is, for each actor a,
we calculate r�a� = e�a�/c�a�. We then sort the actors
based on r�a� from smallest to largest and label them

Garcia de la Banda et al.: Solving Talent Scheduling with Dynamic Programming
INFORMS Journal on Computing 23(1), pp. 120–137, © 2011 INFORMS 129

from a′
1 to a′

n. We then calculate U using finish order
a′
1�

 � a′

n, which will give us a lower bound on U
over all possible actor finish orders.
On the other hand, although V looks like it depends

on the actor finish order, it actually evaluates to a
constant:

V =
n∑

k=1

c�ak� ∗ ∑
�s∈Q′ �ak∈a�s��

[
d�s� ∗

(
1−

k∑
i=1

w�ai� s�

)]

=
n∑

k=1

∑
�s∈Q′ �ak∈a�s��

c�ak� ∗
[
d�s� ∗

(
1−

k∑
i=1

w�ai� s�

)]

= ∑
s∈Q′

n∑
k=1� ak∈a�s�

c�ak� ∗
[
d�s� ∗

(
1−

k∑
i=1

w�ai� s�

)]

= ∑
s∈Q′

n∑
k=1� ak∈a�s�

c�ak� ∗ d�s�

− ∑
s∈Q′

n∑
k=1� ak∈a�s�

c�ak� ∗ d�s� ∗
k∑

i=1

w�ai� s�

= ∑
s∈Q′

n∑
k=1� ak∈a�s�

c�ak� ∗ d�s�

− ∑
s∈Q′

n∑
k=1� ak∈a�s�

c�ak� ∗ d�s� ∗
k∑

i=1� ai∈a�s�

c�ai�/sc�s�

= ∑
s∈Q′

n∑
k=1� ak∈a�s�

c�ak� ∗ d�s�

− ∑
s∈Q′

d�s�/sc�s� ∗
n∑

k=1� ak∈a�s�

k∑
i=1� ai∈a�s�

c�ak� ∗ c�ai�

The first double sum is simply the base cost needed
to pay each actor for each scene they appear in and is
clearly a constant. Of the second term, only the inner-
most double summay be dependent on the actor finish
order. LetW�s� =∑n

k=1� ak∈a�s�

∑k
i=1� ai∈a�s� c�ak� ∗ c�ai�:

2 ∗ W�s� = 2 ∗
n∑

k=1� ak∈a�s�

k∑
i=1� ai∈a�s�

c�ak� ∗ c�ai�

=
n∑

k=1� ak∈a�s�

k∑
i=1� ai∈a�s�

c�ak� ∗ c�ai�

+
n∑

i=1� ai∈a�s�

n∑
k=i� ak∈a�s�

c�ak� ∗ c�ai�

=
n∑

k=1� ak∈a�s�

k∑
i=1� ai∈a�s�

c�ak� ∗ c�ai�

+
n∑

k=1� ak∈a�s�

n∑
i=k�ai∈a�s�

c�ai� ∗ c�ak�

=
n∑

k=1� ak∈a�s�

n∑
i=1� ai∈a�s�

c�ak� ∗ c�ai�

+
n∑

k=1� ak∈a�s�

c�ak� ∗ c�ak�

= sc�s�2 +
n∑

k=1� ak∈a�s�

c�ak�
2�

W�s� =
[
sc�s�2 +

n∑
k=1� ak∈a�s�

c�ak�
2

]/
2�

which is a constant. Now, U +V gives a lower bound
for the total cost. A lower bound for the extra cost
is simply U + V minus the base cost of the actors A′

for the scenes Q′. Luckily, this term already appears
as the first term in V . Thus the lower bound for
the extra cost is f �opt� − ∑

s∈Q′ d�s�/sc�s� ∗ W�s� =
f �opt�−

∑
s∈Q′ d�s�∗ �sc�s�+∑

a∈A′∩a�s� c�a�2/sc�s�	/2� as
claimed. �

Example 7. Consider the scenes shown in Figure 8,
where the cost and duration of each actor and dura-
tion of each scene is 1 for simplicity. To calculate
f �opt�, we need to calculate r�a� and sort them.
Because the costs are all one, we have r�a1� = e�a1� =
11/6, r�a2� = e�a2� = 2, r�a3� = e�a3� = 11/6, r�a4� =
e�a4� = 4/3. Thus we reorder the actors as a′

1 = a4� a′
2 =

a1� a′
3 = a3� a′

4 = a2 and calculate f �� using finish
order a′

1�

 � a′
4, which gives f �opt� = 1 ∗ 4/3 + 1 ∗

�4/3+ 11/6�+ 1∗ �4/3+ 11/6+ 11/6�+ 1∗ �4/3+ 11/6+
11/6 + 2� = 16
5, which is a lower bound on U over
all actor finish orders. Next, we calculate

∑
s∈Q d�s� ∗

�sc�s� + ∑
a∈A′∩a�s� c�a�2/sc�s�	/2 = 1 + 1 + 1 + 1 + 3/2 +

3/2 + 2 = 9. Thus the lower bound for the extra cost
at this node is 16
5− 9= 7
5.

If we are optimizing the extra cost (see §2.5), then
to implement this lower bound, we simply need to
add the following code into the code for lower before
the saving of the lower bound in scost.

A′ := o�Q�
for (a ∈ A′)

r�a	 := 0
for (s ∈ Q′)

a′�s� = a�s� ∩ A′

total_cost :=
∑

i∈a′�s� c�i�
total_cost_sq :=

∑
i∈a′�s� c�i�2

for (a ∈ a′�s�)
r�a	 = r�a	 + d�s�/total_cost
lb = lb − d�s� ∗ �total_cost + total_cost_sq/

total_cost�/2
Sort A′ based on r�a	 in ascending order
c :=

∑
i∈A′ c�i�

for (a ∈ A′)
lb = lb + c ∗ r�a	 ∗ c�a�
c = c − c�a�.

Clearly, this is quite an expensive calculation.

Garcia de la Banda et al.: Solving Talent Scheduling with Dynamic Programming
130 INFORMS Journal on Computing 23(1), pp. 120–137, © 2011 INFORMS

s1 s2 s3 s4 s5 s6 s7

a1 X . . . X . X 1
a2 . X . . X X . 1
a3 . . X . . X X 1
a4 . . . X . . X 1

1 1 1 1 1 1 1

Figure 8 An Original Set of Remaining Scenes, Assuming a1� a2� a3,
and a4 Are on Location

4. Double-Ended Search
We will say an actor is fixed if we know the first and
last scene in which the actor appears. Knowing that an
actor is fixed is useful, because the cost for that actor is
fixed (thus the name) regardless of the schedule of the
remaining intervening scenes, if any. For this reason
it is beneficial to search for a solution by alternatively
placing the next scene in the first remaining unfilled
slot and the last remaining unfilled slot, because this
will increase the number of fixed actors. Let B denote
the set of scenes scheduled at the beginning, and let E
be the set of scenes scheduled at the end. We know the
cost of any actor appearing in scenes of both B and E,
because we know the duration of the remaining set of
scenes Q = S − B − E. This strategy was used in the
branch-and-bound solution of Cheng et al. (1993). A
priori this might appear to be a bad strategy because
the search space has increased: there are more sub-
problems of the form “schedule remaining scenes Q
given scenes in B are scheduled before and scenes in E
are scheduled after (where B ∪ Q ∪ E = S)” than there
are “schedule remaining scenes Q given scenes in S −
Q are scheduled before.” However, as we will see in
the experiments, this is compensated for by the fact
that we will get much more accurate estimates on the
cost of the remaining schedule.
The change in search strategy causes considerable

changes to the algorithm. The subproblems are now
defined by B, the set of scenes scheduled at the begin-
ning, and E, the set of scenes scheduled at the end.
The search tries to schedule each remaining scene s
at the beginning of the remaining scenes, just after B,
and then swaps the role of B and E to continue build-
ing the schedule. We can thus modify the cost function
to ignore the cost of actors already fixed by B and E
(i.e., those in a�B� ∩ a�E�), and only take into account
the cost of actors newly fixed by the scene. This can be
done as follows:

cost�s�B�E� = d�s�×c�l�s�S−B−E−�s��−�a�B�∩a�E���

+ ∑
a∈��a�s�−a�B��∩a�E��

d�S−B−E−�s��×c�a��

where the first part adds the cost for scheduling scene
s excluding the fixed actors �a�B�∩ a�E��, and the sec-
ond part adds the cost of each actor a that is newly

scheduled by s (appears in �a�s�−a�B��) and is already
scheduled at the end (appears in a�E�).
The lower bound cost function also has to change

to ignore the actors fixed by B and E:

lower�B�E� = ∑
s∈S−B−E

d�s� × c�a�s� − �a�B� ∩ a�E���

The code for the new algorithm is shown in Figure 9.
The algorithm first tests whether there are any remain-
ing actors to be scheduled: If a�Q� ⊆ a�B� ∩ a�E�,
then all actors playing in scenes of Q are fixed (must
be on location for the entire period regardless of
Q schedule), and we simply return zero (because
their cost has already been taken into account). Oth-
erwise, the algorithm checks the hash table to find
whether the subproblem has been examined before.
Note that we replaced the array of subproblems
scost�Q	 by two functions hash_lookup(B�E), which
returns the value stored for subproblem (B�E), and
hash_lookup(B�E�ov), which sets the stored value to
ov. The remainder of the code is effectively identical
to bnd_schedule using the new definitions of cost and
lower. The only important thing to note is that the
recursive call swaps the positions of beginning and
end sets, thus forcing the next scene to be scheduled
at the other end.
Note that any solution to the scene scheduling

problem has an equivalent solution where the order
of the scenes is reversed (a fact that has been noticed
by many authors). We are implicitly using this fact in
the definition of bnd_de_schedule when we reverse
the order of the B and E arguments to make the

bnd_de_schedule�B�E�U�
Q := S − B − E
if (a�Q� ⊆ a�B� ∩ a�E�) return 0

hv := hash_lookup(B�E)

if (hv =OPT�v�) return v

if (hv = LB�v� ∧ v > U) return v

min := +	
T := Q
while (T
= �)

s := index min
s∈T

cost�s�B�E� + lower�B ∪ �s��E�

T := T − �s�
if (cost�s�B�E� + lower�B ∪ �s��E� ≥ U) break
sp := cost�s�B�E� +bnd_de_schedule�E�B ∪ �s��U − cost�s�B�E��
if (sp <min) min := sp
if (min≤ U) U := min

if (min≤ U) hash_set(B�E�OPT�min�)

else hash_set(B�E�LB�min�)

return min

Figure 9 Pseudocode for Bounded Best-First Call-Based Dynamic Pro-
gramming Algorithm: bnd_de_schedule�Q�B� E� Returns
the Minimum Cost Required for Scheduling the Set of Scenes
Q if It Is Less Than or Equal to U; Otherwise, It Returns a
Lower Bound on the Minimal Cost

Garcia de la Banda et al.: Solving Talent Scheduling with Dynamic Programming
INFORMS Journal on Computing 23(1), pp. 120–137, © 2011 INFORMS 131

search double-ended, because we treat the problem
starting with B and ending in E as equivalent to the
problem starting with E and ending in B. We can
also take advantage of this symmetry when detect-
ing equivalent subproblems (i.e., when looking up
whether we have seen the problem before). A simple
way of achieving this is to store and look up problems
assuming that B ≤ E (that is, in lexicographic order):

hash_lookup�B�E� = if �B ≤ E� scost�B�E	

else scost�E�B	

hash_set�B�E� ov� = if �B ≤ E� scost�B�E	 �= ov

else scost�E�B	 �= ov

4.1. Better Equivalent Subproblem Detection
Although taking into account symmetries helps,
we can further help the detection of equivalent
subproblems by noticing that the cost of scheduling
the scenes in Q = S −B −E does not really depend on
B and E. Rather, it depends on o�B� and o�E�, i.e., on
the set of actors that will always be on location at the
beginning and at the end of Q, respectively.

Example 8. Consider the partial schedule of the
problem in Example 1 where B = �s1� s9� s12� and
E = �s3� s5� s6� s11�. The remaining scenes to schedule
are Q = �s2� s4� s7� s8� s9� s10�. An optimal schedule of
Q (given B and E) is shown at the top of Figure 10.
The total cost ignoring the fixed actors a1, a2, and a4
is 16+ 8+ 14= 48.

Consider the subproblem where B′ = �s3� s11� s5� s1�
and E ′ = �s9� s6� s12�. The remaining scenes to schedule
are still Q = �s2� s4� s7� s8� s9� s10�. Now, o�B′� = o�E� and
o�E ′� = o�B�, and hence, any optimal order for the first
subproblem can provide an optimal schedule for this
subproblem by reversing the order of the schedule.
This is illustrated at the bottom of Figure 10.

We can modify the hash function to take advan-
tage of these subproblem equivalences. We will store

s12 s1 s9 o�B� s4 s8 s2 s7 s10 o�E� s5 s6 s11 s3 c�a�

a1 X X X – – X – – X – – X X X 20
a2 . X X – X – X X – – X – X X 5
a3 X X X 4
a4 . X – – – – X – – – X X . . 10
a5 . . X – X X 4
a6 X 7

d�s� 1 1 1 1 2 1 1 2 3 1 1 2

s3 s11 s5 s1 o�B′� s10 s7 s2 s8 s4 o�E ′� s9 s6 s12 c�a�

a1 X X – X – X – – X – – X X X 20
a2 X X X X – – X X – X – X . . 5
a3 X X X 4
a4 . . X X – – – X – – – – X . 10
a5 X X – X . . 4
a6 X 7

d�s� 2 1 3 1 2 1 1 2 1 1 1 1

Figure 10 Two Equivalent Subproblems

the subproblem value on o�B�� o�E�, and Q under the
assumption that o�B� ≤ o�E�:

hash_lookup�B�E�
Q := S − B − E
if (o�E� < o�B�) return scost�o�E�� o�B��Q	
return scost�o�B�� o�E��Q	

hash_set�B�E� ov�
Q := S − B − E
if (o�E� < o�B�) scost�o�E�� o�B��Q	 := ov
else scost�o�B�� o�E��Q	 := ov.

To prove the correctness of the equivalence, we need
the following intermediate result.

Lemma 5. For every Q�Q′ ⊆ S such that Q ∩ Q′ = �
(which is the same as saying Q′ ⊆ S − Q), we have that
a�Q� ∩ a�Q′� = o�Q� ∩ a�Q′� = a�Q′� ∩ o�Q′� = o�Q� ∩
o�Q′�.

Proof.Let us first prove that o�Q� ∩ a�Q′� = a�Q� ∩
a�Q′�. We have that

o�Q� ∩ a�Q′� = �a�Q� ∩ a�S − Q�� ∩ a�Q′�
by definition of o�Q�

= a�Q� ∩ �a�S − Q� ∩ a�Q′��
by associativity of ∩

= a�Q� ∩ a�Q′�
by hypothesis of Q′ ⊆ S − Q

A symmetric reasoning can be done to prove that
a�Q� ∩ o�Q′� = a�Q� ∩ a�Q′�. To prove that o�Q� ∩
o�Q′� = a�Q� ∩ a�Q′�, we follow a similar reasoning:

o�Q� ∩ o�Q′� = �a�Q� ∩ a�S − Q�� ∩ �a�Q′� ∩ a�S − Q′��
by definition of o�Q�

= �a�Q� ∩ a�S − Q′�� ∩ �a�S − Q� ∩ a�Q′��
by associativity of ∩

= a�Q� ∩ a�Q′�
by hypothesis of Q′ ⊆ S − Q and

Q ⊆ S − Q′
 �

Given the above result, one could decide to hash
on a�B� and a�E� (rather than on o�B� and o�E�). This
is also correct but it would miss some equivalences
since: although o�B� ∩ o�E� = a�B� ∩ a�E�, a�B� might
contain more actors than o�B�, those who start and
finish within B and will thus never be on location
during the scenes in Q. Therefore, these actors are not
relevant for Q. The same can be said for a�E� and o�E�.

Theorem 2. Let �1�2�3 and �4�2�5 be two permu-
tations of S such that o��4� = o��1�, o��5� = o��3�. Then,
the cost of every scene of �2 is the same in �1�2�3 as in
�4�2�5.

Garcia de la Banda et al.: Solving Talent Scheduling with Dynamic Programming
132 INFORMS Journal on Computing 23(1), pp. 120–137, © 2011 INFORMS

Proof. Without loss of generality, let �2 be of the
form �′

2s�
′′
2 . We will show that the cost of s is the

same in �1�2�3 and �4�2�5. Now,

l�s��′′
2�3� = a�s� ∪ �a��′′

2�3� ∩ a��1�
′
2��

by definition of l�s�Q�

= a�s� ∪ ��a��′′
2� ∪ a��3�� ∩ �a��1� ∪ a��′

2���
by definition of a�Q�

= a�s� ∪ ��a��′′
2� ∩ a��1�� ∪ �a��′′

2� ∩ a��′
2��

∪ �a��3� ∩ a��1�� ∪ �a��3� ∪ a��′
2���

distributing∩ over∪
= a�s� ∪ ��a��′′

2� ∩ o��1�� ∪ �a��′′
2� ∩ a��′

2��

∪ �o��3� ∩ o��1�� ∪ �o��3� ∪ a��′
2���

by Lemma 5

= a�s� ∪ ��a��′′
2� ∩ o��4�� ∪ �a��′′

2� ∩ a��′
2��

∪ �o��5� ∩ o��4�� ∪ �o��5� ∪ a��′
2���

since o��4� = o��1� and o��5� = o��3�

= a�s� ∪ ��a��′′
2� ∩ a��4�� ∪ �a��′′

2� ∩ a��′
2��

∪ �a��5� ∩ a��4�� ∪ �a��5� ∪ a��′
2���

= a�s� ∪ ��a��′′
2� ∪ a��5�� ∩ �a��4� ∪ a��′

2���

= l�s��′′
2�5�

4.2. Revisiting the Previous Optimizations
Once we are performing double-ended search, we
introduce fixed actors that are no longer of any impor-
tance to the remaining subproblem because their cost
is fixed. We may be able to improve the previous opti-
mizations by ignoring fixed actors whenever perform-
ing a double-ended search.

4.2.1. Preprocessing. The second preprocessing
step (concatenating duplicate scenes) can now be
applied during search. This is because, given fixed
actors F = a�B� ∩ a�E�, we can apply Lemma 1 if
a�s1� ∪ F = a�s2� ∪ F , because the cost of the fixed
actors is irrelevant. This means we should concate-
nate any scenes in Q = S − B − E, where a�s1� ∪
F = a�s2� ∪ F . We can modify the search strategy in
bnd_de_schedule to break the scenes in Q into equiv-
alent classes Q1�

 �Qn, where ∀ s1� s2 ∈ Qi ·a�s1�∪ F =
a�s2� ∪ F , and then consider scheduling each equiva-
lence class. In many cases, the equivalence class will
be of size one!

4.2.2. Scheduling Actor-Equivalent Scenes First.
Lemma 2 can be extended so that we can always
schedule a scene s first where o�B� = a�s� ∪ F because
the on-location actors will include the fixed actors,
and the extra cost for them will be paid for scene s
wherever it is scheduled.

4.2.3. Pairwise Subsumption. The extension of
Lemma 3 also holds if a�s1� ∪ F ⊆ a�s2� ∪ F and a�B� ∪
a�s1� ⊇ a�s2� (because F ⊆ a�B�). However, this means
we need to do a full pairwise comparison of all scenes
in Q = S − B − E for each subproblem considered. We
did implement this, and although it did cut down
search substantially, the overhead of the extra com-
parison did not pay off. This is the only optimization
not used in the experimental evaluation.
4.2.4. Optimizing Extra Cost. This is clearly

applicable in the double-ended case, but it compli-
cates the computation of cost(s�B�E� because we now
have to determine exactly which scenes a newly fixed
actor appears in, rather than just adding the cost of
the actor for the entire duration of the remaining
scenes.
4.2.5. Looking Ahead. This optimization is appli-

cable as before. Note that lower takes the same
arguments �B�E� (excluding the upper bound) as
bnd_de_schedule. We have to modify the definition of
lower(B�E� to make use of hash_lookup and hash_set.

4.2.6. Better Lower Bounds. The same reasoning
on better lower bounds can be applied to the set of
actors o�B�− F , because the actors in F will always be
on location in the remaining subproblem. Indeed, we
sum the results of the better lower bounds calculated
from both ends for o�B� − F and o�E� − F because the
actors in these sets cannot overlap (by the definition
of F).
4.2.7. Better Equivalent Subproblem Detection.

We could improve equivalent subproblem detection
by noticing that the fixed actors play no part in deter-
mining the schedule of the remaining scenes Q = S −
B − E. We could thus build a hash function based
on the form of the remaining scenes after eliminat-
ing the fixed actors F = a�B�∩ a�E�. However, the cost
of determining this reduced form seems substantial
because, in effect, we have to generate new scenes
and hash on sets of them. We have not attempted to
implement this approach.

5. Experimental Results
We tested our approach on the two sets of problem
instances detailed below. All experiments were run
on Xeon Pro 2.4 GHz processors with 2 GB of RAM
running Red Hat Linux 5.2. The dynamic program-
ming code is written in C, with no great tuning or
clever data structures and with many runtime flags to
allow us to compare the different versions easily. The
dynamic programming software was compiled with
gcc 4.1.2 using -O3. Timings are calculated as the sum
of user and system time given by getrusage, because
it accords well with wall-clock times for these CPU-
intensive programs. For the problems that take sig-
nificant time we observed around 10% variation in
timings across different runs of the same benchmark.

Garcia de la Banda et al.: Solving Talent Scheduling with Dynamic Programming
INFORMS Journal on Computing 23(1), pp. 120–137, © 2011 INFORMS 133

5.1. Structured Benchmarks
The first set of benchmarks are structured problems
based on the realistic talent scheduling of Mob Story,
first used in Cheng et al. (1993). We use these prob-
lems to illustrate the effectiveness of the different
optimizations.
We first extended the benchmarks film103, film105,

film114, film116, film118, and film119 used in Smith
(2005), adding three new actors to each problem to
bring it to 11 and bringing the number of scenes to 28
(the original problems each involve eight actors and
either 18 or 19 scenes). This gave us six base problems
of size 11×28. These base problems were constructed
in such a way that preprocessing did not simplify
them (so that the number of “important” actors and
scenes was known).
Then, from each base problem we generated

smaller problems by removing, in turn, newly added
scenes. In particular, for each base problem we
obtained 10 problems ranging from 11× 27 to 8× 18,
where each problem in the sequence is a subprob-
lem of the larger ones, and the original problem
from Smith (2005) was included.
From each base problem we also generated smaller

problems by randomly removing k scenes where k
varied from 1 to 10. In particular, for each base prob-
lem we obtained 10 problems ranging from 11 × 27
to 11× 18, where the sets of removed scenes in dif-
ferently sized problems are unrelated (as opposed to
having a subset–superset relationship).
In total, this created 126 core problems.
From each core problem we generated three new

variants: equal duration, where all durations are set to
one; equal cost, where the cost of all actors are set to
one; and equal cost and duration, where all durations
and costs are set to one.
We compared the executions of running the

dynamic program with all optimizations enabled
and then individually turning off each optimization.
The optimizations are as follows: scheduling actor-
equivalent scenes first (see §2.3), pairwise subsump-
tion (see §2.4), looking ahead (see §3.3), concatenat-
ing duplicate scenes (see §4.2.1), upper bounds (see
§3.2), better lower bounds (see §3.4), optimizing extra
cost (see §2.5), better equivalent subproblem detection
(see §4.1), double-ended search (see §4), and bounded
dynamic programming (see §3). The average times in
milliseconds obtained by running the dynamic pro-
gram with all optimizations enabled for each size
n are shown in the second column of Table 1. The
remaining columns show the relative average time
when each of the optimizations is individually turned
off. For the last column without bounding, only the
problems up to size 22 are shown. Table 2 shows the
same results in terms of the number of subproblems

Table 1 Arithmetic Mean Solving Time (in Milliseconds) for Structured
Problems of Size n and Relative Slowdown if the Optimization
Is Turned Off

n Time 2.3 2.4 3.3 4.2.1 3.2 3.4 2.5 4.1 4 3

18 78 1.09 1.29 1.24 1.04 1.01 2.75 1.21 0.98 0.44 31.94
19 157 1.15 1.32 1.23 1.04 0.99 3.06 1.20 1.05 0.53 33.18
20 190 1.12 1.39 1.18 1.03 0.99 3.29 1.19 1.02 0.45 47.05
21 317 1.17 1.35 1.17 1.04 1.02 4.13 1.21 1.06 0.51 61.12
22 702 1.18 1.37 1.24 1.06 0.99 3.75 1.19 1.14 0.69 52.16
23 870 1.19 1.48 1.23 1.05 1.01 4.30 1.20 1.09 0.63 —
24 1�269 1.23 1.47 1.23 1.11 1.02 5.08 1.19 1.16 0.74 —
25 1�701 1.26 1.55 1.25 1.08 1.00 5.32 1.20 1.20 0.86 —
26 2�934 1.29 1.63 1.33 1.12 1.01 6.15 1.22 1.25 0.98 —
27 3�699 1.31 1.79 1.36 1.14 1.02 7.12 1.23 1.25 1.07 —
28 5�172 1.35 1.92 1.38 1.15 1.00 7.83 1.24 1.26 1.17 —

solved (that is, the number of pairs �B�E� appearing
in calls to bnd_de_schedule or Q in earlier variants).
Tables 1 and 2 clearly show that bounded dynamic

programming (see §3) is indispensable for solving
these problems. Better lower bounding is clearly the
next most important optimization, massively reduc-
ing the number of subproblems visited. Double-ended
search (see §4) is also very important except for the
fact that better lower bounding (see §3.4) improves
the single-ended search much more than it does the
double-ended search, so only on the larger examples
does it begin to win. Without better lower bounding it
completely dominates single-ended search. The next
most effective optimization is pairwise subsumption
(see §2.4). Looking ahead (see §3.3) and scheduling
actor-equivalent scenes first (see §2.3) are quite bene-
ficial, as are optimizing extra cost (see §2.5) and better
equivalent subproblem detection (see §4.1). The upper
bound optimization (see §3.2) is clearly unimportant,
only reducing the number of problems slightly. Note
that although some optimizations give more or less
constant improvements with increasing size, most are
better as the size increases.
If we look at the different variants individually (in

results not shown), we find that the equal duration

Table 2 Arithmetic Mean Subproblems Solved for Structured
Problems of Size n and Relative Increase if the Optimization
Is Turned Off

n Subproblems 2.3 2.4 3.3 4.2.1 3.2 3.4 2.5 4.1 4 3

18 5�091 1.08 1.18 1.02 1.06 1.06 10.21 1.00 1.07 0.93 73�29
19 9�699 1.12 1.22 1.03 1.09 1.01 11.18 0.99 1.11 1.43 75�43
20 10�467 1.11 1.26 1.02 1.07 1.01 12.36 1.00 1.09 0.95 114�63
21 16�154 1.15 1.21 1.02 1.07 1.03 15.88 1.00 1.14 1.24 152�42
22 36�531 1.17 1.23 1.03 1.12 1.00 13.38 0.99 1.21 1.97 121�31
23 42�224 1.17 1.32 1.03 1.10 1.02 15.73 1.00 1.13 1.52 —
24 59�349 1.22 1.33 1.02 1.21 1.03 18.50 0.98 1.16 1.98 —
25 77�766 1.25 1.37 1.03 1.17 1.00 19.00 0.98 1.19 2.08 —
26 136�778 1.28 1.40 1.03 1.23 1.01 20.49 1.00 1.20 2.51 —
27 167�232 1.28 1.50 1.03 1.25 1.04 23.63 0.99 1.19 2.70 —
28 233�328 1.31 1.56 1.03 1.27 1.01 25.04 0.99 1.19 2.88 —

Garcia de la Banda et al.: Solving Talent Scheduling with Dynamic Programming
134 INFORMS Journal on Computing 23(1), pp. 120–137, © 2011 INFORMS

Table 3 Arithmetic Mean Solving Time (in Milliseconds) for Random Problems with m Actors and n Scenes

Number of scenes n

m 16 18 20 22 24 26 28 30 32 34 36 38 40

8 7 20 39 94 141 323 362 685 1�403 2�291 2�977 2�408 7�101
10 11 33 85 165 441 650 1�981 2�531 3�179 8�901 10�690 13�426 20�907
12 21 47 149 319 829 2�056 3�830 6�674 10�082 13�155 20�903 — —
14 25 75 255 759 1�519 3�700 8�862 12�705 17�602 — — — —
16 41 129 357 1�012 2�602 6�284 14�130 23�270 — — — — —
18 53 221 533 1�463 3�708 11�546 18�797 — — — — — —
20 87 248 757 2�745 6�680 15�414 21�194 — — — — — —
22 119 338 997 2�855 11�090 18�672 — — — — — — —

m 42 44 46 48 50 52 54 56 58 60 62 64

8 7,697 15,669 19,004 21,703 23,939 25,891 49,547 42,433 49,406 61,351 62,089 —
10 25,903 — — — — — — — — — — —

variants are slightly (around 7%–10%) harder than the
core problems, whereas the equal cost and equal cost
and duration variants are three to four times harder
than the core problems, indicating that cost is very
important for pruning.

5.2. Random Benchmarks
The second set of benchmarks is composed of ran-
domly generated benchmarks. We use these problems
to show the effect of the number of actors and the
number of scenes on problem difficulty.
The problems were generated in a manner almost

identical to that used in Cheng et al. (1993): for a
given combination of m actors and n scenes, we gen-
erate for each actor i ∈ 1

m (i) a random number
ni ∈ 2

 n indicating the number of scenes actor i is in
(in Cheng et al. 1993, the authors generate a number
from 1 to n, but are not interested in actors appearing
in only one scene; see §2.2); (ii) ni different random
numbers between 1 and n indicating the set of scenes
actor i is in; and (iii) a random number between 1
and 100 indicating the cost of actor i. For each com-
bination of actors m ∈ �8�10�12�14�16�18�20�22� and

Table 4 Arithmetic Mean Subproblems Solved for Random Problems with m Actors and n Scenes

Number of scenes n

m 16 18 20 22 24 26 28 30 32 34 36 38 40

8 569 1�477 2�431 5�440 6�905 17�825 20�020 37�803 81�388 124,579 153,515 113,402 296,798
10 784 2�377 5�408 8�747 23�898 33�692 108�048 128�041 149�676 387,515 420,769 484,846 663,511
12 1�780 3�032 9�261 15�757 41�955 113�971 184�998 309�110 410�699 510,775 668,273 — —
14 1�846 4�880 15�388 43�122 74�523 194�726 403�624 521�340 626�265 — — — —
16 3�071 8�153 20�366 50�527 128�969 301�001 623�235 889�799 — — — — —
18 3�218 16�317 29�785 71�885 175�373 510�349 742�264 — — — — — —
20 4�911 14�612 41�608 153�560 340�470 668�144 768�588 — — — — — —
22 4�929 17�559 52�531 138�078 547�756 782�389 — — — — — — —

m 42 44 46 48 50 52 54 56 58 60 62 64

8 312,200 575,387 610,651 501,283 585,939 578,558 747,825 788,145 832,748 924,486 869,846 —
10 736,360 — — — — — — — — — — —

scenes n ∈ �16

64�, we generate 100 problems. Note
that, given the above method, a scene might contain
no actors while an actor must be involved in at least
two scenes (and at most all). We ensured preprocess-
ing could not simplify any instance.
We ran the instances with a memory bound of

2 GB. Table 3 shows the average time in milliseconds
obtained for finding an optimal schedule for all ran-
dom instances of each size that did not run out of
memory, and Table 4 shows the average number of
subproblems solved. The entries “—” show where less
than 80 of the 100 instances solved without running
out of memory. The schedules were computed using
all optimizations. The results show that although the
number of scenes is clearly the most important fac-
tor in the difficulty of the problem, if the number of
actors is small, then the problem difficulty is limited.
Although increasing the number of actors increases
difficulty, as this number grows larger than the num-
ber of scenes, the incremental difficulty decreases.
Note also that the random problems are significantly
easier than the structured problems.

Garcia de la Banda et al.: Solving Talent Scheduling with Dynamic Programming
INFORMS Journal on Computing 23(1), pp. 120–137, © 2011 INFORMS 135

Although we should be careful when reading these
tables, because the difficulty of each 100 random
benchmarks considered in each cell can vary remark-
ably (the standard deviation is usually larger than the
average shown), the trend is clear enough.

6. Related Work
The talent scheduling problem (which appears as
prob039 in CSPLIB (CSPLib 2008), where it is called
the rehearsal problem) was introduced by Cheng et al.
(1993). They consider the problem in terms of shoot-
ing days instead of scenes, so in effect, all scenes
have the same duration. Note, however, that once we
make use of Lemma 1, the requirement for different
durations arises in any case. They give one example
of a real scene scheduling problem, arising from the
film Mob Story, containing eight actors and 28 scenes.
They show that the problem is NP-hard even in the
very restricted case of each actor appearing in exactly
two scenes and all costs and durations being one, by
reduction to the optimal linear arrangement (OLA)
problem (Garey et al. 1976).
In Garey et al. (1976), they consider two methods to

solve the scene scheduling problem. The first method
is a branch-and-bound search, where they search for
a schedule by filling in scenes from both ends in an
alternating fashion (double-ended search). They opti-
mize on extra cost, and the lower bounds they use
are simply the result of fixed costs (equivalent to the
definition of lower in §4 minus the fixed costs). They
do not store equivalent solutions and, hence, are very
limited in the size of the problem they can tackle.
Their experiments go up to 14 scenes and 14 actors.
The second method is a simple greedy hill climb-

ing search. Given a starting schedule, they consider
all possible swaps of pairs of scenes and move to the
schedule after a swap if the resulting cost is less. They
continue doing this until they reach a local minimum.
On their randomly generated problems the heuristic
approach gives answers around 10%–12% off optimal
regardless of size. They use this algorithm to resched-
ule Mob Story with an extra cost of $16,100 as opposed

25 26 24 27 22 23 19 20 21 5 28 8 11 9 6 7 9 2 16 17 18 3 15 13 14 1 12 3

Luce X X X X X – – – X X X X X X X 10
Tom X X X X – X X – X – – – X – X X X – X X X X . 4
Mindy X X X X – X – X – – – X – X X X 5
Maria X X X – X X X . . . 5
Gianni . X X X – – X – – – X X – X – – – X X 5
Dolores . . X X X X X X X 40
Lance X X X – X – X 4
Sam X X X X X X 20

d�s� 1

Figure 11 An Optimal Schedule for the Film Mob Story

to the manually created solution of $36,400. This solu-
tion required 1.05 seconds on their AMDAHL main-
frame. In comparison, our best algorithm finds an
optimal answer with extra cost of $14,600 in 0.1 sec-
onds on a Xeon Pro 2.4 GHz processor (which, is
admittedly, much more powerful). The search only
considers 6,605 different subproblems. Note that after
preprocessing, it only involves 20 scenes. The opti-
mal solution found is shown in Figure 11 (costs are
divided by 100).
Adelson et al. (1976) define a restricted version of

the talent scheduling problem for rehearsal schedul-
ing where the costs of all actors are uniform, and they
also note how it can be used for an application in
archeology. They give a dynamic programming for-
mulation as a recurrence relation, more or less identi-
cal to that shown at the beginning of §2. They report
solving an instance (from a real archaeological prob-
lem) with 26 “actors” and 16 “scenes” in 84 seconds
on a CDC 7600 computer. We were not able to locate
this benchmark.
Smith (2005, 2003) uses the talent scheduling prob-

lem as an example of a permutation problem. These
papers solved the problem using constraint program-
ming search with caching of search states, which is
very similar to dynamic programming with bounds.
Smith (2005, 2003) considers both scheduling from
one end, or from both ends. Her work was the first to
use a form of pairwise subsumption, restricted to the
case where the scenes differ by at most two actors.
It also used the preprocessing of merging identical
scenes (without proof). This was the first approach
(that we are aware of) to calculate the optimal solu-
tion to the Mob Story problem.

A comparison of the approaches is shown in Table 5.
This table shows the sizes (after preprocessing). Note
that the timing results for Smith (2005) are for a
1.7 GHz Pentium M PC running ILOG Solver 6.0,
whereas our results are for Xeon Pro 2.4 GHz pro-
cessors running gcc on Red Hat Linux. However,
note also that there is a difference of around three
orders of magnitude between our times and those of
Smith (2005). Also, the number of cached states in

Garcia de la Banda et al.: Solving Talent Scheduling with Dynamic Programming
136 INFORMS Journal on Computing 23(1), pp. 120–137, © 2011 INFORMS

Table 5 Comparison with the Approach of Smith (2005) on the
Examples from That Paper

Size Smith This paper

Problem Actors Scenes Time Cached states Time Subproblems
(s) (ms)

Mob Story 8 20 64�71 136�765 108 6�605
film105 8 18 16�07 40�511 20 1�108
film116 8 19 125�8 225�314 156 13�576
film119 8 18 70�80 144�226 84 7�105
film118 8 19 93�10 205�190 40 1�980
film114 8 19 127�0 267�526 84 4�957
film103 8 19 76�69 180�133 64 4�103
film117 8 19 76�86 174�100 96 7�227

the approach of Smith (2005) is around two orders
of magnitude larger than the number of subprob-
lems (which is the equivalent measure). This is prob-
ably a combination of our better lower bounds, bet-
ter detection of equivalent states, and better search
strategy. The problems and solutions can be found at
http//www.csse.unimelb.edu.au/∼pjs/talent/.
The talent scheduling problem is a generalization

of the OLA problem (see Cheng et al. 1993). This is
a very well-investigated graph problem, with appli-
cations including VLSI design (Hur and Lillis 1999),
computational biology (Karp 1993), and linear alge-
bra (Rose 1970). The OLA is known to be very
hard to solve; it has no polynomial-time approxi-
mation scheme unless NP-complete problems can be
solved in randomized subexponential time (Ambühl
et al. 2007). Unfortunately, the problem size in this
domain is in the thousands, which means meth-
ods that find exact linear arrangements (as dynamic
programming does) cannot be applied. Interestingly,
there are heuristic methods (Koren and Harel 2002)
that use exact methods as part of the entire process,
and our algorithm could potentially be applied here.
The talent scheduling problem is highly related to

the problem of minimizing the maximum number of
open stacks. In this problem there are no durations
or costs, and the aim is to minimize the maximum
number of actors on location at any time. The prob-
lem has applications in cutting, packing, and VLSI
design problems. Comparedwith the talent scheduling
problem, the open stacks problem has been well stud-
ied (see, e.g., Yuen 1991, 1995; Yuen and Richardson
1995; Yannasse 1997; Faggioli and Bentivoglio 1998;
Becceneri et al. 2004). The best current solution is our
dynamic programming approach (Chu and Stuckey
2009), but surprisingly almost none of the methods
used there to improve the base dynamic program-
ming approach is applicable to the talent scheduling
problem. In the end, the solutions are quite different,
probably because the open stacks problem, although
also NP-hard, is fixed parameter tractable (Yuen and
Richardson 1995), as opposed to the talent scheduling
problem.

7. Conclusion
The talent scheduling problem is a very challeng-
ing combinatorial problem, because it is very hard
to compute accurate bounds estimates from partial
schedules. In this paper we have shown how to
construct an efficient dynamic programming solution
by carefully reasoning about the problem to reduce
search, as well as adding bounding and searching in
the right manner. The resulting algorithm is orders of
magnitude faster than other complete algorithms for
this problem and solves significantly larger problems
than other methods.
There is still room to improve the dynamic pro-

gramming solution, by determining better heuristic
orders in which to try scheduling scenes and possibly
determining better dynamic lower bounds by reason-
ing on the graph of actors that share scenes. One very
surprising revelation for us was how much harder the
talent scheduling problem is than the highly related
problem of minimizing the maximum number of open
stacks.

Acknowledgments
The first two authors of this paper thank Manuel
Hermenegildo at IMDEA Software, Universidad Polytecnica
de Madrid, Spain, whom they were visiting while this work
was undertaken. The authors thank Barbara Smith for many
interesting discussions on the talent scheduling problem and
for giving them her example data files. They also thank the
reviewers for their careful reviewing, which improved the
paper substantially. NICTA is funded by the Australian Gov-
ernment as represented by the Department of Broadband,
Communications and the Digital Economy and the Aus-
tralian Research Council.

References
Adelson, R. M., J. M. Norman, G. Laporte. 1976. A dynamic pro-

gramming formulation with diverse applications. Oper. Res.
Quart. 27(1) 119–121.

Ambühl, C., M. Mastrolilli, O. Svensson. 2007. Inapproximability
results for sparsest cut, optimal linear arrangement, and prece-
dence constrained scheduling. Proc. 48th Annual IEEE Sympos.
Foundations Comput. Sci., IEEE, Washington, DC, 329–337.

Becceneri, J. C., H. H. Yannasse, N. Y. Soma. 2004. A method for
solving the minimization of the maximum number of open
stacks problem within a cutting process. Comput. Oper. Res.
31(4) 2315–2332.

Cheng, T. C. E., J. E. Diamond, B. M. T. Lin. 1993. Optimal schedul-
ing in film production to minimize talent hold cost. J. Optim.
Theory Appl. 79(3) 479–492.

Chu, G., P. J. Stuckey. 2009. Minimizing the maximum number of
open stacks by customer search. I. Gent, ed. Proc. 15th Internat.
Conf. Principles and Practice of Constraint Programming. Lecture
Notes in Computer Science, Vol. 5732. Springer, Berlin, 242–257.

CSPLib. 2008. CSPLib: A problem library for constraints. http://
www.csplib.org.

Faggioli, E., C. A. Bentivoglio. 1998. Heuristic and exact methods
for the cutting sequencing problem. Eur. J. Oper. Res. 110(3)
564–575.

Garcia de la Banda et al.: Solving Talent Scheduling with Dynamic Programming
INFORMS Journal on Computing 23(1), pp. 120–137, © 2011 INFORMS 137

Garey, M. R., D. D. Johnson, L. Stockmeyer. 1976. Some simplified
NP-complete graph problems. Theoret. Comput. Sci. 1 237–267.

Hur, S.-W., J. Lillis. 1999. Relaxation and clustering in a local
search framework: Application to linear placement. Proc. 36th
ACM/IEEE Conf. Design Automation Conf., ACM, New York,
360–366.

Karp, R. M. 1993. Mapping the genome: Some combinatorial prob-
lems arising in molecular biology. Proc. 25th Annual ACM Sym-
pos. Theory Comput., 278–285.

Koren, Y., D. Harel. 2002. A multi-scale algorithm for the linear
arrangement problem. L. Kučera, ed. Graph-Theoretic Concepts
in Computer Sci., 28th Internat. Workshop. Lecture Notes in Com-
puter Science, Vol. 2573. Springer, Berlin, 296–309.

Puchinger, J., P. J. Stuckey. 2008. Automating branch-and-bound
for dynamic programs. R. Glück, O. de Moor, eds. Proc.
ACM/SIGPLAN Workshop on Partial Evaluation and Program
Manipulation (PEPM ’08), ACM, New York, 81–89. http://doi
.acm.org/10.1145/1328408.1328421.

Rose, D. J. 1970. Triangulated graphs and the elimination process.
J. Math. Appl. 32(3) 597–609.

Smith, B. M. 2003. Constraint programming in practice: Schedul-
ing a rehearsal. Technical Report APES-67-2003, APES Research
Group, St. Andrews University, St. Andrews, Scotland.

Smith, B. M. 2005. Caching search states in permutation problems.
P. Van Beek, ed. Proc. 11th Internat. Conf. Principles and Practice
of Constraint Programming—CP 2005. Lecture Notes in Computer
Science, Vol. 3709. Springer, Berlin, 637–651.

Verfaillie, G., M. Lemaitre, T. Schiex. 1996. Russian doll search
for solving constraint optimization problems. Proc. National
Conf. Artificial Intelligence (AAAI96), Association for the
Advancement of Artificial Intelligence, Menlo Park, CA,
181–187.

Yannasse, H. H. 1997. On a pattern sequencing problem to mini-
mize the maximum number of open stacks. Eur. J. Oper. Res.
100(3) 454–463.

Yuen, B. J. 1991. Heuristics for sequencing cutting patterns. Eur. J.
Oper. Res. 55(2) 183–190.

Yuen, B. J. 1995. Improved heuristics for sequencing cutting pat-
terns. Eur. J. Oper. Res. 87(1) 57–64.

Yuen, B. J., K. V. Richardson. 1995. Establishing the optimality of
sequencing heuristics for cutting stock problems. Eur. J. Oper.
Res. 84(3) 590–598.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

